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ABSTRACT

The development of context-aware applications will require tools that are
based on clearly defined models of context and system software architecture.
This essay introduces models for each of these, examines the tradeoffs among
the different alternatives, and describes a blackboard-based context architec-
ture that is being used in the construction of interactive workspaces.

1. INTRODUCTION

Dey, Abowd, and Salber (2001 [this special issue]) offer several contribu-
tions to understanding context-aware computing. They begin by pointing out
three current shortcomings in the field:

“(a) the notion of context is still ill defined, (b) there is a lack of conceptual
models and methods, ... and (c) no tools are available.”

Terry Winograd is Professor of Computer Science at Stanford University,
where he directs the program in Human-Computer Interaction and does re-
search on Interfaces to Digital Libraries and on Interactive Workspaces.
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As Dey et al. demonstrate, there is no consensus in the field on what “con-
text” should include, and as a result it is hard to compare research directions
and accomplishments across different researchers and groups. Although it is
unlikely that a single definition will be accepted by all, we can work to under-
stand the differences in approaches and how those differences shape the prob-
lems that are addressed and the solutions that are proposed.

The lack of conceptual models is addressed directly in this special issue.
Dey et al. propose a “widget” model, Hong and Landay (2001 [this special is-
sue]) propose an “infrastructure” model, and this essay presents a “black-
board” model. Through these discussions, human-computer interaction
(HCI) researchers will have a variety of models to choose from and a better un-
derstanding of the tradeoffs among them.

Along with each of these models, new tools are being developed. Although
they are all in early states of development, we can expect that either they or
their descendants will become part of the HCI developer’s “toolbox” over the
next few years. This essay presents a particular set of tools that are being used
in our interactive workspace project, and illustrates their use.
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2. THE MEANING OF CONTEXT
2.1. Context in Language

The notion of “context” has been adapted to computing from its original
use referring to language, which is reflected in the structure of the word itself:
con (with) fext. In using language we produce a fext, either written or oral, in-
tended to be interpreted by one or more other people. That text is not an en-
capsulated representation of an intended meaning, but rather is a cue that
allows the anticipated audience to construct an appropriate meaning. That
construction, in turn, is heavily based on what goes with the text: the context.

Consider the sentence “Yes, but hit the next one harder.” The words carry
meanings, but at every level of linguistic analysis, the speaker’s intention can
only be determined through inferences based on context The other what?
Why “but”? What is the “Yes” a response to? Even the meaning of individual
lexical items (such as “hit”) cannot be determined out of context. Are we talk-
ing here about hammering a nail, or making points in a talk?

Linguists and philosophers have devoted a great deal of thought to identify-
ing the elements of context that determine meaning. Attempts to build com-
puter programs that can understand natural language have foundered on the
complexities of knowledge and inference that are required to handle context
in normal human discourse. From this effort, a few basic points have become
clear.

1. Context is not just more text. Many explorations of context have fo-
cused on the text that goes with the text to be interpreted. It is possible
that the sentence preceding our example was “Did that nail go in all
the way?,” in which case the “next one” is known to be a nail. On the
other hand, the preceding text could just as well have been “Was that
OK?,” in which case the object being hit might be understood from
the setting without ever being mentioned.

2. Context is effective only when it is shared. Context in the linguistic
sense is a feature of communication. It doesn’t make sense to simply
“be in a context,” but rather we apply context in the process of inter-
pretation. This puts it into the consensual space between speaker and
hearer, or what Clark (1996) called “common ground.”

3. Context emerges in dialog. The shared interpretation of context is
built around commonality of physical setting (or its tele-electronic
equivalent), but it extends beyond what can simply be seen and
heard. For example, the fact that one person is trying to achieve some
goal may be part of the shared context, which emerges as a result of
the dialog between the two parties.
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2.2. Context in Human-Computer Dialog

It is not surprising that in designing mechanisms for people to interact with
computers, we have taken advantage of the natural human ability to interpret
context. Although the popular mantra is that computers are “literal minded”
and “you have to tell them everything,” this is in fact not at all the case in many
common forms of interaction.

Consider the question “What will happen when you hit the key marked
‘backspace’ on the keyboard?”

One possible answer is “The alphabetic character immediately to the left of
the blinking marker on the screen will disappear and the marker will move to
the left over where it was.” But an equally valid answer could be “A large rect-
angular area of the displayed photograph will turn bright purple.” How can
the same key have such disparate meanings? The reason, of course, is context.

When yousitin front of a workstation with a graphical user interface (GUI),
alarge amount of contextual information is used in the execution of actions by
the machine. There is a collection of “running applications,” one of which has
“window focus.” Depending on the application, that window may have a “cur-
rent selection,” and other properties, such as the “current background color.”
If the running application is PhotoShop, if the focus window contains a rectan-
gular selected area, if the image is in a suitable mode, if an appropriate layer is
selected, and if the current background color is purple, then hitting the back-
space key means “replace that rectangular area with purple.”

There are direct analogies with linguistic mechanisms such as pronouns,
definite referring phrases, domain-specific interpretation of word senses, and
so forth. The intended meaning is based on the explicit text, together with the
mutual understanding of context. This context-dependency is not a special
property of interfaces or something new in computing. It is a consequence of
the fact that we have created a situation of communication. Context takes dif-
ferent forms in command-line interfaces, GUISs, speech interfaces, and so on,
but the underlying phenomenon is the same for all of them: Interpretation of
intention depends on mutually available context.

One of the points made earlier is that context is not just more text. In the
case of the computer, it is not just more representations in the machine. Most
of the context elements described earlier can be thought of as data structures
somewhere in the operating system (current application, active window) and
the application code (selection, background color, etc.). But consider another
possible result of hitting the backspace key. A dialog box pops up on the
screen with the message “Cannot delete xyz: Access is denied.” Perhaps the
current selection was a file on some distant file server. Then the relevant con-
text includes whether I have an account on that server with adequate permis-



ARCHITECTURES FOR CONTEXT 405

sions to delete the file with the icon I had selected. Context includes the larger
world outside of the user and the system directly being used.

2.3. Context Versus Setting

Dey et al. offer the definition that context is “any information that can be
used to characterize the situation of entities (i.e., a person, place, or object) that
are considered relevant to the interaction between a user and the application
themselves” (p. 106). This is intended to be adequately general to cover the
work that has been done on context-based interaction. However, in using
open-ended phrases such as “any information” and “characterize,” it becomes
so broad that it covers everything from the electric power grid or the list of all
files on a distant server to the compiler used in creating the application.

I prefer to use “context” in a more specific way, to characterize its role in
communication. Contextis an operational term: Something is context because
ofthe way itisused ininterpretation, not due toitsinherent properties. The volt-
age on the power lines is context if there is some action by the user and/or com-
puter whose interpretation is dependent on it, but otherwise is just part of the
environment. In today’s computer systems, the identity of the person sitting in
front of the keyboard is not part of the context. The identity typed in at login
time is part of the context and is only loosely correlated with the presence of a
particular person. Features of the world become context through their use.

In explaining their definition, Dey et al. elaborate with “Context is typically
the location, identity, and state of people, groups, and computational and
physical objects” (p. 106). This is again broad but conveys an important per-
spective in its emphasis on people, places, and things. The user of a computer
system is always situated in some setting of people, places, and things (includ-
ing computers), regardless of which aspects of that setting are used as context
in communication. People have an informal sense of what constitutes such a
setting, and much of the work on context-aware computing draws on this in-
formal intuition. Context-aware computing might be better described as the
design of computing mechanisms that can use characterizations of some stan-
dard aspects of the user’s setting as a context for interaction. Note that this in-
cludes the intuitive aspect of the user’s setting (places, people, and things) and
also of the computer’s setting (network connections and protocols, stored in-
formation, etc.).

2.4. Physical and Virtual Context

Asamotivating scenario, Dey etal. describe a conference assistant. Aninter-
esting thought experimentisto rewrite their scenario with one small change. In-
stead of a physical conference site, imagine a Web-based conference with
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speakers on video, questions vialive chat, and so forth. Ashley neverleaves her
desk but she can still “go” to a talk, use “directions” to find the appropriate
room, and find out “where” her colleagues are, all in virtual Web space.

What is of note here is that all of the features described by Dey et al. make
perfect sense in this new version, but it could be fully described without any
appeal to “context” or “context awareness.” It does not seem novel that when
you go to a Web page with a video window showing a person giving a speech,
the page also displays information about the session and speaker, displays a
thumbnail of the current slide, and so forth. It seems perfectly straightforward
(and in fact there are commercial products) to let you take notes associated
with the pages you view and to associate them with timestamps in the video
presentation. Providing this functionality on a handheld device rather than a
full-sized screen offers a number of design challenges, but they are challenges
of information presentation, not new problems of context.

The conference assistant provides valuable functionality, but it is a mixture
of very different things. The part that calls for new thinking about context and
setting is the fact that actions are triggered not by clicks on a Web browser but
by Ashley’s physical motions from room to room. This is the domain where
context awareness deals with new problems and issues. The distinction be-
tween setting-aware programs and general integration of an assistant has con-
sequences for the kinds of tools that will be useful for building such
applications. If a virtual Web version of the conference assistant is being built,
the key problems are in designing information storage schemes that can link
different media, including time-based media and annotations. It will be neces-
sary to provide a format and provide storage for personal profiles so that they
can be used by various parts of the application. It will be necessary to deal with
changing profiles over time. All of these are important but do not require “con-
text widgets.”

On the other hand, the design of appropriate ontologies and operational
conceptualizations for context elements is a major area for new research. Cur-
rent systems operate as well as they do because they have evolved over time to
operate in a very particular kind of setting: an individual using a single ma-
chine. The complex but now-familiar context environment of applications,
windows, selections, and so forth has been hardwired into generations of oper-
ating systems and applications. People are so familiar with it that they are
thrown off by even minor variations, such as the difference in handling key-
board input focus between X-Windows and Windows.

But as Dey et al. point out, we are moving away from the per-
son-in-front-of-a-screen-and-keyboard model. People have multiple devices
ranging from wearables to multipurpose mobile phones. We are building en-
vironments in which multiple users interact with each other through augmen-
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tation of a variety of displays and input devices. In this new environment the
old rules of context break down.

Consider a simple common case. The user makes a selection, hits CTRL-C,
makes another selection (possibly in a different window or application) and
hits CTRL-V, resulting in a copy of the first selection being inserted in place of
the second one. The clipboard is a well-known context mechanism (this was in
fact one of the great selling points of the original Macintosh interface because it
allowed cross-application information movement). Clipboard use is much like
the using pronouns, such as thatand itin language. The commands are effec-
tively “Copy that” and “Paste it,” without needing to specify the object further.

But what happens in a multiperson, multiscreen environment? Person A
does a copy of something selected on Screen 1 and does a paste on Screen 2.
Between the two events, Person B copies an object on Screen 1 as well. What
does “Paste it” refer to? The most recent object copied anywhere? The most re-
cent one on the same device? The most recent one by the same person? There
is no “right” answer to this question, and it is indicative of the world of com-
plex questions that emerge when we abandon the one-user-one-machine as-
sumptions.

It will take a new conceptual framework to address questions of this type in
a coherent and unified way. Dey et al. give examples that nicely illustrate some
of the questions, and it will be a challenge to future researchers to provide
more general answers to them and then to build architectures and tools based
on a new theoretical framework for context.

3. MODELS FOR CONTEXT AWARENESS

The central technical proposal of Dey et al. is the use of “context widgets” as
a programming methodology. The concept is well motivated for reasons that
have a long and illustrious history in software engineering. Proponents of
modular program structure and object-oriented programs have long argued
the advantages of separating the functionality of a component from its imple-
mentation. Writers of higher level software can call on a component using a
high-level interface that abstracts away the inner details and provides a uni-
form way of thinking about its function.

In looking at the problem posed by the scenarios and examples in Dey et
al., we see these common programming needs directly reflected. Clearly, a
programmer who is writing an application, the behavior of which will depend
on a user’s location, should not have to be concerned with details of how loca-
tion is determined: whether there is a camera-based vision system, an active
badge, a magnetic tracker, or some new kind of device not yet envisioned
when the program was written. The appropriate level for the module’s inter-
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face is one that deals in people, spatial locations, and the mappings between
them.

Given a dynamically changing number of components of varying func-
tions, it is also clear that they cannot be thought of as modules to be compiled
into some grand application. Any efficiency advantages gained by the result-
ing close coupling are far outweighed by the complexity and fragility of the
combined system. The message from distributed computing is clear. Function
should be allocated to processors in whatever way best fits the setting, and the
programming metaphor should be based on multiple independent communi-
cating components.

3.1. Three Models for Context Management

A number of different organizing models have been proposed for coordi-
nating multiple processes and components. Dey et al. propose a widget model,
adapted from the architecture of GUIs. Hong and Landay (2001 [this special
issue]) argue for an infrastructure-centered distributed services model, based
on client-server dialog. This essay describes a third alternative, the blackboard
model, which has been used widely in various artificial intelligence applica-
tions (Engelmore, 1988). Each of these has advantages and disadvantages, and
it is useful to examine the space of tradeoffs.

Widgets

Widgets can be thought of as an extension of device drivers to the software
interface. Device drivers were invented in the early days of computing to deal
with the complexities of controlling hardware peripherals. Each device had its
own conventions, requiring the computer program to manage a flow of data
over some kind of physical connection port. Each program that used a device
needed to be able to send the appropriate signals, including handling inter-
rupts, errors, and so forth. It was obvious that as new technologies were added,
this would lead to a morass. Instead, for each type of device (at some level of
specificity), a standard higher level abstraction was created (e.g., files and file
positioning for storage devices) and for each different physical device (e.g., a
particular kind of tape drive) the operating system incorporated a driver map-
ping the abstraction onto the detailed control code.

A widget, such as a scroll bar on a GUI, is a device driver at a different level.
The program using it can treat it as an abstract device that provides one-dimen-
sional position information and has some additional signals (jump a screen,
jump to top, etc.). The driver (widget code) can implement the functionality for
any kind of pointing or wheel device, any “look and feel,” and so forth. The in-
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teraction is implemented in terms of messages (to the widget) and callbacks
(triggering the code when a particular condition happens in the widget).

Networked Services

In traditional widget architecture, the set of active widgets belongs to some
controller program (such as a window manager). Widgets are components
within the manager process, rather than being implemented as independent
processes. A related but more flexible model is the client-server architecture
that is widely used for connecting higher level components (e.g., a user appli-
cation and its database). This metaphor has served well for much of the devel-
opment of Internet-based software, where the client and server reside at
different net locations and communicate using Internet protocols.

In a service-based architecture, a client needs to find the location of a ser-
vice (through preconfiguration or some kind of resource discovery process)
and then set up a connection with it. This connection can be short-lived (e.g.,
the basic HTTP protocol with a single exchange) or long-lived. Connectivity is
based on finding the network location (host and port) of the service and pro-
viding software that uses the service’s protocol for encoding content (e.g., SQL
for database queries).

A key feature of a service-based architecture is the independence of the
components. There is no “widget manager” to keep global track of services
and their connections. Each component contains appropriate code to create
connections, marshal outgoing and incoming messages, manage failures and
error messages, and so forth. This adds complexity to each component, and in
turn makes them more independent. The costs of finding and communicating
with independent services is inherently higher than when the components are
tightly coupled in a managed process. But by using appropriately tuned spe-
cialized protocols, the code can be efficient to the degree that the underlying
network latency and bandwidth allow.

As with widgets, the basic service metaphor is procedural. Each service is
handled by a process on some processor. The discovery of services in a distrib-
uted environment has been a major topic of investigation (e.g., Arnold, 2000;
Gribbleetal., 1998). Anapplication that needs to use a particular kind of service
caneither haveadirectaddress (asis typicalin configuring today’s applications)
or canrunadiscovery process with a description of the desired service. Because
the search region of the discovery process can be setting-dependent (e.g., using
short-range wireless), it can introduce a certain kind of setting dependency. For
example, a discovery process running on a laptop looking for a printer service
may be designed to find only (or preferentially) servers within the same room or
building. This does not require a separate context widget but depends on the
characteristics of the network connectivity and discovery services.
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Blackboards

The blackboard architecture adopts a data-centric rather than pro-
cess-centric point of view. Rather than sending requests to distributed compo-
nents and getting callbacks from them, a process posts messages to a common
shared message board, and can subscribe to receive messages matching a
specified pattern that have been posted. The nature of the pattern matching
varies among different blackboard systems. Artificial intelligence systems
(Engelmore, 1988; Martin, Cheyer, & Moran, 1999) often apply sophisticated
inference procedures to logical representations. Tuple-based blackboards,
such as the early Linda language (Gelernter, 1985) and IBM’s® T Spaces
(Wyckoff, McLaughry, Lehman, & Ford, 1998), use simple field-by-field com-
parison of tuples.

In a blackboard architecture, all communications go through a centralized
server. Routing to different components is effectively accomplished by the
matching of message content to a subscriber’s pattern. Anything that can be
done with direct communication paths can be simulated in a straightforward
way by including an identifier for the path (or its endpoints) as a field in a mes-
sage and using matching to get messages to the desired components.

3.2. Tradeoff Criteria

In choosing an architecture, a system designer needs to consider tradeoffs
along a number of different dimensions. For systems of the kind discussed in
the anchor paper, these include the following:

Efficiency. All computer technology is subject to efficiency metrics in
space and time. For interactive applications, the key limitations are time-ef-
ficiency, both bandwidth and latency. Some architectures make it easy to
create fast paths that have been tuned for throughput efficiency, whereas
others impose layers of communication structure that limit the tuning that
can be done. Given today’s networking and processor speeds, efficiency is
not the bottleneck in many cases. For example, an application that uses in-
formation about who is in what physical space needs only a few bytes of
data, and can tolerate lags measured in seconds. Dey et al.’s proposed archi-
tecture has been developed for examples of this type, rather than examples
requiring highly efficient transfer of multimedia data, such as those ex-
plored by McCanne et al. (1997).

Configurability. A more difficult criterion to measure, and one that is
not buoyed along by Moore’s law, is the difficulty of configuring systems
that include multiple processes and devices. This is often the Achilles heel
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of complex system designs. Once configured, the components work effec-
tively, but the job of adding or modifying components is complex and
prone to breakdown. In many cases, changes to the configuration require a
complete rebooting of the system, and cannot be done “on the fly.” As com-
puting has moved in the past few years toward a network-centric environ-
ment with dynamic addition and removal of processes, configurabiliity has
become an increasing concern (see comments in Satyanarayanan, 1999, on
“no-futz computing”).

Robustness. A correlate of the difficulty of configuring systems is the
difficulty of coping with breakdowns of their components. Traditional pro-
gramming methods provide error handling mechanisms, but in general
these cope only with “expected errors” and are not graceful in the face of
overall component failure and disconnection. Simple error mechanisms
suffice for systems in which a single process manages the set of controllers
(as with standard workstation operating systems) but do not scale to systems
of independent distributed components on a network. A robust system
must continue to function in the face of components that malfunction, jam,
send inappropriate output, disappear, and are restarted. There is no magic
bullet, but the choice of architecture can aid or hinder this goal.

Simplicity. Finally, the key bottleneck is the human mind. A system
that requires complex understanding by system builders to make use of its
facilities will be used only by those who have the dedication and motivation
to master it. The World Wide Web is an obvious object lesson. The HTML
and HTTP protocols are much less powerful than many of the formatting,
hypertext, and communication protocols that preceded them. But their sim-
plicity made possible a different kind of programmer and a different arena
of use. Simplicity was the key to the success of the Web.

3.3. Contrasts Between the Models

We can contrast the three models of Section 3.1 in terms of these tradeoff
criteria. Rather than trying to fill out the whole matrix, we just make a few ob-
servations about the tradeoffs most relevant to the architecture of a con-
text-aware system.

The widget model grew from a tradition of tight coupling and single-man-
ager control. An interface with widgets is compiled together, and is an inter-
face to one operating system. Mechanisms such as callbacks take advantage of
this tight coupling for efficiency, but require complex configuration and are
not robust to component failures (imagine an interface in which “the scroll bar
has gone down”).
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The services model evolved in the Internet environment, with relatively
large, independent process components each having complex functionalities.
It therefore puts much less emphasis on efficiency and tight control, and corre-
spondingly more on configurability (service discovery) and robustness.

The blackboard metaphor developed in the context of artificial intelligence
systems, where each component (or “agent”) had partial information and new
sources could be easily added. It is the most loosely coupled and therefore
pays a price in communication efficiency. Every communication requires two
hops and uses a general message structure that is not optimized for any particu-
lar kind of data or interaction protocol. The benefits are in ease of
configurability and robustness, and in the simplicity provided by a uniform
communications path.

4. THE INTERACTIVE WORKSPACE ARCHITECTURE

In our research on Interactive Workspaces (Fox, Johanson, Hanrahan, &
Winograd, 2000), we are exploring the integration of multiple devices for mul-
tiple users in a shared physical space, called the iRoom. We have implemented
a communication and application programming architecture that supports
context-aware (or “setting-aware”) computing.

The overall architectural metaphor is a blackboard with two levels of data.
The Event Heap (Fox et al., 2000), which uses T Spaces (Wyckoff et al., 1998),
provides fast distribution of simple event tuples. Any process (e.g., one han-
dling input from a switch, keyboard, motion sensor, etc.) can post tuples,
which include fields for their source and timestamp, along with explicit data
associated with the event type. Any process can subscribe to a pattern of field
values and receive callbacks when an appropriate tuple is posted. The receiv-
ing process can remove the tuple, or can leave it for others to receive as well.
We have implemented interfaces for posting and receiving events in JavaT™,
C++, HTTP (through a proxy), and a scripting interface Each tuple has a
time-to-live, so after a specified period it will automatically be deleted. The
Event Heap is generally used for short-lived items, with time-to-live extending
at most through an interaction session.

The second-level blackboard is the Context Memory, an XML-structured da-
tabase that allows any process to store and retrieve XML-encoded data. This is
used for data that will be relevant across applications and sessions, such as
physical objects and their locations in the space, identities and properties of
people, collections of files, and so forth. Queries are sent to the Context Mem-
ory as XML ASCII strings, through an HTTP interface, or by posting an event
to the Event Heap with the query string as one of the fields. In addition to re-
sponses that return data in XML (using the same paths), the Memory has a
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template mechanism that allows application writers to create arbitrary HTML
displays for users, and to let them post new data through forms.

In choosing to use a blackboard architecture, top priority was given to the
metrics of robustness and configurability. Although efficient communication
is important, it is not the bottleneck in designing systems that deal with context
in a general way. Given the ever-increasing speed of processors and networks,
an architecture that avoids the complexity of configuring point-to-point com-
munication paths can serve for all but a few specialized uses that require tight
action—perception coupling (Winograd, 2001).

The blackboard also offers simplicity of implementation. Because there is
only one standard communication link for each component, which is always
the same (to the blackboard), there is no complex protocol for finding ports or
resources, establishing connections, and the like. Software can achieve the log-
ical effects of connection-based communication when needed, by using mes-
sages in a systematic way.

Robustness is effected in a more complex way. At a first level, we depend
on a component that can be a single point of failure for the whole environ-
ment. This requires that it be built with the same degree of reliability as other
central failure points such as the operating system and network infrastructure.
Given that it is a stable component (not modified for each new device or appli-
cation), this degree of reliability has turned out to be a reasonable task in our
own research, and is in keeping with the general need for stable infrastructure
in any system.

The benefit in return is that the loose coupling makes it easier for compo-
nents to deal with the failure of other individual components (which are not
usually as stable and reliable as the infrastructure). When a component fails,
no communications links break other than its own link to the blackboard.
Components that depend on information from the failed component can de-
tect its absence through timeouts, if desired, and can call for a restart of a new
component. We make heavy use of an announce-listen style, in which compo-
nents that provide services (such as sensor data) periodically post events. A
component that uses the data can listen to these events, and if one does not ap-
pear within the expected time it can initiate restart operations. Our experience
has been that when a clean restart process is provided for a component, this
strategy can deal well with unexpected failures of all kinds.

In addition, the centralized nature of the blackboard provides significant
opportunities for system integration. A key example is the maintenance of his-
tory. If a component is providing information about the setting (e.g., the pres-
ence of people in places), it is often useful to retrieve that information for past
times. If a number of components are providing such data (e.g., one widget in
each building), their data needs to be jointly queried to answer a question such
as “Where was Joe at 10 a.m.?” Adding state to each individual widget is not a



414 WINOGRAD

practical solution in many cases because it would require that the seeker of the
information open connections to all the widgets (or a special aggregator for
this purpose), use protocols that they support to report history, expect them all
to be operative, and so forth.

The blackboard architecture is built around a database that coordinates in-
formation across the components. If a message is posted each time a person
moves to anew location, a query over the set of posted messages can provide a
history without the complexity and overhead of making connections and with-
out needing to know how the data were provided. Both the Event Heap and
the Context Memory offer a way to query any data that have not yet passed the
time-to-live, which can be set arbitrarily by the posting process.

Similarly, it is easy to construct “observers” that subscribe to messages that
are also being received by other intended components, and that can record,
analyze, and monitor activity. This observer activity can be used for basic
functionality (e.g., noting that a component has failed to post a message by an
expected time and restarting it), or for higher level debugging, statistics gather-
ing, logging, and problem detection. These would be extremely difficult to
configure and manage if they had to tap into individual components and the
multiple communication paths among them.

5. EXAMPLES

The technical examples provided by Dey at al. can be revisited from the
point of view of the earlier architectural distinctions. I contrast their proposed
implementations proposed with those that would be possible with the Interac-
tive Workspace architecture.

5.1. Active Badge Call-Forwarding

Using the interactive workspace architecture, the setup for the active badge
application shown in Figure 2 in Dey et al. would be replaced by the structure
shown in Figure 1.

In this architecture, a variety of components introduced by Dey etal. (Inter-
preter, Discoverer, Aggregator, etc.) have been replaced by the shared Event
Heap and Context Memory. Events are generated when a badge enters or
leaves a space. These are posted to the Event Heap by a process associated
with each sensor and are subscribed to by the active badge application. This
application maintains information about who is where, based on the events
plus heuristics about how to handle conflicting or missing data (because the
sensors cannot be assumed to be always up and working properly). The active
badge application does not need to deal with a collection of widgets or
aggregators. Information about the assignment of badges to people and of
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Figure 1. Interactive Workspace architecture for the active badge call-forwarding ap-
plication. Dotted areas show messages that are passed to and from the blackboard.
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phone numbers to rooms is maintained in the Context Memory database and
can be updated through standard database actions or HTML templates. The
resulting system is greatly simplified, with no need to set up multiple connec-
tions, start the various widget processes (beyond the one for reading each sen-
sor), and so forth.

5.2. In/Out Board and Context-Aware Mailing List

The example shown in Dey et al’s Figure 7 involves two new
functionalities. In adding these to our design of Figure 1, it is useful to split out
the functionality of keeping track of who is where from the details of phone
routing, as shown in Figure 2.

The active badge component is responsible for receiving events posted by
the sensors and posting the results as a database of who is where, when, using
the shared Context Memory. Any other application can use this information
by querying those data. An announce-listen process can restart the active
badge application if it disappears, because the relevant state is being recorded
in the Context Memory. The Context Memory provides a mechanism for
HTML templates that can be used with database queries, so that the produc-
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Figure2. Interactive Workspace architecture for multiple location-aware applications.
The active badge application stores a history of locations in the Context Memory,
which can be queried by the other applications.
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tion of the HTML in/out board displays as shown in Dey et al.’s Figure 6
would not even require application code, but would be a template.

The point demonstrated in this example can be applied to Dey et al.’s other
examples. For example, Figure 17 enumerates 26 software components that
need to be configured and connected for the conference assistant. Most of
these relate to a particular kind of object in the environment (names, rooms,
presenters, slides, etc.). It would be more direct and simpler to think of these
items not as software components but as data objects, created and manipu-
lated by a small number of software components that share data through a
common database. Many of the complexities in the examples come from the
underlying architectural metaphor that approaches each item of interest in the
setting as a widget.

6. RESEARCH DIRECTIONS

Dey et al. have done a service to the HCI community by drawing our atten-
tion to the question of integrating setting and context into system design at a
fundamental level. Their efforts and examples have pointed out key areas of
research that need to be actively pursued.
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6.1. Ontologies for Context in a Distributed Environment

A truly context-aware interaction will depend on providing the application
writer with a representation of the aspects of context that matter to program
execution. Some of these are fairly straightforward (as with people location),
whereas others are more subtle (e.g., what is the “active selection” in a
multidevice, multiperson space). The research goal is to find the right level of
description, which abstracts away from implementation details, but is still spe-
cific enough to serve the purpose of inferring appropriate intent from con-
text-assuming interactions.

The hard part of this design will be the conceptual structure, not the encod-
ing. Once we understand what needs to be encoded, it is relatively straightfor-
ward to put it into data structures, data bases, and so forth. The hard part will
be coming up with conceptual structures that are broad enough to handle all of
the different kinds of context, sophisticated enough to make the needed dis-
tinctions, and simple enough to provide a practical base for programming.

6.2. Robust, Simple, Distributed Architectures

Thetoolkitproposed by Dey etal. allows application developers to make use
of distributed sources of dynamic (time-changing) data, including those that
provide information about a user’s physical setting. Theirs is one of many com-
peting approaches to this problem, and a good deal of research and experimen-
tation will be required before broadly usable designs and standards appear.

In addition to research directed to incremental improvement, we need to
search for ways of cutting the Gordian Knot, as the Web protocols did with re-
spect to their predecessors. There is no panacea: Each solution will be suited to
some environments and uses but not to others. The blackboard architecture
we are developing in our own research will provide robustness and simplicity
for many systems, but needs to be extended for latency-critical communica-
tion, generalized to scale up to network-level environments, and augmented to
provide multiple linked blackboards and protocols for managing flow among
them.

6.3. User Experience

The goal of HCI design is creating an appropriate user experience. This es-
say, along with Dey et al., addresses the user experience only by giving some
simple scenarios. Many of the other commentaries in the this special issue deal
with issues that will be critical to designing and using setting-aware applica-
tions. They range from privacy and personal control to the design of “invisible
interactions” in which users’ intentions about what they want computers to do
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are inferred from ordinary activities such as speech, gesture, and changing
physical location. In an important sense, the discussion in this essay is just
preparation. It deals with design of an infrastructure that will allow us to con-
struct and test new ways of interacting. The research that begins at that point
will allow us to better understand how to make setting-aware applications not
just computationally feasible, but useful and appropriate.
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