
1

ICS 132: Organizational
Information Systems

Information Management and
Database Systems -- III

still looking at databases

• so far
– ER modeling
– turning models into relational tables
– normalizing relational tables

• the database chicken-and-egg problem
– which comes first, structure or queries?

• can’t query if you don’t have a structure
• can’t design database if you don’t know the queries

SQL

• SQL is the Structured Query Language
– originally developed for IBM’s System/R in 1970s
– now an open standard (actually, a bunch of them)

• a common interface for relational DB’s
– manipulation

• creating tables, updating them, adding data

– examination
• looking data up: queries

SQL

• queries have three basic components
– select something

• what aspects of the data do we want to see

– from somewhere
• what tables contain it

– where condition
• filtering of results

• basic syntax
– select attribute1, attribute2,…
from relation1, relation2, …
where predicate

SQL

• some basic examples
– select title from books
– select title from books where
author=‘dourish’

– select title from books where
author=‘dourish’ and price < 35.00

– select grade from students where
id=‘12312312’

– select id,name from students where
grade=‘f’

SQL

• queries across multiple tables
– relational model splits data into different tables
– queries need to integrate across multiple tables
– selects that combine table are called joins

• example
– tables: “students” (id, name), “grades” (id, score)
– select name, grade
from students, grades
where students.id = grades.id

2

SQL

• joins aren’t as clever as you’d think
– a basic pairwise combination of possible elements

•select name,grade from
students,grades where grade=‘A’

SQL

• joins aren’t as clever as you’d think
– a basic pairwise combination of possible elements

•select name,grade from
students,grades where grade=‘A’

•select name,grade from
students,grades where grade=‘A’ and
students.id = grades.id

SQL

• joins aren’t as clever as you’d think
– a basic pairwise combination of possible elements

•select name,grade from
students,grades where grade=‘A’

•select name,grade from
students,grades where grade=‘A’ and
students.id = grades.id

– need to resolve ambiguous references
•select students.id,name,grade from
from students,grades where
grade=‘A’ and students.id=grades.id

SQL

• combining results
– union, intersect, except
– these are operators over selections

• examples
– select title from books where author =
‘dourish’ except select title from books
where title = ‘context-aware computing’

– select id from homework1 where score > 85
intersect select id from homework2 where
score > 85

– NB: neither of these are the easiest ways to do them…

SQL

• postprocessing (order, group)
– need to organise results
– order (sort), group (clustering)

• examples
– select id,name,score from students
order by score

– select model, price from products where
price < 100 order by price desc

– select manufacturer from price_list
group by manufacturer

SQL

• some processing over results
– e.g. avg(), sum(), count(), min(), max() …

• examples
– select count(*) from students where
grade=‘a’

– select avg(score) from grades

3

SQL

• more complex processing
– where there are multiple fields, this is not enough
– need to specify two things

• the processing to perform (avg, sum, etc)
• how to group elements for processing

• example
– select author, avg(price) from books
group by author

SQL

• working with computed fields
– need a way to refer to the outputs of operations
– “as” operator provides naming

• think of the output of any select as a temporary relation
• “as” creates the names of the attributes/columns

• example
– select author, avg(price) as average
from books group by author order by
average

SQL

• working with computed fields
– need a way to refer to the outputs of operations
– “as” operator provides naming

• think of the output of any select as a temporary relation
• “as” creates the names of the attributes/columns

• example
– select author, avg(price) as average
from books group by author order by
average

SQL

• summary
– selecting, combining, processing

• there’s more, of course…
– subqueries
– update and modification as well as querying

using SQL

• what SQL is not
– not a full programming language
– not a development environment

• sql queries normally embedded in programs
– e.g. from java, using JDBC
– languages differ in their degrees of integration

using SQL

Class.forName(JDBC_CLASS);
Connection conn = DriverManager.getConnection(DB_URL, "ics132", “password");
Statement statement = conn.createStatement();
ResultSet rs = statement.executeQuery(“select title,author from books”);
ResultSetMetaData md = rs.getMetaData();

out.println("<TABLE BORDER=2>");
out.println("<TR>");
for (int i = 1; i < md.getColumnCount() + 1; i++) {
 out.println("<TD>" + md.getColumnName(i).trim() + "</TD>");
}
out.println("<TR>");
while (rs.next()) {
 out.println("<TR>");
 for (int i = 1; i < md.getColumnCount() + 1; i++) {
 out.println("<TD>" + rs.getString(i) + "</TD>");
 }
 out.println("</TR>");
}
out.println("</TABLE>");

4

the organizational context

• okay, fine, so databases are important
– understand technology to understand opportunities

• but, the 132 perspective
– internal and external variety of organizations
– co-evolution of technology and organizational

practice

• an example
– unified filing in The Department (a different one!)

summary

• key points:
– modeling are about making the world tractable

• amenable to encoding, summarisation, & prediction

– relational databases
• organise information according to relations & tables
• sql provides uniform access

– same two problems process representations
• the detail of the representation
• the object of the representation

– need to see info use in organizational context
• uses to which it is put
• practices in which it is enmeshed

