Challenge: Recombinant Computing and
the Speakeasy Approach

W. Keith Edwards, Mark W. Newman, Jana Sedivy, Trevor Smith

Palo Alto Research Center
3333 Coyote Hill Rd.
Palo Alto, CA 94304

Shahram lzadi

University of Nottingham
Nottingham, UK
sxi@cs.nott.ac.uk

{kedwards, mnewman, sedivy, tfsmith}@parc.com

ABSTRACT

Interoperability among a group of devices, applications, and
services is typically predicated on those entities having some
degree of prior knowledge of each another. In general, they must be
written to understand the type of thing with which they will
interact, including the details of communication as well as semantic
knowledge such as when and how to communicate. This paper
presents a case for “recombinant computing”—a set of common
interaction patterns that leverage mobile code to allow rich
interactions among computational entities with only limited a priori
knowledge of one another. We have been experimenting with a
particular embodiment of these ideas, which we call Speakeasy. It
is designed to support ad hoc, end user configurations of hardware
and software, and provides patterns for data exchange, user control,
discovery of new services and devices, and contextual awareness.

Categories and Subject Descriptors

D.2.12 [Software Engineering]: Interoperability—distributed
objects

General Terms
Design, Human Factors, Standardization

Keywords

Serendipitous interoperability,
computing, Speakeasy.

1. INTRODUCTION: PRIOR KNOWLEDGE
AS THE BASIS FOR COMMUNICATION

The worlds of mobile, pervasive, and ubiquitous computing assume
that we will be surrounded by a wealth of intelligent,
interconnected devices and services. Many of the scenarios put
forth by researchers and developers in these communities implicitly
depend on the ability of these devices and services to be able to
interconnect and interact with each other, easily and fluidly.

mobile code, recombinant

Such scenarios, however, beg a number of important architectural
questions: how will these devices and services be able to interact
with one another? Must we standardize on a common set of
protocols that all parties must agree upon? Will only the devices
and services that are explicitly written to use one another be able to
interoperate, while others remain isolated?

Fundamentally, in order to interoperate, two entities must have
some shared agreement on the form and function of their
communication; this agreement defines the interfaces each entity
exports, and which are known to the other party. A web browser
and a web server, for example, must agree on set of common

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MOBICOM'02, September 23-26, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-486-X/02/0009...$5.00.

protocols (HTTP), as well as the format and semantics of any data
exchanged over via those protocols (usually HTML or XML). Web
services and their clients must agree upon known service interfaces,
generally expressed in the Web Service Description Language
(WSDL) and invoked via Simple Object Access Protocol (SOAP).

In all of these cases, there is a priori agreement on the form
(syntax) and function (semantics) of communication, and this
agreement is built in to each party to the communication. In other
words, the respective developers of these programs have coded into
them the ability to use a particular handful of protocols, and an
“understanding” of the semantics of a handful of data types.

Figure 1 A user gives a presentation using Speakeasy. The
network-enabled projector, and the filesystem on which the
presentation resides, are Speakeasy components. The wireless
PDA used to set up the connection automatically downloads
presentation controls.

Clearly, if we hope for a future in which arbitrary devices and
services can interoperate, there must be some prior agreement of
the details of communication among these devices and services.
The question that is at the core of this paper is: at what level should
this agreement take place?

This paper describes an approach to interoperability, and an
architecture called Speakeasy that embodies this approach, based
on three premises: fixed domain-independent interfaces, mobile
code, and user-in-the-loop interaction. We believe that this
combination of premises, which we call recombinant computing,
can support “serendipitous” interoperability—the ability for
devices and services to use one another with only very restricted
prior knowledge. The term “recombinant computing” is meant to
evoke a sense that devices and services can be arbitrarily combined
with, and used by, each other, without any prior planning or coding.

In the sections that follow we present our rationale for the premises
upon which our approach is based, and why we believe that they are
key to providing the ability for devices and services to offer
serendipitous interoperability. After this, we present the Speakeasy

system in more detail, including our experiences with the
architecture and applications, based on two years of use, evaluation,
and refinement. We conclude by examining the limitations of this
approach, and the challenges that it raises.

2. RECOMBINANT COMPUTING: THREE
PREMISES

In this section we discuss our rationale for the premises on which
we have based our architecture.

2.1 A Small, Fixed, and Generic Set of
Interfaces is the Key to Ubiquity

There are a number of commonsense approaches one might take to
guaranteeing interoperability among a set of networked entities.
One approach—common among current devices and many
software services—is to agree upon one or more specific, domain-
dependent interfaces. These are typically protocols that are
particular to the domain of functionality of the device or service; for
example, IPP for printing; CIFS or NFS for file storage; and many
application specific protocols defined through various “interface
definition languages” such as WSDL, RPCGEN, and IDL.

The problem with such interfaces, of course, is that there are so
many to choose from: the range of such interfaces means that there
are always likely to be specific interfaces that a particular entity
cannot understand. My older PDA, for instance, has an infrared
port, but cannot communicate with my IR-equipped phone, because
the PDA does not understand IRCOMM, and there is no easy
upgrade available to provide it with this new functionality. In other
words, the required prior agreement on form and function of
communication is not present in this case.

A second approach is the use of domain-independent interfaces.
The web—which is inarguably the most successful example of
interoperability among a wide variety of clients and services—uses
this approach. The web achieves interoperability by relying on
common knowledge of a handful of largely domain-independent
protocols and data types. By “domain independent” we mean that
all interactions between a client and a server are “funneled” into
HTML over HTTP; there are no separate protocols for web cams
versus personal home pages versus e-commerce pages. Even
though HTML and HTTP were conceived as being specifically for
document delivery, they have been easily repurposed for delivery
of information and control, independent of any particular
application. In this sense, they represent a highly generic interface,
capable of being applied to many uses. Generally, the promise of
interoperability on the web is predicated on there being a small and
fixed set of protocols and data types known to all entities, and
which are generic enough to be easily adapted to new needs.

We believe that such a small, fixed set of generic interfaces—
presumed to be known to all parties in an interaction—is essential
to supporting ad hoc interoperability. If, instead, we dictate that all
parties must have prior knowledge of a potentially open-ended set
of interfaces, one for each type of thing we expect to encounter, we
remain in the same situation as before: there is likely to always be
some particular specific interface that is unknown to a party in a
communication. This leads to the first premise on which we have
based our architecture:

Premise 1: Agreement on a small, fixed set of universally-
known interfaces, which can be applied to multiple purposes, is
a more fruitful avenue for ad hoc interoperability than

' Of course, this situation has begun to change recently, with the

advent of specific XML-based data description languages; one
of the primary purposes of these is to allow more machine
intelligibility of web content. Each XML schema, however,
defines a new data format, which may not be known to all parties
on the network. Research into semantic understanding of such
formats notwithstanding, we believe it is an open question how
much interoperability will exist in such a web.

requiring that each party have prior domain-specific
knowledge of every type of entity it may encounter.

The key here is that it is the fact that the set of universally-known
interfaces are fixed that affords interoperability. Applications
written to use these interfaces are guaranteed that they will be able
to interact—at least in a limited way—with any entity that exposes
its behavior using such interfaces. Certain devices and services
may, of course, support other interfaces, which may be used by
parties that understand them. But such interfaces outside of the core
set are not assumed to be universally understood, and are not a
mechanism for serendipitous interoperability.

2.2 Mobile Code Allows Dynamic Extensibility

There are obvious problems that come from requiring widespread
agreement on a single fixed set of generic interfaces, the most
obvious of which is their “one size fits all” nature. The particular
interfaces in use—while perhaps sufficient for many needs—may
not be optimal for all cases. And of course, fixing the set of
interfaces limits the possibility of future evolution of the
communication protocols between entities.

Mobile code can potentially provide the dynamism missing in a
simple agreement on a fixed set of interfaces. Mobile code is the
ability to move executable code across the network, on demand, to
the place it is needed, where it is executed securely and reliably.
The power of mobile code is in its ability to extend the behavior of
entities on the network dynamically. In other words, part of the
agreement that must occur between two interacting entities moves
from development time to run time.

The most familiar systems that use mobile code today are Java’s
Remote Method Invocation facility [26], and Jini [24] (which itself
uses RMI’s semantics for mobile code), although mobile code is
also possible using the bytecode language runtime which supports
the languages in Microsoft’s .NET platform, such as C# [15].

At runtime, these systems deliver objects whose implementations
may not exist in the receiver. The type of the received object is
assumed to be known to both the sender and receiver, although the
particular implementation that is received is specific to the sender.
As an example, a service may implement a “printer” type, which is
known to its clients. The client, however, does not need to agree
with—or even know about—the service’s particular protocol. The
knowledge of the particular protocol the service speaks is hidden
within the mobile code transmitted to the client.

Mobile code provides a degree of indirection to the agreement that
occurs between two communicating entities. Without mobile code,
entities must agree on all specific wire protocols for
communication. With mobile code, entities agree on a
bootstrapping protocol to acquire new mobile code, and—since the
receiver must know how to use any received code—the type
signatures of that code. As others have noted, mobile code allows
the interprocess interfaces to function much more like interfaces in
a programming language [25].

This leads to the second premise on which we have designed our
architecture:

Premise 2: Mobile code allows parties to agree on a small, fixed
set of generic interfaces that allow them to acquire new
behavior as appropriate, rather than requiring prior
knowledge of specific wire protocols, data types, and so forth.

Mobile code changes the character of the generic interfaces
discussed in our first premise. Rather than defining a fixed protocol,
such as HTTP, these interfaces now define the ways in which an
entity on the network can be extended by its peers. In essence, these
interfaces become “meta interfaces” that define how extension
happens, rather than how communication itself happens.

Of course, although mobile code allows entities to agree upon
interfaces, rather than specific protocols, those interfaces must still
be known in advance. Jini provides an interesting example. In the
Jini world, there are domain-specific interfaces for entities such as

printers and file servers. Clients of such services can talk to any
service, regardless of protocol, as long as it implements the known
interface—but they must still agree on the interfaces. Systems such
as Jini require that clients understand the type of each and every
service they encounter, and—at least in current Jini services—each
type of service is accessed via very particular, service-specific
interfaces. These systems do not provide a set of fixed, generic
interfaces for extensible behavior designed to accommodate
serendipitous interoperability.

2.3 The User is Central in a Domain-
Independent World

Although mobile code can provide greater flexibility to domain-
independent interfaces than can a simple agreement on protocols,
there is an additional implication inherent in the use of such
interfaces: applications written against such domain-independent
interfaces will not know the semantics of the entities with which
they are interacting.

As an example, if my PDA is built to use a specific interface for
printing, I can assume that the developer of my PDA understood
what it means to print: what the semantics of printing are and when
it is appropriate to do so, as well as printer-specific notions such as
duplex, landscape, and so on. All of these notions are implicit in
saying that my PDA is built to use a printer-specific interface. But
this domain-specific knowledge is lost if we expect parties in a
communication to expose only generic interfaces to themselves.

Our claim is that this dilemma is inherent in the approach, and goes
back to the initial premise of using generic interfaces. We cannot
expect a given device to be required to understand the semantics of
each and every type of device with which it comes into contact—
this would limit interoperability to only those sorts of entities
explicitly known by the device.

If, then, we posit a world in which entities communicate using
generic interfaces, and are not expected to have special knowledge
of the semantics of any particular type of thing they may be able to
use, this leads to our third and final premise:

Premise 3: Users will be the ultimate arbiters that decide when
and whether an interaction among compatible entities occurs.
This is because, in the absence of programs being hard-coded to
understand particular entities, only human users can be relied
upon to understand the semantics of these entities. This
arbitration will largely happen at run time, rather than
development time.

By acknowledging this premise, we claim even though a PDA
might know nothing about printers specifically, it should still be
able to use a printer if it encounters it. The PDA would never
simply use an arbitrary entity it encountered, however, as it would
not know whether the entity printed, stored, translated, or threw
away data sent to it. Instead, the PDA would likely inform the user
that a device calling itself a “printer” had been found, and leave it to
the user to make the decision about when and whether to use it.

Put another way, the programmatic interfaces define the syntax of
interaction, while leaving it to humans to impose semantics. It is the
stabilization of the programmatic interfaces that enable arbitrary
interoperability; humans can, presumably, “understand” new
entities in their environment, and when and whether to use them,
much more easily than machines can (and, it should be noted,
without the need to be recompiled). This semantic arbitration
happens at the user level, rather than at the developer level.

2.4 Summary of our Premises

To summarize, our approach is based in a thread of argument that
begins with the belief that a small, fixed set of interfaces, expected
to be understood by all parties, is essential for interoperability. By
their nature and because of the limited number of such interfaces,
they will be independent of any particular application domain.

A naive approach of standardizing on a common set of protocols
and data types, known to all parties, is potentially overly restrictive

however, and mobile code is a solution to this problem. Therefore,
these generic interfaces are recast as interfaces to enable dynamic
extension, rather than interfaces for communication directly.

Further, if we presume a world in which entities on the network will
have only limited knowledge of each other, we cannot expect them
to be able to programmatically encode the semantics of all the many
types of devices and services they may encounter. Therefore, it is
implicit that users must be “in the loop”—able to make informed
decisions about the entities they encounter, and provide the
semantic interpretation that is otherwise missing, since semantics
are no longer encoded in particular application-specific interfaces.

The next section discusses our exploration of an architecture based
on these three premises.

3. SPEAKEASY: A FRAMEWORK FOR
RECOMBINANT COMPUTING

Although the premises above argue for a small, fixed set of generic
interfaces, they say nothing about what these interfaces should look
like. We believe there are potentially a number of different “styles”
of recombinant interfaces. For example, one might argue for a set of
interfaces that mirror the classical computational functions of input,
output, storage, and processing. An entity using such a set of
interfaces might be extensible along each of these dimensions.

The particular collection of interfaces we have developed
originated in our ideas about how best to satisfy the premises
outlined earlier, and evolved based on scenarios, iterative design,
and evaluation with actual users, over a period of two years. While
we do not claim that the interfaces used by Speakeasy represents
the only useful set of such interfaces, we have gained enough
experience with them to believe that they afford great expressivity.

All Speakeasy devices or services—which we call components—
implement one or more of a small number of interfaces that fall into
four categories. These are the fixed, generic interfaces we expect all
Speakeasy components and clients to understand:

® Data transfer: how do entities exchange information with one
another?

® Collection: how are entities on the network “grouped” for
purposes of discovery and aggregation?

® Metadata: how do entities on the network reveal and use
descriptive contextual information about themselves?

® Control: how do entities allow users (and other entities) to
effect change in them?

The data transfer and collection interfaces were motivated,
respectively, by a desire to provide independence from particular
communication and discovery protocols; they use mobile code to
allow clients to evolve to support new such protocols. The metadata
and control interfaces are a means of keeping users “in the loop.”
The metadata interface provides descriptive information about a
component, while the control interface allows a user to control
component aspects not represented through the other interfaces.

All of these interfaces share some stylistic concepts in common.
Most importantly, each interface is used to return to its caller a
“custom” object, specific to the component on which the interface
was invoked. While each of these custom objects implements a type
assumed to be known to the client and specific to its function (the
data transfer interface returns a data transfer custom object, and so
on), their implementations are specialized by the component that
returns them, using mobile code that executes in the requesting
application. Thus, clients invoke the data transfer interface on a
component to acquire a custom object that extends their behavior to
transfer data with the component. These custom objects represent
the “inflection points” in the interfaces—the places in which mobile
code is used to change the behavior of a client.

A second property common to all of these interfaces is that the
custom objects returned to clients do not remain valid indefinitely.
Instead, custom objects are leased to the clients that request them.

ey Receive
treamin >

MPEG2
ndpoin

Btreaminy

Figure 2 Data transfers in Speakeasy use source-provided endpoint code. In A, a receiver initiates a
connection, which causes a source-specific endpoint to be returned. In B, this endpoint is
used to fetch data from the source using a source-private protocol.

Leasing is a mechanism by which access to resources is granted for
some period of time; to extend this duration, a continued proof-of-
interest is required on the part of the party using the resource [7].
One benefit of leasing is that, should communication fail, both
parties know that the communication is terminated once the lease
expires, without any need for further communication.

A final common property is that any client that uses the above
interfaces to request a custom object must provide information
about itself, in the form of a metadata custom object, described later
in the section on contextual metadata. This mechanism allows
components to know about who is requesting their services.

Again, these particular interfaces evolved during the course of the
project through trial, error, and evaluation. Our research goals were
to evaluate whether such a small, fixed set of interfaces would
allow an application—once written against these interfaces—to
interact with virtually arbitrary components that come along in the
future that exposes its functionality in these terms. In other words,
such a software system should be able to use new components that
appear in its environment without recompilation or update and,
further, be able to do so using new protocols and behaviors
provided by the components themselves.

In the next sections, we will describe the particular interfaces and
the styles of interactions they afford. Afterwards, we will offer our
experiences with using the interoperable components and
applications we have built with the Speakeasy framework.

3.1 Data Transfer

Our data transfer interface provides a simple, generic mechanism to
allow two parties to exchange arbitrary data with each other. Such a
data connection may represent a PDA sending data to a printer, a
camera storing a snapshot in a filesystem, or a laptop sending its
display to a networked video projector.

Each of these different senders of data—a PDA, a camera, and a
laptop computer—may use very different mechanisms for
transferring their data (an adaptive streaming protocol with variable
compression, for instance, versus a reliable, lossless protocol). This
example points out the infeasibility of deciding on a handful of data
exchange protocols that all components agree upon. Each
component has its own semantics with regard to sending data, and
these semantics will be reflected in their protocols. Therefore, it is
infeasible to build in support for all potential protocols “up front.”

Instead, our data transfer interface uses a pattern whereby a sender
of data can extend the behavior of its receiver to enable it to transfer
the data using a desired protocol. Rather than providing the data
directly, a sender transfers a source-provided endpoint to its
receiver. This is a “custom object,” as described in the previous
section, which provides a sender-specific communication handler
that lives in the receiver. Different senders will export different
endpoint implementations, and the code for these different
implementations will be dynamically loaded by receivers. The
endpoint acts essentially as a capability, allowing the party that
holds it to initiate a transfer using a sender-specified protocol (it

also allows a holder to invoke various “signalling” operations that
indicate that the transfer has completed, aborted, or failed, and to
request notifications about changes in the transfer’s state).

Once the endpoint code has been received, the actual transfer of
data is initiated. The endpoint in the receiver communicates with
the remote sending component, using whatever protocols have been
dictated by the creator of that component. This data is then returned
to the receiver as a stream of bytes in the desired format. The
behavior of the receiver at this point depends on its particular
semantics—a printer will print the data it receives, while a
filesystem will store it as a file. This arrangement gives the sender
control over both endpoints of the communication; the sender can
choose an appropriate protocol for data exchange, without the need
for these protocols to be built into every receiver.

Our current interfaces allow components to be either senders or
receivers of data, or both. Both senders and receivers can indicate
the types of data that they can handle via standard MIME [2] type
names. Programs and users can use these types to select
components that are capable of exchanging data with one another

Figure 2 illustrates the operation. In the top part of the figure the
receiver initiates a connection with a sender of video data, and the
sender returns a custom endpoint to the caller (an implementation
of a streaming protocol for MPEG2 data). This portion of the
operation occurs using the “public” connection interfaces. After
this, data is transferred to the receiver via the endpoint through a
“private” protocol between the endpoint and the source.

The interfaces presented here allow any party to initiate the
transfer. For example, a third party (such as a “component browser”
application) can fetch an endpoint from a sender and provide it to a
receiver, using the known data transfer operations on both. Such an
arrangement would cause the receiver to read directly from the
sender without involving the third party, using the sender’s
endpoint implementation.

3.2 Containment, Discovery, and Aggregation
The second generic interface in Speakeasy presents an abstraction
that allows applications to use “collection-like” components. This
aggregation interface provides the notion of groups of components
logically contained within another. The core aggregate interface
returns a custom object to the caller that provides access to the
collection of components logically contained within the aggregate,
as well as supporting facilities such as searching for components
contained within the aggregate, and soliciting notifications about
changes in the membership of the aggregate.

The design of this interface was motivated by both systems- and
user-oriented desires. From the systems perspective, we wanted to
allow Speakeasy applications to be dynamically extensible to new
discovery protocols; we felt that this requirement was especially
important in the mobile computing setting, in which a variety of
discovery protocols may be used. These protocols would appear to
the application to be “collections” of components found using the
particular discovery protocol. From the user perspective, we

Filesystem
Component

Discovery
Custom
Object

\ 4

Discovery
Protocol

Network File Systems

Figure3 These four examples show how the single aggregate interface can be applied to multiple uses via component-specific custom
objects. In each of these, a custom object implementing a known interface has been returned by a Speakeasy component to an
application. In A, the custom object uses a private protocol to access a remote Speakeasy filesystem component, which is the aggregate
that provided the custom object. In B, the custom object is an “adapter” that extends the application to speak the Network File System
protocols—the protocol executes in the application “behind” the custom object’s interface. In C, the custom object allows access to a
discovery protocol “bridge” component. In this case, the remote component performs discovery and returns results to the application
via the custom object. In D, the custom object implements a discovery protocol that executes completely in the application.

believed that it was important to allow components on the network
to impose “groupings” that cluster related components together,
rather than presenting all of them to the user at the same level.

There are a number of situations in which the interface is used.
Filesystems, for example, are represented as file aggregates that
organize components representing files. Such an arrangement
allows an application written against the aggregation interface to
“open” the filesystem to access the nested files and directories
(which are themselves aggregates) contained within. Likewise,
aggregates represent notions like discovery protocols and bridges to
new networks, in which they provide access to components
accessed using the protocols particular to them. In all of these cases,
the aggregate will return (or generate) its list of contained
components in a manner dependent on the aggregate itself.

Perhaps more importantly, since aggregates return custom objects
to their clients, they have great flexibility in how they provide
access to their logically-contained components. Each custom object
is particular to the aggregate components that returns it, and has an
aggregate-specific implementation that is downloaded from the
aggregate and executes within the client.

This arrangement permits a number of interesting uses of this one
simple interface. For example, the custom object can be a simple
“shim” that communicates with the remote Speakeasy component
that returned it via some private protocol. This can be used to create
“discovery bridges,” where applications access the results of a
discovery protocol executing on a remote machine somewhere.

Alternatively, the aggregate custom object can add completely new
protocols to the application, allowing it to communicate with
legacy network services. For example, a component could return a
Network File System “adapter” custom object, which executes the
client NFS protocol directly in the application. This arrangement
allows the client to access arbitrary NFS filesystems through the
custom object. Likewise, custom objects that implement new

discovery protocols can execute within a client. For example, a
client can be extended to execute the Jini discovery protocols
locally, by transferring to it a custom object that implements that
protocol. Figure 3 shows an example of these various uses.

Finally, aggregates can act as bridges onto wholly new networks
not natively “understood” by the application invoking the
aggregate. They do so by “wrapping” legacy devices and services,
to ensure that they are accessible. For example, a Bluetooth
aggregate may use the discovery protocols within the Bluetooth
stack [1] to find native Bluetooth devices and services, and create
component “wrappers” for these that make them accessible in the
Speakeasy world. In all of these cases, and no matter whether the
aggregate custom object represents a shim to some backend service,
or a complete protocol implementation, applications use the various
custom objects through the single “container-like” interface
implemented by them.

3.3 Contextual Metadata

Since our premises dictate that the semantic decisions about when
and whether to use a component must ultimately lie with the user,
we knew we must provide mechanisms to allow users to make
sense of complex networked environments. For example, simply
knowing that a component can be a sender or receiver of data
provides very little utility if there is no other information that can be
gleaned about the component. For this reason, one core Speakeasy
interface returns a custom object that provides access to contextual
metadata about a component. This custom object provides access to
a set of attributes that might be salient for the component that
returns it: its name, location, administrative domain, status, owner,
version information, and so on.

Metadata custom objects have two uses in Speakeasy. The first is to
simply describe the component that provided the custom object. A
user, through an application such as a browser, would be able to
organize the set of available components based on this metadata.

The second use is to provide components with information about
their callers. All of the core Speakeasy interfaces require that their
callers pass their own metadata custom object to the target
component. For example, to invoke the data transfer interface, the
initiator of a transfer must provide the sender with its metadata
custom object. This mechanism allows components to know details
about the entities that invoke their operations.

Our representations for contextual metadata are very simple: the
well-known interface implemented by metadata custom objects
allows access to a simple map of key-value pairs, with keys
indicating the names of contextual attributes (“Name,” “Location,”
and so on), and values that are themselves arbitrary objects, and
may include digitally-signed data such as certificates. The set of
keys is extensible, as we do not believe any fixed set is likely to
support the needs of all applications or components. Likewise, we
do not require nor expect that all applications will know the
meaning of all keys, nor share a common metadata ontology. The
goal of the metadata interface is primarily to allow sensemaking by
users, and only secondarily to allow programs to use metadata in
their interactions. Components and applications can agree on the
syntax of interaction (the interface for retrieving contextual
metadata) without having to have total agreement on the semantics
of the various contextual attributes themselves. Applications and
users are free to use the aspects of context that are salient to them
(and understood by them) while ignoring others.

The use of component-provided custom objects in this interface
leverages mobile code in much the same way that the data transfer
interfaces can; this strategy supports a spectrum of underlying
mechanisms for actually storing and transporting the metadata. The
metadata custom object can implement component-specific
protocols for accessing the actual metadata it provides. For
example, it could communicate with some back-end process,
providing up-to-date information at a cost in performance;
alternatively, it could return “static” information without the need
for communication with any other entity on the network.

3.4 Control

There are, of course, many aspects of component behavior that are
orthogonal to simply sending and receiving data, or revealing new
collections of components. While a printer, for example, may print
data it receives, there are other aspects of a printer’s behavior that
aren’t easily captured by the interfaces covered to this point. There
is no notion of full duplex, or color versus black and white, or
stapled output in the data transfer interfaces, for example. Nor
should there be, since these are clearly concepts specific to printers.

Our approach is to expose such notions that aren’t easily captured
by the other interfaces to users, via component-specific custom
objects that implement user interfaces. Applications agree on the
mechanisms for acquiring and displaying such Uls, but have no
knowledge of the particular controls provided by any UL In the
case of a printer component, an application could request the
printer’s Ul custom object and display it to the user, allowing
control over duplex, stapling, and so on. Applications need not have
built-in support for explicitly controlling any specific component.

Applications that need to display the UI for a component can select
from potentially any number of Ul custom objects that can be
provided by the component, by specifying the requirements of the
desired UI. For example, a browser application running on a laptop
might request a full-blown GUI, while a web-based browser might
request HTML or XML based Uls. Applications interact with the
custom objects via known interfaces that allow them to be
displayed and used within the application.

This approach is similar in intent to the mechanisms used by Jini to
associate user interfaces with services [23], although we do not
require that the interface be stored in some lookup service known to
the provider and consumer of the interface. The strategy is flexible
in that it allows components to present arbitrary controls to users,
and in that it allows multiple Uls, perhaps specialized for different
classes of devices, to be associated with a given component. The

primary drawback is that it requires each component writer to
create a separate Ul for each type of device that may be used to
present the interface. A possible solution would be to use some
device-independent representation of an interface, such as those
proposed by Hodes [9] or the UIML standard [§8], and then
construct a client-specific instantiation of that UI at runtime. We
are not currently focusing on developing such representations
ourselves, but rather on the infrastructure that would be used to
deliver such representations to clients.

Applications gain access to Ul custom objects in two ways. First,
they can request an “overall” UI interface for a component, using
the core control interface in Speakeasy (one of the four interfaces
listed earlier). This operation returns what is essentially an
“administrative” interface for the component on which it is called.

The second way applications can acquire Ul custom objects is
asynchronously, as a result of some other operation performed on a
component. We have mentioned that various of the custom object
types in Speakeasy allow applications to register to receive
asynchronous notifications from the component. While these
notifications can return events that describe some simple state
change, they can also encapsulate Ul custom objects that the
component “requests” an application to display. These Uls are
operation-specific, as opposed to the “overall” Ul that can be
fetched directly from a component [17].

This use allows components to present Uls to users, who are likely
sitting at a remote machine somewhere on the network, at the point
that the component needs to interact with the user. For example, a
video camera component could asynchronously send a control Ul to
an application at the point it is connected to a display. This Ul may
provide controls to pause the video stream, rewind, and so forth.
Rather than controlling the overall behavior of the video source,
this UI controls only aspects of that particular data transfer.

Like all custom objects in Speakeasy, UI custom objects are leased,
and so do not remain valid indefinitely without continued proof of
interest on the part of the application that holds them.

4. EXPERIENCES

Throughout the course of this research we have been motivated by a
set of beliefs about how to maximize interoperability among a set of
devices and services. Specifically, we believe that this type of
dynamic, ad hoc interaction can be enabled by:

1. A small, fixed set of domain independent interfaces

2. The use of mobile code to add flexibility and dynamism to the
interfaces

3. Allowing users to make the decisions about when and where to
form connections between components.

The first premise raises the issue of whether or not it is realistically
workable to design a small set of interfaces that is simple for
developers to implement and at the same time affords rich enough
functionality to be useful.

To explore this question, we have focused on deploying a fairly
wide range of components while at the same time, focusing
relentlessly on keeping the interfaces as small and simple as
possible. We have built over two dozen so far, some fairly complex,
as a means to vet and refine our interfaces. These include a
whiteboard capture system; an internet radio system; a filesystem
that can provide access to any Windows NT or Unix filesystem to
other Speakeasy components; an instant messaging gateway;
discovery components for Jini and Bluetooth; a Cooltown bridge
that allows discovery and interaction with Cooltown devices that
support the eSquirt protocol; printers; microphones; speakers; video
cameras; a screen capture component that can redirect a computer’s
display to another component; and a number of others. We have
also developed client applications including a “universal remote
control”-style browser that allows access to components from any
platform with a web browser, and a tool for collaboration [4].

The evolution of these components has often pointed to new
directions in our architecture and consequently, our core interfaces

have matured. We have not yet, however, had to move beyond the
four basic interfaces described in this paper. Additional interfaces
have been proposed (such as a “filter” interface that describes
components that can act as both senders and receivers of data at the
same time), but so far, we have been able to use the existing
interfaces for all our implemented components and scenarios. In
many cases, we believed that the addition of new interfaces (such as
“filter”) would come with an unacceptable increase in user
confusion (such as having to move toward a more complex
dataflow model of interconnection).

We pursued a similar strategy for exploring our second premise—
that mobile code could be effectively exploited for providing the
flexibility necessary to make the small set of interfaces workable.
We have explicitly focused on creating components that require
specialized transports (video, for example), use custom discovery
protocols (IRDA and Bluetooth), or require knowledge of
specialized datatypes (VNC data, for instance), in an effort to
evaluate the efficacy of a mobile-code based strategy.

The system has been able to flexibly accommodate all of these, so
far, by leveraging mobile code. Mobile code does, of course, bring
with it an attendant set of challenges, specifically around security
and runtime requirements (see the Challenges section, later in this
paper, for more details). Our current focus has been on exploring
the full use of mobile code as an enabling infrastructure, rather than
on techniques for reducing runtime requirements or the security
implications of a mobile code-based systems. Others in the research
community are focusing on these challenges, and we hope to
leverage their work where appropriate.

Our third premise, that users will necessarily be tasked with making
the semantic interpretations of how to use the components around
them, raised concerns about whether a system based on generic
interfaces would quickly become unworkably complex. It was
critical, therefore, for us to perform some kind of “sanity check” to
assure ourselves that our basic model of interoperability was
understandable to users.

To this end, we have undertaken a number of field studies of the
system in use, as well as conducted evaluations of paper prototypes
and mock-ups. With a handheld computer, test subjects were able to
access Speakeasy components via a web application that allowed
them to browse through all available components and form
connections among them. Subjects were asked to perform a number
of tasks, which required that users be able to grasp the basic
concepts of discovery and containment, connection as a metaphor
for data transfer, and other basic concepts provided by the
Speakeasy infrastructure. Importantly, the handheld computer did
not require any additional software to be installed on it other than a
pocket web browser.

While a full discussion of our user studies is outside the scope of
this paper (see [16]), we are encouraged by the results. Users
seemed able to make sense of the highly generic world presented by
Speakeasy, although there were a number of concrete directions
that these studies made us aware of, including the need to be able to
organize components based on their metadata in multiple ways. We
believe these studies also present some interesting questions about
interface metaphors for the mobile computing community at large.
For example, do users think of PDAs as computers in their own
right (that is, as “peers” of the devices around them), or as glorified
remote controls (that is, devices “on the outside” of the things they
are controlling)? Our findings suggest that both of these metaphors
may be appropriate in different circumstances.

Our experiences with the architecture suggest to us that the
recombinant approach can provide a powerful set of tools for
interoperability, and further, that such a form of interoperability can
be usefully understood and acted upon by users. In the near term,
we plan to continue our current evaluation strategies by creating
more components and applications for a range of domains,
evaluating them under real use, and refining our core interfaces
accordingly.

5. RELATED WORK

There are a number of systems that address one or more of the
premises of recombination that we have laid out in this paper, but to
date Speakeasy is the only one that addresses all three.

The Web Services standards (SOAP [19], UDDI [22], and WSDL
[3]), as well as more traditional remote procedure call systems such
as TI-RPC [20] and CORBA [18], represent agreements on sets of
protocols and message formats, but fall short of specifying domain-
independent interfaces, though such interfaces could certainly be
employed on top of these frameworks. The languages in Microsoft's
.NET [21] framework can potentially support mobile code, and as
such might serve as a reasonable framework on which to implement
a recombinant system. All of these systems assume that developers,
rather than users, will make decisions about what sets of things to
make interoperable and so do not satisfy our third premise.

Sun’s Jini technology [24] makes extensive use of mobile code,
both to insulate clients from the particulars of the services they
communicate with, and to support service evolution. The current
interfaces offered by Jini services, however, resemble the domain-
specific styles seen in more traditional remote object systems—
there are specific interfaces for each type of service, which clients
must have prior knowledge of. As such, it does not address the
issues of supplying a small set of domain-independent interfaces,
nor does it focus on the end-user aspects of combining services.

Universal Plug and Play [14] does emphasize the ability of the user
to decide when and what to connect together. However, UPnP
supports interoperability through standardization on a fixed set of
protocols and domain-specific interfaces, and does not leverage
mobile code to allow extensibility to new protocols not already
known by clients. The UPnP consortium is defining sets of fixed
interfaces for different types of devices that are likely to appear in a
networked home environment, such as audio-visual equipment,
printers, and home appliances. Applications will be written to have
knowledge of these domain-specific interfaces. For example, an
application might know how to use a printer and a scanner but may
well be unable to take advantage of a display, as well as be unable
to take advantage of a new version of a scanner with (possibly
proprietary) extensions to the basic scanner interface.

HP's Cooltown project [12] is concerned with extending web
presence to devices and services situated in the physical world. As
discussed earlier, the web is an excellent example of our first
premise in that HTTP provides a small, fixed, universally known
interface to a large number of services. By relying on web
standards, Cooltown benefits from the ubiquity of the web, but is
also bound by the web's limitations. These include reliance on the
data types and protocols commonly used in the web. Further, the
web suffers from the difficulty of supporting interoperation among
programs using web protocols, which is basically the problem Web
Services is trying to address. The web, and by extension Cooltown,
focus on interactions between a client browser and a server; “third-
party” interactions between two servers are not easily supported.

The iRoom [5] and Appliance Data Services [10] projects at
Stanford provide ad hoc interoperability of loosely coupled services
by allowing them to share data through tuplespaces [6]. In the case
of the iRoom, the shared data are events, whereas in the case of
Appliance Data Services, tuples are used to describe the routing of
data and commands from appliances (devices) to services (which
might be infrastructure services or other appliances). These systems
depend on prior agreement on the format of the tuples, and so do
not really address the issue of describing a small, fixed, domain-
independent set of interfaces. This also means that users won't be
involved in defining new combinations of services—only
combinations among sets of services that have previously agreed
upon tuple formats and semantics.

Ninja's Automatic Path Creation [13] and the closely-related
Service Composition work at Stanford [11] take a dataflow
approach to service composition, and come the closest of any of the
work we have described to the model of recombination presented in

this paper. In particular, Kiciman, Fox, et al.'s stated goal of “zero-
code” composition [11], is strikingly similar to the goal of placing
the user in the loop of deciding when and how to carry out
interoperation. However, the data flow model and powerful
primitives for service composition seem to afford significant
complexity that many users may not wish to deal with. It may be
possible that some of this complexity could be hidden by toolkits or
libraries in order to make a system that could be reasonably
managed by end users. These systems also take a different approach
to dealing with potential protocol and data type mismatches,
namely by introducing nodes in the service composition path that
transcode from one protocol/type to another, rather than
Speakeasy’s approach of using mobile code.

6. THE CHALLENGES OF RECOMBINANT
COMPUTING

We believe that the approaches outlined here can provide an
effective path to ad hoc interoperability among devices and services
with only limited knowledge of each other. However, each of the
premises upon which recombinant computing is based lead to a
number of challenges.

First, the need for a fixed set of generic interfaces leads to the
challenge of what exactly those interfaces should look like. The
challenge here is to create a set of interfaces that are flexible and
rich enough to be useful, and yet are still minimal enough that they
can be adopted by application writers easily. Speakeasy provides an
exploration of one particular set of interaction “patterns” for data
transfer, discovery, and so on, but certainly there are others, which
may be better or worse for different domains.

Second, the reliance of the recombinant computing approach on
mobile code brings an attendant set of problems, which run the
gamut from additional runtime requirements to security. We
believe that security is the most important technical barrier to
adoption of mobile code-based systems. The security challenges
here lie in the areas of runtime security management that allows
users to restrict the actions of downloaded code, flexible
authentication, and access control.

The final challenge, and the one that we are the most fundamentally
interested in, is the issue of usability. As recombinant computing
necessarily puts the user in a place of primacy, we need to better
understand how to achieve real usability in such a world. Usability
goes beyond simple menu design and icon selection, of course. The
fundamental architectural concepts of a system influence—and to
some degree even determine—the styles of interaction that can be
created on top of an infrastructure. How do the choices about
interfaces, and the assumptions about semantics, influence the user
experience of working in a recombinant world?

These challenges represent limitations inherent in the approach
outlined here as recombinant computing. We believe that the
benefits of our approach outweigh these limitations, but more work
is needed to fully understand this point in the space of architectures.

7. REFERENCES

[17 Bluetooth Consortium (2001). Specification of the Bluetooth
System, version 1.1 core. http://www.bluetooth.com. Feb. 22,
2001.

[2] Borenstein, N., and Freed, N. (1992). “MIME (Multipurpose
Internet Mail Extensions): Mechanisms for Specifying and
Describing the Format of Internet Messages.” Internet RFC
1341, June 1992.

[3] Christensen, E., Curbera, F., Meredith, G., and Weerawarana,
S. (2001). Web Services Description Language (WSDL) 1.1.
http://msdn.microsoft.com/xml/general/wsdl.asp. Jan. 23,
2001.

[4] Edwards, W.K., Newman, M., Sedivy, J., Smith, T. (2002).
“Using Speakeasy for Ad Hoc Peer-to-Peer Collaboration,”
Proceedings of CSCW 2002, November 16-20, 2002, New Or-
leans, LA.

[10]

(1]

[16]

[17]

(18]

[19]

(20]
(21]

(22]

Fox, A., Johanson, B., Hanrahan, P., Winograd, T. (2000). “In-
tegrating Information Appliances into an Interactive Space,”
1EEE Computer Graphics and Applications 20:3 (May/June,
2000), 54-65.

Gelernter, D. (1985) “Generative Communication in Linda.”
ACM Transactions on Programming Languages and Systems,
Vol. 7, No. 1, pp. 80-112, January, 1985.

Gray, C.G., Cheriton, D.R. (1989). “Leases: An Efficient
Fault-Tolerant Mechanism for Distributed File Cache Consis-
tency,” Proceedings of the 12th ACM Symposium on Operat-
ing Systems Principles (SOSP), pp. 202-210, December, 1989.
Harmonia, Inc. (2000). User Interface Modelling Language
2.0 Draft Specification, http://www.uiml.org/specs/uiml2/in-
dex.htm.

Hodes, T., and Katz, R.H. (1999). “A Document-Based
Framework for Internet Application Control,” Proceedings of
the Second USENILX Symposium on Internet Technologies and
Systems (USITS), Boulder, CO, October 1999, pp. 59-70.
Huang, A., Ling, B., Barton, J., and Fox, A. (2001). “Making
Computers Disappear: Appliance Data Services.” Proceedings
of MobiCom 2001, Rome, Italy. July, 2001.

Kiciman, E., Melloul, L., and Fox, A. (2001) “Towards Zero-
Code Service Composition.” Position paper for Eighth Work-
shop on Hot Topics in Operating Systems (HotOS VIII), El-
mau, Germany, May 2001.

Kindberg, T., and Barton, J. (2000) “A Web-Based Nomadic
Computing System,” HP Labs Tech Report HPL-2000-110.
http://cooltown.hp.com/papers/nomadic/nomadic.htm, 2000.
Mao, Z.M., and Katz, R. “Achieving Service Portability Using
Self-Adaptive Data Paths.” JEEE Communications, Jan. 2002.
Microsoft Corp. (2000). Universal Plug and Play, http://ms-
dn.microsoft.com/library/psdk/upnp/upnpport_6zz9.htm. De-
cember 5, 2000.

Microsoft Corp. (2001). The C# Language Specification. April
25,2001, Microsoft Press.

Newman, M., Sedivy, J., Neuwirth, C., Edwards, W.K., Hong,
J., Izadi, S., Marcelo, K., Smith, T. (2002) “Designing for Ser-
endipity: Supporting End-User Configurations of Ubiquitous
Computing Environments,” Proceedings of DIS 2002, June
25-28, London, UK.

Newman, M., Izadi, S., Edwards, W.K., Sedivy, J., Smith, T.
(2002) “User Interfaces When and Where They are Needed:
An Infrastructure for Recombinant Computing,” Proceedings
of UIST 2002, October 27-30, 2002, Paris, France.

Object Management Group (1995). “CORBA: The Common
Object Request Broker Architecture,” July 1995, Rev. 2.0.
Scribner, K., Stiver, M.C (2000). Understanding SOAP: The
Authoritative Solution, SAMS Press, ISGN 0672319225, Jan-
uary 15, 2000.

Sun Microsystems (1997). ONC+ Developers Guide. August,
1997.

Thai, T., Lam, H. (2001). . NET Framework Essentials. O’Reil-
ly and Associates, June, 2001.

Universal Description, Discovery, and Integration Consortium
(2000). UDDI Technical Whitepaper, September 6, 2000. ht-
tp://www.uddi.org/pubs/

Iru UDDI_ Technical White Paper.PDF.

Venners, B. (2000). Jini Service UI Draft Specification. http:/
/www.artima.com/jini/serviceui. April 24, 2000.

Waldo, J. (1999). “The Jini Architecture for Network-centric
Computing,” Communications of the ACM, July 1999, pp. 76-
82.

Waldo, J. (2001). “The End of Protocols.” Java Developers
Connection.

Wollrath, A., Riggs, R., Waldo, J. (1996) “A Distributed Ob-
ject Model for the Java System,” USENLX Computing Systems,
vol 9, November/December, 1996.

