ICS 132: Organizational
Information Systems

Information Management and
Database Systems II

relational databases

¢ schemas
— relational databases based on formal data definitions
- again, like specifying classes
— schema describes table structure and storage req'ts
— table “book”:
« author CHAR(50)
o title CHAR(100)
« isbn CHAR(30)
« price DECIMAL(5,2)

exploiting structure

» all DBMS exploit common structure
— common structure across instances
« all books have these properties
— common structure across databases

« all data can be modeled in this way
— e.g. relational data model

— what’s the point of this common structure?

SQL

¢ SQL is the Structured Query Language
— originally developed for IBM’s System/R in 1970s
— now an open standard (actually, a bunch of them)
e a common interface for relational DB’s

— manipulation

« creating tables, updating them, adding data
— examination

* looking data up: queries

sQL

¢ queries have three basic components
— select
* what aspects of the data do we want to see
- from
« what tables contain it
— where
« filtering of results
* syntax
—select attributel, attribute2, ...
fromrelationl, relation2,
where predicate

SQL

¢ some basic examples

—select title from books

—select title frombooks where
aut hor =* douri sh’

—select title frombooks where
aut hor =" douri sh’ and price < 35.00

—sel ect grade from students where
id=*12312312

—select id,nane from students where
grade='f’

SQL

* queries across multiple tables
— relational model splits data into different tables
— queries need to integrate across multiple tables
- selects that combine table are called joins

e example

- tables: “students” (id, name), “grades” (id, score)
—sel ect name, score

from students, grades

where students.id = grades.id

SQL

¢ combining results
— union, intersect, except
- these are operators over selections
o examples
—select title frombooks where author =
‘dourish’ except select title from books
where title = ‘context-aware conputing’
—select id fromhonmeworkl where score > 85
intersect select id fromhomework2 where
score > 85

— NB: neither of these are the easiest ways to do them...

SQL

» postprocessing (order, group)
— need to organise results
- order (sort), group (clustering)
* examples

—select id, nane, score from students
order by score

—sel ect nodel, price fromproducts where
price < 100 order by price desc

—sel ect manufacturer fromprice_list
group by nmanufacturer

SQL

* some processing over results
— e.g. avg(), sum(), count(), min(), max() ...
o examples
—select count(*) fromstudents where
grade='a’
—sel ect avg(score) from grades

—sel ect author, avg(price) as average
from books group by author order by
aver age

sQL

e summary
— selecting, combining, processing

» there's more, of course...
- subqueries
- update and modification as well as querying

using SQL

* what SQL is not
— not a full programming language
- not a development environment
» sqgl queries normally embedded in programs
- e.g. from java, using JDBC
- languages differ in their degrees of integration

using SQL

d ass. f or Name(JDBC_CLASS);

Connection conn = Dri ver Manager . get Connecti on(DB_URL, "ics132", *password");
Staterment statement = conn.createStatenment();

Resul tSet rs = statenent.executeQuery(“select title, author from books");
Resul t Set MetaData nd = rs. get MetaData();

out. println("<TABLE BORDER=2>");
out.println("<TR>");
for (int i =1; i < nd getColumCount() + 1; i++) {
out. println("<TD>" + md. get Col umName(i).trin() + "</TD>");
}
out.println("<TR>");
while (rs.next()) {
out.println("<TR>");
for (int i =1; i < nd. getColumCount() + 1; i++) {
out.println("<TD>" + rs.getString(i) + "</TD>");
}
out. println("</TR");

}
out. println("</ TABLE>");

gueries and definitions

* must consider queries & definitions together
— form of the database determines query complexity
- reducing joins
¢ constraints on data definitions
- looking at queries reveals patterns of definition
« e.g. for multiway relations
» database normalization
— a set of procedures for structuring relations
— normal forms

first normal form

* no repeating groups
— essentially, normalise the record length

Title Price Authorl Author2 Author3
Where the $30.00 Dourish

Action Is

Analyzing Social | $31.95 Lofland Lofland

Settings

Compilers $72.00 Aho Sethi Uliman

first normal form

* no repeating groups
— essentially, normalise the record length

Title Price Author
Where the $30.00 Dourish
Action Is

Analyzing Social | $31.95 Lofland
Settings

Compilers $72.00 Aho
Compilers $72.00 Sethi
Compilers $72.00 Ullman

second normal form

¢ no non-key attributes depend on part of the key
— essentially, make key as small as it can be

Author | Title Price Email

Dourish | Where the Action Is | $30.00 | jpd@ics.uci.edu

Baldi Bioinformatics $49.95 baldi@ics.uci.edu

second normal form

¢ no non-key attributes depend on part of the key
— essentially, make key as small as it can be

Author Email

Dourish jpd@ics.uci.edu

Baldi baldi@ics.uci.edu
Author Title Price
Dourish Where the Action Is | $30.00

Baldi Informatics $49.95

third normal form

¢ no attributes depend on other norrkey attributes
— every relation should be about just one thing

third normal form

¢ no attributes depend on other norrkey attributes
— every relation should be about just one thing

Title Purchaser | Date

Where the Action Is Maria 12/21/00

Where the Action Is | Joe 1/1/01

Bioinformatics Lisa 1/2/01
Author Title Price
Dourish Where the Action Is | $30.00
Baldi Informatics $49.95

Author | Title Price Purchaser | Date

Dourish | Where the Action Is | $30.00 | Maria 12/21/00

Dourish | Where the Action Is | $30.00 | Joe 1/1/01

Baldi Bioinformatics $49.95 | Lisa 1/2/01
phases

e definition

e querying

e execution?

the transaction model

* normalisation spreads data across multiple tables
— single action requires many updates
* a new customer placing a new order?
— may be executing many operations concurrently
— consistency is king
* across time and “space”
* “transactions” group operations into logical units
- all-or-nothing execution semantics
- “rollback”

the ACID properties

o Atomicity
* Consistency

Iso

lation

Durability

the ACID properties

o Atomicity
— all-or-nothing semantics for transactions
¢ Consistency
¢ Isolation
Durability

the ACID properties

o Atomicity

— all-or-nothing semantics for transactions
Consistency

— goes from one consistent state to another
Isolation
Durability

the ACID properties

o Atomicity

— all-or-nothing semantics for transactions
Consistency

— goes from one consistent state to another
Isolation

- one transaction doesn’t see another’s intermediate
products

Durability

the ACID properties

o Atomicity

— all-or-nothing semantics for transactions
¢ Consistency

— goes from one consistent state to another
¢ Isolation

- one transaction doesn’t see another’s intermediate
products

¢ Durability
— transaction’s changes are persistent

assignment

¢ two questions

— one on queries

- one on normalization
¢ database running on drzaius.ics.uci.edu

- let me and TAs know quickly in case of problems
¢ assignment is due in Monday’s lecture

summary

¢ key points:
— information processing is about making the world
tractable
* amenable to summarisation, modeling & prediction
— DBMS provides a framework for data management
« regularised for efficiency, consistency & maintenance
- relational databases

« organise information according to relations & tables
 sgl provides uniform access

what’s coming up

¢ Friday
— discussion section
* Monday
- performance and competition
- read Alter chapter 6
* next Wednesday is the mid-term

- I'll set office hours next week to discuss problems
or questions

* as usual, I'm also available any other time you can find
me free...

