

data, database, DBMS

- data
 - a big pile of bits
- a database
 - structured collection of data
 - organised according to predefined relations
 - paper documents?
 - contact list on my Pilot?
 - world wide web?
- why bother with a database?
 - need to maintain consistency
 - don't want to have to repeat information

ER modeling

- identifying entities and the relationships between them
 - not unlike OO modelling, but entirely static
- types of relationships
 - one to one
 - one to many
 - optional one to many
 - many to many

the relational model

- most common (but not the only one)
- database is a set of tables
 - each table expresses a relation between data items
 - each row of the table is a record
 - each column is an attribute
- not just any table will do
 - for instance, we need a *key field*
 - a field (or set of fields) that uniquely identifies every record other properties are enforced by *normalization*
 - iteratively refining the database format for efficiency

first normal form

- no repeating groups
 - essentially, normalise the record length

Title	Price	Author1	Author2	Author3
Where the Action Is	\$30.00	Dourish		
Analyzing Social Settings	\$31.95	Lofland	Lofland	
Compilers	\$72.00	Aho	Sethi	Ullman

first normal form • no repeating groups – essentially, normalise the record length Title Price Author Where the \$30.00 Dourish

Where the Action Is	\$30.00	Dourish
Analyzing Social Settings	\$31.95	Lofland
Compilers	\$72.00	Aho
Compilers	\$72.00	Sethi
Compilers	\$72.00	Ullman

second normal form

no non-key attributes depend on part of the key

 essentially, break the data into many tables

Author	Title	Price	Email
Dourish	Where the Action Is	\$30.00	jpd@ics.uci.edu
Baldi	Bioinformatics	\$49.95	baldi@ics.uci.edu

second normal form						
• no _	non-ke essential	y at ly, br	tributes of reak the date	lepe ata ir	end on pa nto many ta	rt of the key ables
	Author		Email			
	Dourish		jpd@ics.uci.edu			
	Baldi		baldi@ics.uci.edu			
		Auth	or	Title		Price
	Douri		sh	Where the Action Is		\$30.00
	Baldi			Informatics \$49.95		\$49.95

third normal form

• no attributes depend on other non-key attributes – again, break the data into many tables

Author	Title	Price	Purchaser	Date
Dourish	Where the Action Is	\$30.00	Maria	12/21/00
Dourish	Where the Action Is	\$30.00	Joe	1/1/01
Baldi	Bioinformatics	\$49.95	Lisa	1/2/01

third normal form					
• no attrib – again,	utes dep break the	end o data in	n ol to n	ther non-k hany tables	ey attributes
Title	Purchaser	Date			
Where the Action Is	Maria	laria 12/21/0			
Where the Action Is	Joe	oe 1/1/01			
Bioinformatics	Lisa	1/2/01			
	Author		Title	2	Price
	Dourish	When		re the Action Is	\$30.00
	Baldi		Informatics \$49		\$49.95

normalisation

• what's the point?

normalisation

- what's the point?
 - eliminate redundancy
 - eliminate opportunities for inconsistency

Author	Title	Price	Purchaser	StudentID
Dourish	Where the Action Is	\$30.00	Maria	12/21/00
Dourish	Where the Action Is	\$25.00	Joe	1/1/01
Baldi	Bioinformatics	\$49.95	Lisa	1/2/01

the transaction model normalisation spreads data across multiple tables single action requires many updates a new customer placing a new order? consistency is important transactions group operations into logical units

the ACID properties

- Atomicity
- Consistency
- Independence
- Durability

getting it out again

query languages

 SQL is most common
 "SELECT name,id FROM grades WHERE grade="A";

getting it out again

SELECT DISTINCTROW HILlink.HLID, HLLink.HLCaseID, HLLink.HLRemarks, HLLink.HLCRCInit, CaseArchive. CaseStatus/Class, CaseArchive.CaseStatus/Category, Organizations.Org/Name, Organizations.Org/Dety. Organizations.Org/Address1, Organizations.Org/Address2, Organizations.Org/Exp. Organizations.Org/State, Organizations.Org/Pone, Organizations.Org/Exp. Organizations.Org/State, Organizations.Org/Pone, Organizations.Org/Exp. Organizations.Org/State, Person/Fefk, People.Person/Telk, People.Person/Address1, People.Person/Address2, People.Person/State, People.Person/Diff.p. People.Person/Address2, People.Person/State, People.Person/Category, TimeTable.TTBalke.TTTaskID, TimeTable.TTUser, TimeTable.TTSatt, TimeTable.TTSeonds, TimeTable.TTAdres, Organizations, Cases: CaseStatus/Cases, Cases: CaseStatus/Category, Cases: CaseStypeCategory, Cases: CaseStatus/Cases, Cases: CaseStatus/Category, Cases: CaseStypeCategory, Cases: CaseStatus/Cases, Plans.PlanCategory, Plane.PlansTitle, Products.ProductName, Diagnoses: Diagnosis FROM Diagnoses Plans.PlanCategory, Plane.RanTitle, Products.ProductName, Diagnoses: Diagnosis FROM Diagnoses Plans.PlanCategory, Plane.RanTitle, Products.ProductName, Diagnoses: Diagnosis FROM Diagnoses RICHT JOIN (Organizations RIGHT JOIN (Trimate Nicht TJOIN (Poast) RICHT JOIN (Organizations RIGHT JOIN (Trimate Nicht TJOIN (Poast) RICHT JOIN (Organizations RIGHT JOIN (Trimate Nicht TJOIN Poolst) RICHT JOIN (Organizations RIGHT JOIN (Trimate Nicht TJOIN (Poast) RICHT JOIN (Organizations RIGHT JOIN (Trimate RICHT JOIN (Cases RIGHT JOIN PhysicianOPLink.OPID) = Cases: CaseProjecianOPLIN (ON Poodst: PhysicianOPLIN CaseProteinD) ON PhysicianOPLink.CPID = Cases: CaseProjecianOPLIN (ON Poodst: Short TJOIN (ON ON PhysicianOPLINk.PIDI) LETT JOIN (CaseProteinD) ON Diagnoses.Diagnoses

distributing databases

- managing information access needs
 - locality
 - performance
- three forms of distribution
 - distributing tables
 - distributing rows
 replication
- two-phase commit
- "can commit?"
- "do commit!"

alternatives to relational

- object-oriented
 - hierarchical schemas
 - migrate code closer to data
- text databases
 - free-form indexing
 less structure
 - but more useful for unanticipated queries
- geographical information systems
- not a natural model for relational systems

organisational perspectives

- information all comes with a point of view

 complete information is a myth; so what is left out?
- information models encode assumptions

 about the state of the world or the objects modeled
 example: US Army deployment
- normalisation distributes information

 distributed locus of power and control

management concerns

- information quality
 - bad information is worse than none at all
 - it's easy to load a database with accurate information
 - it's harder to maintain the accuracy over time
 - distribution makes this worse
 - multiplicity of information, lack of "human access control"

• accessibility

- the point of having the information is to use it
 - availability
 - admissability
 - but there's a down side...
 - once you have information, you may have to disclose it
 security! (remember the risks, from last week)

summary

- key points:
 - information processing is about making the world tractable
 - amenable to summarisation, modeling & prediction
 - DBMS provides a framework for data management
 regularised for efficiency, consistency & maintenance
 - think about where the database fits
 - technically
 - organisationally
 - politically

homework

· See the web site for details

- two questions

- exercise in transforming a database into 1NF, 2NF, 3NF
- explore DNS as a distributed database
- due at next Wednesday's lecture

what's coming up

- Friday
 - discussion section
 - homeworks back
- Monday
 - performance and competition
 - Alter chapter 6