ICS 105:
Project in HCI

Swing and JFC Programming - I

midterm

¢ not bad overall

— a couple of questions caused consistent confusion
—27and upisan A
—-20andupisaB

* review answers

» and now back to our regularly scheduled
broadcast...

java, awt, Swing, Java2D...

 java UI delivered piece by piece
— awt first for basic graphics and UL
- later, Swing on top of awt
- then Java2D
— then Swing on Java2D

» package confusion
— java.awt, java.awt.event
— javax.swing, javax.swing.event, ...

swing design goals

¢ AWT used a “peer-ed” design

— each AWT object had a peer in the native UI system
* AWT button proxy for a button object in Windows, Mac, etc
« essentially, AWT is a Java binding for the native system

— this is cumbsersome and complex

* each window system has its own quirks, but Java needs to
be portable across platforms

« little control over the actual UI behaviour

swing design goals

¢ swing does as much as possible itself
— completely portable
* no longer lowest common denominator
« implementation simpler, too
— complete control
* can add features over the underlying system

— e.g. antialiasing throughout the interface
¢ look and feel

frames, panels and panes

e every app is rooted in a top-level window
— in swing, this is a “frame”
- class JFrame (everything begins with J in swing)
- frames correspond to windows
» frames have multiple “panes”
- normally, we're concerned with the ContentPane

— we can add further nested panes
¢ e.g. JTabbedPane for tabbed windows

frames, panels and panes

¢ panels
— most user interface objects live in panels (JPanel)
- panels are the basic unit of layout
¢ layout
- delegation model for layout
« panel itself doesn’t deal with layout
« each panel has a LayoutManager object
— panel.setLayout(...)
¢ swing provides multiple LayoutManager classes

— each class implements a different layout policy
— which class you instantiate determines panel layout

panels and layout

¢ FlowLayout
— most primitive layout
« basically stops things from being on top of each other
« lays objects out left to right, top to bottom

panels and layout

¢ BorderLayout

— panel.add(Component, BorderLayout.NORTH)

— you don't need to have all these components
* use BorderLayout to associate some objects with borders of
the application

panels and layout

fie Edi Seach Ve et fun Weads Tools Wndow tiep
DSE-QATG DB AN BDBREL B a8
SEan Jun - & s B] T

o ko wiimeres
o

& Laputrest

|
[322 [wadtod | et

o
Souce [Besion] Boan] 0oc]]

panels and layout

¢ GridLayout

¢ GridLayout(int rows, int cols)
— objects added top to bottom, left to right
— can't span cells

panels and layout

¢ GridBaglLayout
— like GridLayout, but more flexible
- can span cells horizontally and vertically

- very powerful
« but therefore very complex
* horrendous programming interface
— often best left to GUI builders and auto-programming

frames, panels and panes

¢ typically use multiple nested panels
— panels capture different areas of functionality

- different panels may have different layouts
« different policies
« different navigation mechanisms

frames, panes and panels

‘S Vow Eojeel_Run Wis Toos Wndo Holo

o EE B Ta 73 1
12 8 _;g. [B uiet. - & sutorpemot| & | | la & Lomurest |
e = M
1P e cumet o
T \
S T s e '
S s
1 S
|, 1
| 1
H |
| 1
| 1
1 i cioe gt v e !
| Tranet aranets) 1
e 1
&3 [ER—— 1
! S Wm.no Y huceins \
s 1 exten et o ¢ 1
[IR, '
|)
1 Ly :
proshei oo ot AT—
1 s H
: i \
) oo Sl
1 Groaros 7T
1 soue o]]] i 1
| P 1
L

frames, panes and panels

g
A O o B I e D e B

M'E"Ew"!??‘é‘i‘?ﬁﬁT’ﬁ'ﬁJ T

LR |

"'s'mm T T
(i)

BT ST ATl | — — — — — E

1
1
1
1
1
1
1
1
1
1
1
6 mperts : 1
1
1
1
1
1
1
1
1
1
1
1
L

ise segoucreari)
oncey;
cateniproeption <) ¢
e primestasiTease

private weia o) throwe P
. gcConcancrana) SS(27aneLL, Borderiagout. CENTIR

Jpanes.add(J5ceoAtE el L
£l

] |
Lormuttasti aes 2| wodites | ot

Source [Dsn] 5] D] Fitos)

.
H
H

panit

frames, panes and panels

i
R e
MEE OEds » BB Anwn

IR O B el |

LIED
:"g-;g\mam—suu—— = T T o TRor B ST | = — = = = &
T =

ise segoucreari) o
oncey;

o estentexceptaon o) ¢
o e.printstackTeass (1

Irivate wid bInito) theows Dec
v GevEoantrana) sas(oFaneLL BrdeTIaTOS,CETI
Jpanes.ada j3coAtE e,

£l

] |
ouost v 2| wodites | ot

Source [Doson] 5] D] Fitos)

e

frames, panes and panels

g
Fio_Eot soyn vy Eed_n Vigus Tobs Window b

R S A T E R =,
I‘-g-;z;m el 3mnmms e | T wEr eS| B oimodarudtei| B RaolorDEme S T e = = = = =]
peal wm jor Kage
I \
JHE T !
i T T 1
! 2001 H
1 . 1
h 1
h 1
1 s cioe gt v e !
| frt e S LR H
1 g 1
2% G [ER—— 1
!) Tozaseys 1
1 [|
[H bt Teate 05
1 } * 1
| on i !
I .+ Borderlagout. CINTIR) ; 1
! i
1
« 2y
1 i i e i
1 ‘Source [Dasign] Baan] Doe] Histors 1
e |
L

frames, panes and panels

g

Slo_E01 o Y Eiod_Sun Wyas Tuls Yooy bl
'TTJ CEoudy, Wy Y =i e
e x-hel
g
1 mnmmmm port. 30v0. v,
o vort Jevs,

S
b-Jriirie
Ramnaunnbcmn i

ise segoucreari) o

oncey;
i cateniproeption o) ¢
v e primestasiTeaze
rivate weia suino) throws Bxceprion
L, oraariagoue. covTER »

I = m m

a2z wodites | ot

e

frames, panes and panels

swing event model

* event-based programming model
— user interface actions generate events
— events delivered to objects that express interest
¢ the swing approach
— every object has a set of listeners
« different listeners for different sorts of events
— listeners are objects interested in events
¢ note — this is OBJECT BASED

— listeners are objects
— listeners are associated with particular objects

swing event model

e cun wsuuy

NETL)

JButton

swing event model

e cun wsuuy

NETL)

addActionListener() JButton

swing event model

JButton

swing event model

nE Cun rewuy

swing event model

e cun wsuuy

swing event model

e cun wsuuy

SEIL)

JButton

actionPerformed(ActionEvent)

swing event model

o listeners

— three features
o the listener need to declare the right interfaces
— each type of listener has an associated interface
» e.g. ActionListener, MouseMotionListener
— java.awt.event.*;
« the listener needs to be attached
— via addXXXListener()
« the listener needs to handle the event
— implement the methods specified in the interface
» public void actionPerformed(ActionEvent)

swing event model

¢ event classes
— ActionEvent

« actionPerformed - e.g. button pressed, item selected
— MouseEvent

* mouse buttons or mouse movement
— entered or exited, pressed, clicked, moved, dragged...

— KeyEvent

— WindowEvent
- ContainerEvent
- and others...

swing event model

» everything is object-based
— events are objects
* Event class describes generic event
« each event object contains specific details
— event.getSource() is the object that generated it
— MouseEvent.getX() and MouseEvent.getY() for locations
- listeners are objects
« listeners can retain state to collect history
— sources are objects

o that is, you attach listeners to specific objects
— this button or that button but not a// buttons

swing idioms

¢ adapters
— sometimes you only need a subset of events
¢ e.g. MouseListener defines five methods

— mouseClicked, mouseEntered, mouseExited,
mousePressed, mouseReleased

« often not interested in all of them
— care about clicks but not presses, or entry/exit
- for each XXXListener, there’s an XXXAdapter
« null methods for all events

« inheriting from the adapter means you only have to
supply the methods you're interested in

swing idioms

o listeners often use anonymous inner classes
— inner classes are defined inside other classes

— anonymous inner classes are
¢ unnamed
« defined in-line

foo. addAct i onLi st ener (1 i st ener Obj ect)

swing idioms

o listeners often use anonymous inner classes
— inner classes are defined inside other classes
— anonymous inner classes are
¢ unnamed
« defined in-line

f 0o. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerformed(ActionEvent ae) {
Systemout. println(“The action was perforned!");
}
s

swing idioms

o listeners often use anonymous inner classes
— inner classes are defined inside other classes
— anonymous inner classes are
¢ unnamed
« defined in-line
- saves a lot of overhead
 defining a separate class for just a single method
« listeners are often just “glue” and forward activation
o pollute the namespace

basic drawing

¢ drawing isn't a Swing function
— provides UI objects, drawing is lower level
- still necessary, though

* not everything on the screen is a Swing component
« creating new objects with new visual features

¢ the Graphics object
— this.getGraphics() returns an instance of Graphics

- Graphics supports most simple drawing operations
* drawLine, drawRectangle, drawRoundRect, drawText...

drawing example

¢ simple drawing application
— open a window
- listen for mouse events

* mouse down - start of drawing
« mouse dragged — draw lines

