

project status

- team assignments are pretty much done
- however:
 - still need to know what you're working on
 - still need to know who's taking which role
 - tell me BEFORE MONDAY

schedule

- paper prototypes will get pushed back
 - originally planned for next Thursday
 - now we'll do them Wed 5/2 and Fri 5/4
 - NB: there's a test Tues 5/1
- we'll organise sessions explicitly
 - six teams on Wednesday, six on Friday
 - three teams at a time, with others as users
 - going to be pushed for time...

schedule

- right now...
 - be working on the design
 - take a user-centered approach
 - what tasks does it need to perform?
 - who are the users who're going to be using it?
 - scenarios might help!
 - what kind of interface approach will you take
 - be radical!
 - \bullet but... think about how you're going to test it
 - telepathic interfaces probably aren't going to fly
 - focus on the interface rather than the back-end for now
 but bear in mind constraints that the back-end might impose

outcomes

- report on paper prototypes
 - short (~5 pages) report on exercise
 - your basic design approach
 - how it fared in the prototype
 - what worked, what didn't work, what were people's impressions
- I don't want the pieces of paper...
- · grading
 - I'll give you feedback
 - no explicit grade on this section
 - it'll feed into an overall grade for the project

more techniques

- last time
 - paper prototypes
 - cognitive walkthroughs
- this time
 - more on predictive prototyping
 - GOMS and KLM
 - usage data approaches
 - questions are:
 - what do these techniques tell you?
 - when you should choose one or another?
 - what are the pitfalls?

predictive techniques

- predictive techniques
 - when you can't run a user trial
 - expert inspection of the interface
 - theory-based evaluation of performance

cognitive theory

- cognitive psychology
 - from behaviour to mental processing
 - a mechanistic/computational account of cognition
 - so, cognition amenable to
 - mechanical investigation
 - mathematical modeling
 - engineering design
- relevant questions
 - $\boldsymbol{\mathsf{-}}$ how much can people remember in the short term?
 - how complex are different calculations?
 - how long will it take people to perform tasks?

human info. processor (sparky)

from Card, Moran & Newell, 1983

GOMS

- a model of cognitive interface activity
 - Goals
 - Operations
 - Methods
 - Selection roles
- too complex for us to consider here, so...

keystroke level model

- KLM is simplified version of GOMS
 - single-layer model (no nested goals/subgoals)
 - focus on brief operations
 - combination of mental and motor actions
 - largely developed independent of GUI

keystroke level model

- basic operation classes
 - keystroking (K)
 - pointing (P)
 - homing (H)
 - drawing (D)
 - mental operations (M
 - response (R)
- 50
 - $T_{execute} = T_k + T_p + T_d + T_m + T_h + T_r$

why should we care?

- times can be experimentally determined
 - $-T_k = 0.35s$ (depends on skill)

 - $-T_{p} = 1.10s$ $-T_{m} = 1.35s$
 - $-T_{r} = 1.2s$
 - $-T_{h} = 0.4s$
 - $-T_d$ is too variable to measure

tricky part

- where to put T_m
 - where do the "think" pauses go?
 - intricate set of heuristics
 - place M before all K's not part of command strings
 - place M before all P's that select commands
 - for each M
 - delete if operator anticipated (e.g. PMK -> PK)
 - if string of Ms belong to cognitive unit, delete all but first
 - if K is redundant terminator, delete M
 - if K terminates constant string (e.g. command), delete it
 - if K terminates variable string (e.g. arg), keep it

example

- to do "save as..."
 - initial homing: T_h
 - select "file": Tm plus Tp
 - select "save as"
 - click, select, click
 - $\bullet \ \mathsf{T_k} + \ \mathsf{T_m} + \ \mathsf{T_p} + \ \mathsf{T_k}$
 - enter filename
 - system prompt, typing
 - $T_r + T_m + T_k$ (foo.doc) + T_k (return)
 - total:
 - \bullet 0.4 + 2.33 + 3.15 + 7.05 = 13.05s

problems

- fail to account for context
- fail to account for errors
- fail to account for learning
- but...
 - rules of thumb are useful
 - useful to think about the NUMBER of operations
 - useful to think about what people need to do

observation

- interviews rest on a questionable assumption
- direct observation
 - observe without interference (as far as possible)
 - the dangers of misinterpretation
 - we're used to looking at the world and ascribing intent
 - perception is a complex cognitive process • what we see is often what we expect to see

observation

- video observation
 - can allow for repeated analysis
 - can be coordinated with other forms of data
 - e.g. keystroke logging
- the hawthorne effect
 - the Uncertainty Principle for social science...

think-aloud protocols

- a "protocol" is a log of intermediate states
 - the steps you go through to accomplish a task
- various mechanisms for eliciting a protocol
 - software logging, video analysis
- think-aloud procotols
 - use
 - interfering with the task
- post-event protocols
 - like video analysis, but with the user

usage data

- collecting usage data is easy
 - you can generate enormous amounts very quickly
- analyzing usage data is hard
 - you need to know what you're looking for
 - you need to decide in advance how you'll analyse it
 - looking at task performance? time to competion?
 - looking for interface problems? dead-ends?
 - looking for contextual factors?
 - how are you going to "code" it?

flexible structured general topics follow the conversation fixed questions fixed ordering fixed answers?

flexible requirements gathering learning about domains uncovering problems statistical measures broad comparisons easier for the interviewer

semi-structured interviews

- more common approach
 - in advance, prepare an interview guide
 - some basic questions
 - ask *open* questions not yes or no answers
 - often useful to ask about specific experiences
 - prompts & follow-ups
 - during the interview
 - be prepared to follow where it goes
 - ask follow-up questions...
 - your goal is to find things out, not to get done a.s.a.p.!
 - structure is a guide
 - $\boldsymbol{\mathsf{-}}$ complete it, but use it as a starting point

neilsen's structure

- why do you do this? (get the user's goal)
- how do you do it (get the subtasks; recurse)
- why do it this way? (suggest alternatives)
 don't criticise, but get the rationale
- what are the preconditions for doing this?
- · what are the results?
- can we see your work product?
- do errors ever occur?
- how do you resolve them?

variations

- prompted interviews
 - people find it easier to work with specifics
 - use artifacts to guide the discussion
 - show me some examples of recent work
 - how did you do this?
 - what might have caused that?
 - what prompted such-and-such an action?

variations

- card sorting techniques
 - users asked to sort cards according to various factors
 - cards can indicate categories, actions, people, data...
 - the cards are an external representation
 - easier to reflect on
 - sharable between many people

questionnaires

- focus on unambiguous answers
 - questionnaires are normally looking for broad trends
 - need to be able to aggregate results
- structured answers
 - multiple choice
 - yes/no
 - likert scales

questionnaires

- focus on unambiguous answers
 - questionnaires are normally looking for broad trends
 - need to be able to aggregate results
- structured answers
 - multiple choice
 - yes/no
 - likert scales
 - ICS 105 is the best class ever

questionnaires

- questionnaire design is deceptively complex
 - provides necessary information for making decision?
 - consider respondent and environment
 - work to make it interesting
 - focus on "need to know"
 - keep a specific respondent in mind
 - reduce the need for interpretation
 - beware of prestige bias

questionnaires

- how often do you eat at a restaurant?
 - very often
 - often
 - sometimes
 - rarely
 - never

questionnaires

- how often do you eat at a restaurant?
 - every day
 - 2-6 times per week
 - about once a week
 - about once a month
 - never

questionnaires

- how would you rate this interface?
 - superb
 - excellent
 - great
 - good
 - fair
 - not so great

questionnaires

- is this the best interface you've ever used?
 - yes
 - no

questionnaires

- the interface was easy to understand
 - strongly agree
 - partly agree
 - neither agree nor disagree
 - partly disagree
 - strongly disagree

questionniares

- I believe we should protect the environment
 - strongly agree
 - partially agree
 - neutral
 - partially disagree
 - strongly disagree

questionnaires

- questionnaires are useful when
 - need to gather large amounts of information
 - but watch out: 20% response rate is high
 - need to find broad trends
 - situation is well-understood
- less valuable when:
 - need detail
 - doing more exploratory work

for next time

- make appointment times with Doshi
 - by the end of this week, we want to know everything!
 - who's on what team
 - what you're doing
- next time
 - interpretive approaches