
1

ICS 132: Organizational
Information Systems

Information Management and
Database Systems - II

administrivia

• midterm
– next Tuesday
– sample paper on web site

• remember, the syllabus has changed some

recap

• last time, we covered ER models
– primary objects

• entity sets
– roughly, object types

• entities
– individually distinguishable

• attributes
– atomic or multi-valued

• relationships (between entity sets)
– relationships have cardinality
– relationships also have attributes

Book

title

isbn

author

Publisher

city

name

acquired
publishes

recap

• some observations
– the variability in models of a domain

• degree of specificity
• attributes verses entities
• relationship attributes

– generally, we don’t model the domain
• model the information needs of some users
• what you need to know determines what you represent

– this is inevitable
– but hopefully, you buy yourself some future-proofing too if

you do your job right

database styles

• relational database style
– origins at IBM

• algebraic model developed by Edgar (Ted) Codd at IBM
• first large-scale implementation in System R (1970s)

– also the origin of SQL, Structured Query Language

– data is stored in tables
– each row represents a relationship amongst values

• in fact, tables are called “relations” in the relational model

– link to mathematical notion of relation
• mapping between domains

– domain of keys
– domain of values

relational databases

• tables and relations
– a relational database involves multiple tables
– why split them up?

• avoid repetition
– e.g. don’t store delivery address separately for each order
– inefficient
– can lead to inconsistency

– putting them together again
• need to correlate information

– draw from many places
– integrate across tables

2

turning models into tables

• step 1
– for each entity in the ER model

• create a relation that includes all the atomic attributes
• choose one or more attributes as the primary key

turning models into tables

• step 2
– for each one-to-one relationship in the schema

• identify the two entity sets S and T
• choose one (say, S)
• include the primary of T as an attribute of S
• include the atomic attributes of the relationship as attributes

of S

turning models into tables

• step 3
– for each 1:N relationship

• identify the relation S at the “N” side of the relationship
• include the primary key of T as an attribute of S
• include the atomic attributes of the relationship as

attributes of S

turning models into tables

• step 4
– for each two-way N1:N2 relationship

• create a new relation S to represent this relationship
• include primary keys of both relations in S
• include relationship’s atomic attributes in S

turning models into tables

• step 5
– for each multi-valued attribute

• create a table to represent this attribute
• one column for a single value of the attribute
• add the primary key of the entity (or relationship) of

which it is an attribute

turning models into tables

• step 6
– finally, for each multi-way relationship

• create new relation S
• include all the primary keys as attributes of S
• include atomic attributes of relation as attributes of S

3

turning models into tables

• representing entities
– tables that represent the attributes of each entity
– a primary key to uniquely identify each row

• representing relationships
– an association of primary keys

• inside one of the entity relations
• as a separate relation

normalization

• again, relationship between defn and queries
– the structure of your database is intimately tied to

the queries you will perform against it
– query languages have different constraints

• so, need to ensure that database design matches the
needs of the query language

– we’ll be using SQL
• based on the relational calculus
• designed alongside relational model

– database normalization
• ensure database meets a set of structural criteria
• enshrined as a set of “normal forms”

normalization

• there’s a whole set of normal forms…
• we’ll just look at three

– first normal form
• rule: no repeating groups

– second normal form
• rule: no non-key attribute depends on part of the key

– third normal form
• rule: no non-key attribute depends on another non-key

attribute

first normal form

• no repeating groups
– essentially, normalise the record length

UllmanSethiAho$72.00Compilers

LoflandLofland$31.95Analyzing Social
Settings

Dourish$30.00Where the
Action Is

Author3Author2Author1PriceTitle

first normal form

• no repeating groups
– essentially, normalise the record length

Sethi$72.00Compilers

Aho$72.00Compilers

Ullman$72.00Compilers

Lofland$31.95Analyzing Social
Settings

Dourish$30.00Where the
Action Is

AuthorPriceTitle

second normal form

• no non-key attributes depend on part of the key
– essentially, make key as small as it can be

jpd@ics.uci.edu$30.00Where the Action IsDourish

baldi@ics.uci.edu$49.95BioinformaticsBaldi

EmailPriceTitleAuthor

4

second normal form

• no non-key attributes depend on part of the key
– essentially, make key as small as it can be

jpd@ics.uci.eduDourish

baldi@ics.uci.eduBaldi

EmailAuthor

$49.95InformaticsBaldi

$30.00Where the Action IsDourish

PriceTitleAuthor

third normal form

• no attributes depend on other non-key attributes
– essentially, a relation should be about just one thing

Lisa

Joey

Maria

Purchaser

1/1/03Hans$30.00Where the Action IsDourish

7/1/01Jaime$49.95BioinformaticsBaldi

1/1/02Amy$30.00Where the Action IsDourish

EmployedSellerPriceTitleAuthor

third normal form

• no attributes depend on other non-key attributes
– essentially, a relation should be about just one thing

HansMariaWhere the Action Is

JaimeLisaBioinformatics

AmyJoeyWhere the Action Is

SellerPurchaserTitle

$49.95InformaticsBaldi

$30.00Where the Action IsDourish

PriceTitleAuthor

1/1/03Hans

7/1/01Jaime

1/1/02Amy

EmployedSeller

normalization

• normalization transforms database structure
– eliminates repetition
– disentangles dependencies
– clarifies relationships

• two benefits of these transformations
– semantic

• cleaner definitions
• clarifies “meaning”

– practical
• optimizes for SQL-based queries

next time

• next time, SQL syntax and queries

