ICS 105:
Project in HCI

Swing and JFC Programming - II

projects

 timetable
— paper prototyping reports are due Friday
* my office, by 4pm
- implementation phase
— the goal is to be able to evaluate week of May 28
¢ lab-based evaluation
o focus on the tasks
— tasks have to be complex enough to test the interface
— meet with Doshi in next week

today

* brief review on Swing

¢ painting model

* explore a range of examples
— none of these is very complex...
— code on the class web page

frames, panels and panes

¢ panels
— most user interface objects live in panels (JPanel)
- panels are the basic unit of layout
¢ layout
- FlowLayout, BorderLayout, GridLayout,...
- all express ongoing constraints
e panels are generally nested

swing event model

* event-based programming model
— user interface actions generate events
— events delivered to objects that express interest
¢ the swing approach
— every object has a set of listeners
« different listeners for different sorts of events

— listeners are objects interested in events
* note - this is OBJECT BASED
— listeners are objects
— listeners are associated with particular objects

swing event model

e cun wsuuy

swing event model

o listeners

— three features
o the listener need to declare the right interfaces
— each type of listener has an associated interface
» e.g. ActionListener, MouseMotionListener
— java.awt.event.*;
« the listener needs to be attached
— via addXXXListener()
« the listener needs to handle the event
— implement the methods specified in the interface
» public void actionPerformed(ActionEvent)

swing idioms

o listeners often use anonymous inner classes
— inner classes are defined inside other classes
— anonymous inner classes are
¢ unnamed
« defined in-line

f 0o. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerformed(ActionEvent ae) {
Systemout. println(“The action was perforned!");
}
s

drawing example

¢ simple drawing application
— open a window
- listen for mouse events

¢ mouse down - start of drawing
« mouse dragged — draw lines

the painting model

¢ painting is distributed
— objects must paint themselves
» each object knows how it should be painted
- in AWT, single paint() method
— in Swing, paint() delegates to:
* paintComponent()
 paintBorder()
« paintChildren()

o the trick about painting is knowing when

painting and repainting

o interactive displays are 2.5-dimensional
— X, Y, plus depth
e depth is just an ordering (hence 2.5 rather than 3)
— depth adds complexity

« objects move around, causing changes in what they
obscure and reveal

* complicates painting procedures

painting and repainting

+ move the red triangle to the left
— paint new circle
- paint old space in background color

painting and repainting

+ move the red triangle to the left
— paint new circle
- paint old space in background color

painting and repainting

+ move the red triangle to the left
— paint new circle
- paint old space in background color

painting and repainting

* move the grey star down and right
— simple solution clearly doesnt work

painting and repainting

* demage/redraw solution
— view informs renderer what areas need to be redrawn
— window system batches them
— window system issue redraw instructions

¢ how is this better?

— window system uses clijpping
« clipping restricts drawing operations to a limited area
* redraws are clipped to the damaged regions

painting and repainting

o two features of this strategy
— clipping is handled by the graphics system
* no need for UI system to be able to redraw parts
« redraw whole object and let the graphics system clip
— minimise drawing
* only update damaged
regions

painting and repainting

* two features of this strategy
— simplifies painting needs
« clipping is handled by graphics system directly
« no need for UI system to be able to redraw parts
« redraw whole object and
let the graphics system
clip
— minimise drawing
« only update damaged
regions

swing widgets

» swing widgets use JavaBean conventions
— properties controlled through getFoo() and setFoo()
— widget tree rooted in JComponent
* many of the widgets are containers
- e.g. panels, menus,
- call add() to add subcomponents

basic widgets

expanded widgets

]

G
e
buttons

¢ (almost) simplest widget — JButton

— button has:
 graphical properties
« label
 ActionListeners
— JButton has basically only one action — being pressed

— buttons can use text or icon (or both)

JButton bl = new JButton(“Open”);
bl. addActi onLi st ener (new ActionLi stener() {
public void actionPerformed(ActionEvent ae) {

okay, so | lied...

» there's a lot more I won't go into here
— even buttons turn out to be more complex
— AbstractButton class
 alignment properties
« rollover behaviour
» keyboard accelerators...

menus and menuitems

¢ various menu-related classes
— JPopupMenu
— JMenuBar

JMenu H JMenu }—‘ JMenu ‘

J MenuITem‘ «‘J’ M:nul'r:m‘ Ji M:nul'r:m‘

JMenuITem‘ «‘JM:nul’fgm‘ JM:nuIt:m‘

menus

¢ JMenultems have individual action listeners
— menu objects play more structural role

e menubar
- class is JMenuBar (contains JMenus)

- only JFrame has a menubar
« explicitly set with JFrame.setJMenuBar()

* popup menus
— class is JPopupMenu
— no automatic support, need to pop it up by hand

radio buttons

« radio buttons require two levels of grouping
— need to be graphically laid out on the screen
- need to be grouped into “sets”
- s0, two collections =l
« panel, etc, for layout s T
* ButtonGroup for grouping

— determines exclusion criteria
— holds final value

Qe propeies
ana| s | mun| oot e G5 5781 1|

e —
I use ans st)
Reset o | _cameel | _ven

lists

» basic multiple choice selection
— select single or multiple elements

- elements can be pretty much anything
¢ in AWT, only strings...

lists follow MVC

o lists are actually more complex
o list uses:
— ListModel
« describes the content of the list
— ListSelectionModel
« describes which elements of the list are
— ListCellRenderer (view)
« renders the contents of a given item

— if item is a File, then ListCellRenderer could give filename,
pathname, icon

— need to render both selected and unselected items

trees

¢ JTree is @ more complex MVC-based class

— trees are a more complex data structure
¢ so the model becomes more complex
« and so does the selection model

— Swing provides some basic implementations
¢ DefaultTreeModel

— tree of DefaultMutableTreeNodes
— notification model

next time

» looking at graphical design issues
— screen design
- visual design features

» reading
— Preece ch 4.2, ch 5

