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ABSTRACT 
Data are a fundamental component of science and engineering work, 
and the ability to share data is critical to the validation and progress 
of science. Data sharing and reuse in some fields, however, has 
proven to be a difficult problem. This paper argues that the 
development of effective CSCW systems to support data sharing in 
work groups requires a better understanding of the use of data in 
practice. Drawing on our work with three scientific disciplines, we 
show that data play two general roles in scientific communities: 1) 
they serve as evidence to support scientific inquiry, and 2) they 
make a social contribution to the establishment and maintenance of 
communities of practice. A clearer consideration and understanding 
of these roles can contribute to the design of more effective data 
sharing systems. We suggest that this can be achieved through 
supporting social interaction around data abstractions, reaching 
beyond current metadata models, and supporting the social roles of 
data. 

Categories and Subject Descriptors 
H.5.3 [Group and Organization Interfaces]: Computer-supported 
cooperative work 

General Terms: Design, Human Factors, Theory. 

Keywords: Data Sharing; Communities of Practice; Metadata; 
Collaboratories. 

1. INTRODUCTION 
Collaboration and social interaction are essential to modern 
scientific practice [26, 28]. Traditionally, this collaboration has 
occurred in laboratories, which not only provide physical proximity 
to scarce instruments and other scientists but also serve as social 
organizations for the dissemination of knowledge and training of 
future scientists [13, 23]. More recently, scientific research teams 
have engaged in geographically dispersed group work using the 
CSCW tools included in collaboratories. 
The collaboratory is a new organizational form that uses electronic 
facilities to bring together scientists, instruments, and information to 
support the conduct of distributed science and engineering work 
[12]. Designing the systems to support this work requires a careful 

understanding of current practice and the needs of the research 
teams involved [33]. One important component of modern scientific 
work is the collection, analysis and sharing of data. We believe that 
designing CSCW systems to support the use of scientific data 
demands an understanding not only of the nature of the data 
themselves, but also the practices they represent and the functions 
they serve. We further believe that the near future will bring an 
increasing demand for effective data-sharing systems, given recent 
global trends in academic research [4, 5, 37].  
Others have taken a similar stance on the use and sharing of 
documents. Malone’s work on how people organize their desks, for 
example, proved influential in the design of today’s desktop 
computers [31]. It has also been suggested that documents have a 
“social life,” and that they serve multiple roles in many facets of 
social structure [8, 20]. Additional studies focus on how people 
manage their paper documents, with an eye toward the design of 
digital information management systems [39, 44]. 
As with electronic document systems, creating digital data 
repositories is a non-trivial problem involving more than just 
providing remote search and retrieval functionality. We argue, 
however, that data are different from documents in important and 
fundamental ways, and warrant separate study. Specifically, 
scientists regard data as accurate representations of the physical 
world and as evidence to support claims [27]. As a result, data play 
several unique and important social roles within research teams. In 
this paper, we explore the nature of these roles and discuss their 
specific implications for the design of effective data-sharing 
systems.  

2. DATA SHARING: IMPORTANT, BUT 
DIFFICULT 
Data sharing is important for two reasons. First, data sharing has 
historically been considered a hallmark of modern scientific practice 
[32]. Openness in the scientific process allows for the confirmation 
of research findings, especially through the replication of results 
[25]. Data sharing also makes it possible for scientists to build on 
the work of others [30]. It is with this in mind that scientific funding 
agencies are beginning to require grant recipients to share the data 
produced in their studies [2, 3]. 
Second, new “big science” projects involve data that are collected 
and analyzed by multiple people, institutions, and research sites. 
Sharing data in these cases becomes more than just the exchange of 
finalized data sets. Cyberinfrastructure [5], collaboratory, and e-
science [37] initiatives in the United States and the European Union 
are looking at ways to allow scientists to collaborate on the creation 
and use of very large data sets. 
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2.1 Difficulties in data sharing 
Despite this importance, however, sharing data is not easy. Many 
researchers have discussed the problems underlying this seemingly 
simple process [10, 22, 30]. We divide these problems into three 
categories: 1) willingness to share, 2) locating shared data, and 3) 
using shared data. 
First, there is a strong sense in which the scientist’s ability to profit 
from data collection depends on maintaining exclusive control over 
the data—economists would say that the data are a source of 
“monopoly rents” for the scientist. In this case, however, the profit, 
or rent, accrues largely in the form of scientific reputation and its 
accompanying benefits, such as publications, grants, and students 
[43]. The point here is that the competition for reputation (and 
associated benefits) in science is intense, and there may be a strong 
reluctance on the part of scientists to share data, as such sharing may 
amount to a sacrifice of future rents that could be extracted from the 
data were they not shared [41]. It is also the case that certain data 
sets funded by private commercial interests may carry usage and 
confidentiality restrictions that prohibit them from being shared.    
Second, researchers must become aware of who has the data they 
need or where the data are located, which can be a nontrivial 
problem [45]. After finding appropriate data, they often must 
negotiate with the owner or develop trusting relationships to gain 
access [40].  
Third, once in possession of a data set, understanding it requires 
knowledge of the context of its creation [18]. How was each datum 
collected and analyzed? What format are the data in? If the data are 
in electronic form, is there a key or metadata available to indicate 
what the various fields in the database mean? Researchers also need 
to know something about the quality of the data they are receiving, 
and if the original purpose of the data set is compatible with the 
proposed use. Answering these questions in useful ways requires a 
large amount of effort on the part of the data creator, but the benefit 
of such effort goes largely to the secondary user. This renders it 
unlikely that adequate documentation will be produced [17, 34]. 
Even if documentation is provided, however, it is often the case that 
much of the knowledge needed to make sense of data sets is tacit. 
Scientists are not necessarily able to explicate all of the information 
that is required to understand someone else’s work. Collins’ [11] 
discussion of the difficulties in replicating the TEA laser is 
suggestive here. Collins found that this specific type of laser could 
not be replicated in different labs simply by following explicit 
written instructions. Successful replication required extensive 
contact with someone else who had already built a TEA laser. 
Knowledge transfer in this instance is not simply a matter of sharing 
a set of instructions, but is a highly social process of learning 
practices that are not easily documented. 

2.2 Approaching this challenge 
Data sharing systems have developed a number of approaches to 
these issues. For example, standardized reporting formats and 
metadata protocols can allow the same data to be read across 
different hardware or software. Password and security systems can 
give a certain degree of control over who does and does not have 
access to data sets. Metadata can provide context about who 
collected data and how they were processed.  
While these approaches deal effectively with the explicit 
technological problems inherent in data sharing, it is not clear that 
they adequately deal with many of the tacit and social issues 

outlined above. For example, metadata can provide information 
about the data, but it too relies on a good deal of insider knowledge 
to interpret. Indeed, a metadata model can only provide so much 
contextual information, leading to a potentially recursive situation in 
which metadata models require “meta-metadata” in order to be 
effectively understood [6, 40]. Similarly, access control systems 
implemented for data can put up a wall around a data set, but they 
do not adequately provide for the subtle social realities of gaining 
access to an invisible college [35]. 
Recent calls for open science and data sharing suggest that funding 
agencies believe that groundbreaking scientific research requires 
more data sharing among scientists. Even if we provide the technical 
means to move data from one lab to another, however, there may be 
social barriers to effectively using this data in practice. To design 
technologies that truly support the conduct of science, and not just 
the sharing of a data set, we argue that the designer must understand 
both the scientific role that data play in producing knowledge, and 
the social role that data play in the conduct of scientific work.  
Before proceeding, we should also note that there are community 
data systems in current use that are quite effective. Resources such 
as the Inter-university Consortium for Political and Social Research, 
Genbank and the Protein Data Bank are predicated on the ability to 
share data among scientists. We argue that these are special cases, 
however, in that they represent research areas that are characterized 
by what has been termed low task uncertainty, and high mutual 
dependence [15, 43]. In other words, these research areas have a 
high level of agreement on the types of problems to be studied and 
the methods to be used. The problems being addressed are also 
sufficiently large that researchers are dependent on large groups in 
order to tackle them effectively. In contrast, the research areas that 
we study here feature a wider array of questions, methods and data 
formats. This variety complicates the data-sharing problem. 

3. METHOD 
We begin this work with no assumptions about the purpose of data, 
but instead draw on our observations of practice in different 
scientific disciplines. We attempt to develop an understanding of the 
use of data in practice that can inform the design of data 
management and sharing systems. We acknowledge both scientific 
and social understandings of data’s purpose and use with the explicit 
belief that understanding multiple points of view will help us to 
create better technologies. 
In our work developing and designing collaboratories [12], we have 
actively studied scientists in three disciplines: earthquake 
engineering, HIV/AIDS research, and space physics. We recognize 
that these disciplines differ along several important dimensions, but 
here our goal is to look across the disciplines to explore 
commonalities and differences in the ways data are used. 
Earthquake engineers are interested in the effective design of 
structures capable of withstanding substantial seismic forces. They 
test model structures under simulated earthquake conditions in a 
laboratory or field environment. Data collected include photographs 
of structural damage, measurements of cracks in concrete, and 
readings from sensors attached to the specimen.  Our involvement 
with this community has been ongoing since 2000, as part of our 
work on the U.S. National Science Foundation’s (NSF) George E. 
Brown, Jr. Network for Earthquake Engineering Simulation 
(NEES). During this time, we have visited 15 earthquake 
engineering laboratories to observe day-to-day work and 
experimentation, conducted over 70 half-hour interviews with 
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faculty, students and technicians, and administered 3 surveys to 
samples of 400 academic researchers and commercial practitioners.  
Clinical and experimental HIV/AIDS researchers are involved in 
research to understand how the HIV virus functions, how the human 
immune system responds to the HIV virus, and to test the efficacy of 
various treatments. Typical sources of data in this field can include 
laboratory experiments, blood analyses, clinical descriptions of 
patient symptoms, and epidemiological data about disease incidence 
in a community. We have been involved with HIV/AIDS 
researchers for two years. We have visited 9 labs and clinics in 3 
countries in Africa and North America, conducted over 25 hours of 
observation of day-to-day lab work, and 50 one-hour interviews 
with researchers, students and lab technicians. 
Space physicists focus on the study of the earth’s ionosphere, 
looking particularly at the interactions of the solar wind, the earth’s 
magnetic field, and the characteristics of the upper atmosphere [14]. 
Data are collected from a various ground- and space-based 
instruments measuring solar radiation, auroral activity, and the like. 
In this area, members of our research group were involved for over 
10 years in the creation and operation of the SPARC/UARC 
collaboratory. Work included interviews, observations and a trip to 
the Sondrestrom Research Facility at Kangerlussuaq, Greenland to 
observe a data gathering campaign. 

4. HOW DATA CONTRIBUTE TO 
SCIENTIFIC FACT 
In this section, we focus on the more obvious uses of data in the 
scientific enterprise. Here we identify three aspects of the way data 
are used that will impact how data get shared. 

4.1 Data as News or Confirmation 
Expectations about what purpose data will serve influence how they 
are collected, arranged, maintained, and shared. In some cases, data 
serve as confirmation of scientific expectations. In medical research, 
for example, clinical trials are designed not to generate new theory, 
but to confirm whether or not an existing theory (for example, about 
how a drug works) is correct. On the other hand, data can also 
function as a kind of “news.” Investigators are not sure what they 
will find, or are looking for cases that may push the boundaries of 
theory. 
In HIV/AIDS research, data serve both purposes. In some studies, 
especially those considered to be “basic research” or “bench 
science,” investigators are often looking for news from the data. An 
important research question in HIV/AIDS work involves 
understanding how to predict if or when a person who is infected 
with the HIV virus will begin exhibiting the symptoms of the 
disease AIDS. One prominent theory suggests that there is an 
inverse relationship between the amount of HIV virus in the blood 
and the strength of the immune system. HIV-positive patients with 
weak immune systems are more likely to convert to full-blown 
AIDS.  
Generally, there are two research approaches to this question, which 
are not necessarily incompatible: The first, confirmatory, approach 
tries to prove the theory by gathering enough evidence to 
statistically demonstrate that HIV viral load and immune cell counts 
have a negative correlation. The second approach tries to refine the 
theory by locating and looking carefully at the small subset of HIV 
patients who do not fit the prevailing model. These patients, called 
“non-converters”, can have high levels of the HIV virus, but their 
immune systems remain strong. It is these unexpected cases that 

carry the most information in this situation, such that the data are 
treated as “news” about poorly understood aspects of the disease, 
rather than as statistics to prove a theory. Additionally, when 
researchers are searching for news rather than confirmation, they are 
more likely to alter their methods or focus and concentrate on those 
areas that are most news-rich. Scientists involved in a confirmation 
study cannot change their methods without jeopardizing the validity 
of the study. 
In earthquake engineering, we find that most medium and large-
scale experiments are confirmatory. Because these experiments often 
require months of preparation and cost tens to hundreds of 
thousands of dollars, it would be highly impractical to run a series of 
tests with the goal of learning from anomalous cases. Rather, it is 
typically the case that researchers work before the experiment to 
develop a sophisticated numerical model of the physical 
phenomenon being tested. This model is then used to inform the 
design of the experimental specimen and apparatus, and the 
experiment itself is used to validate and refine the theory behind the 
numerical model. 
It is, of course, the case that there are times when data function as 
news in earthquake engineering experiments. As one faculty 
member put it, “This is research. If the unexpected never happened, 
we wouldn’t learn anything.” In cases where the specimen fails, or 
collapses, before it is expected to, for example, further study must be 
done to understand why the unexpected failure occurred. Unlike 
AIDS research, however, we never found a case where encountering 
the unexpected and learning from it were the stated goals of the 
research.  

4.2 Data Streams vs. Data Events 
One of the differences across the disciplines we are studying is when 
and how data are collected. In many ways, the timing of data 
collection influences the rhythms of production and work within the 
field. 
In HIV/AIDS research, data tend to be collected in relatively 
constant streams over long periods of time. For example, in a 
clinical study, each patient will have blood drawn and analyzed at 
regular intervals (perhaps once per month), and could be 
participating in the study for several years. There are a large number 
of patients in the study, however, such that each day a relatively 
regular number of blood samples to be analyzed are produced by the 
clinic. One or more data points are extracted from each of the blood 
samples, so that over the life of the study, the day-to-day collection 
of small amounts of data results in a huge data set.  
A potential difficulty for studies that use streams of data is that the 
context for data collection may change as the study progresses. One 
HIV clinical trial we studied has gone through three major protocol 
changes mid-stream in response to both internal and external forces. 
Access to new and better medicines means that baseline immune 
responses in study populations have improved. Findings from other 
studies create an ethical obligation to provide patients in the study 
with a different combination of drugs. Internally, the project has 
been forced to deal with staff changes, new laboratory techniques, 
and the use of different laboratory and clinical sites. Each of these 
changes potentially requires a new interpretive framework for the 
data.  
Earthquake engineering, on the other hand, tends to collect data 
from discrete events rather than streams. Several months are 
typically spent planning and constructing a specimen, instrumenting 
it with a variety of sensors and preparing it for a simulated 
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earthquake. The physical simulation itself, referred to as a “shaking 
event,” may last only a few seconds, during which data are collected 
at a very high rate. A typical laboratory investigation might involve 
the analysis of data from five or six shaking events performed on a 
particular specimen, where each event is treated as a discrete 
earthquake of a particular magnitude and ground motion. These data 
are generally used solely for the investigation from which they were 
collected, and are not combined to form a larger data set.  
The space physics community has an interesting approach to data in 
this regard. The data collected in space physics are observational 
data of natural phenomena produced by the sun. Data could be 
collected in a constant stream over time, but the field sets artificial 
boundaries to create discrete events. Rather than always collecting 
data, a “campaign” of one to two weeks is organized among the 
researchers when an interesting moment is expected to occur, and 
multiple instruments are set up to capture appropriate data during 
the same time period. In some ways, this bounding of events out of 
the streams may be an artifact of the practical difficulties of data 
collection. Because the instruments are located in remote areas (like 
Greenland), scientists would have to schedule trips to visit the 
instrument and collect data. We may see a change in this pattern as 
more of the instruments in space physics are connected through 
electronic networks. Because researchers will no longer be limited 
by when they can travel to the instrument, we might expect the field 
to move toward a more stream-oriented data collection approach. 

5. HOW DATA CONTRIBUTE TO 
SCIENTIFIC COMMUNITY 
If we accept that science is a social enterprise [16, 28], we must also 
ask how data are implicated in this social world. For this, we draw 
on the concepts of “legitimate peripheral participation” and 
“communities of practice” [29, 42]. The concept of “community” 
allows us to see not just the static existence of relationships within a 
group of researchers, but also the processes by which relationships 
between people and objects at multiple levels of analysis form, 
change, and cease to exist. Wenger notes that for any community, 
membership and status are fundamental issues. Focusing on 
scientific communities of practice allows us to ask how data are 
implicated in the formation and maintenance of communities of 
practice. 

5.1 Data define boundaries between 
communities of practice 
It seems clear that in many cases, different scientific communities 
use data in different ways. A fundamental distinction in many fields 
occurs between experimentalists and theoretical modelers. This 
distinction has been well developed, for example, in studies of the 
high energy physics community [38]. Experimentalists directly 
collect empirical data and use these data to test theoretical 
hypotheses about physical phenomena. Theoretical modelers, on the 
other hand, develop sophisticated numerical models of physical 
phenomena, and compare the output from their models with 
empirical data for validation and refinement.  
Though these groups are distinct, it is clear that there is a symbiotic 
relationship between them. Modelers need empirical data to validate 
their models, and experimentalists benefit from the advanced theory 
that modeling enables. It is also clear that these groups are distinct 
within the earthquake engineering community, for example. When 
asked about their research interests, nearly every interview subject 
indicated early on that they did primarily experimental or theoretical 

work. Several faculty members we spoke with also indicated that 
they notice that students tend to be particularly good at one type of 
work or the other. It is “extremely rare” to find a student who is 
good at both.  
We also noticed different attitudes and approaches toward data in 
these groups. For theoretical modelers, data serve as both a starting 
point for model development and an external benchmark for the 
models. They are often frustrated by the difficulty of obtaining and 
understanding data sets. For example, one subject noted that 
experimentalists frequently claim they cannot find data when he 
requests it, and that even when he does receive data, they are often 
in a format that is difficult to decipher. Theoretical modelers also 
tended to view data as more public, seemed more interested in the 
data-sharing capabilities of emerging collaboratories, and were more 
upset about failed data sharing attempts in the past. 
Experimentalists, on the other hand, were generally more possessive 
about data they had worked hard to generate, and were less willing 
to share.  
Keeping all of this in mind, it is also interesting to note that large 
investigations in earthquake engineering increasingly involve 
collaboration between faculty from both groups, and that the 
experimental investigations are used to further development of an 
advanced theoretical model. In another example we are familiar 
with, a group of senior space physicists who do primarily empirical 
work have cultivated a small team of younger scientists who do 
modeling work. The senior scientists are largely dependent on the 
modelers for validation of their theories, and the modelers are 
dependent on the senior scientists for their funding and data to 
validate their models. In both of these fields, experimentalists and 
modelers are increasingly negotiating collaborative relationships 
around larger projects that satisfy the needs of both groups, rather 
than working separately and trying to develop a sharing relationship 
after the fact.  
There is a strong sense in which the observed distinction in attitudes 
makes intuitive sense. Empirical data are used differently by the two 
groups of researchers. For empirical work, data are the output of an 
experimental or observational process, which involves substantial 
effort on the part of the experimenter, and then serve to support 
hypotheses or provide a basis for further explanation. In theoretical 
modeling, on the other hand, data are used as input. The modeler 
begins with, and cannot do his/her work without, the 
experimentalist’s observations of natural phenomena. Thus, it is not 
surprising that the experimenter wants to extract maximal rents from 
his/her efforts, while the modeler feels that the raw observations 
forming the basis of his/her research should be freely available.  
Though this distinction in data usage is fundamental to fields like 
earthquake engineering and space physics, a difference in the way 
data are used does not always correspond to membership in different 
communities of practice. In AIDS research, the same scientists are 
often involved in both basic bench science and clinical trial 
research. Even though one type of research is using data as news 
and the other is treating data as confirmation, this does not create a 
distinction between separate communities of practice. 
On the other hand, competition between research projects is intense 
in HIV/AIDS research. Often two research groups will be trying to 
answer the same question using the same methods, and they are 
essentially in a race to be the first to make critical discoveries. The 
competition in the early years of the epidemic to be recognized as 
the discoverer of HIV has even been chronicled in the popular 
media [1]. This is an extreme case, but our informants told us that 
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the anxiety about getting “scooped” on a discovery is keenly felt. 
While HIV researchers are often quite open about sharing laboratory 
techniques between labs, unpublished data are almost never shared. 
In a discussion about the possibility of multiple projects sharing the 
cost of developing collaboratory facilities, maintaining the data 
boundary was a top priority. “They won’t be able to see our data, 
right? Because they are competitors, and we are trying to beat them 
[to publication].” Similarly, laboratory technicians told us that while 
they are free to share data within their project, to share data outside 
of the project requires the consent of the lab director. Data are a 
primary asset for the scientists, and being able to fully exploit the 
value of the data demands that the boundaries between communities 
of practice be maintained. 
Other distinctions that we have not fully discussed here can also 
separate communities of practice. For example, experimental vs. 
field data, or quantitative vs. qualitative data are distinctions that 
often define the differences between disciplines and subdisciplines. 

5.2 Data as gateway into communities of 
practice 
Access to data can be an important point of entry for a community 
of practice. In some fields, such as earthquake engineering, the data 
necessary to engage in scientific activity can be generated in a local 
laboratory. In other fields, like space physics, the data come from 
large, remotely located instruments. To become a space physicist 
requires access to either a data source or to someone else’s data set. 
Instruments, such as the Greenland facility or satellite-based 
devices, are typically owned by institutions and scientists at these 
institutions have primary access. Authorship on publications is often 
exchanged for access to data from such instruments. We have also 
observed anecdotal evidence to suggest that relationships are 
negotiated around data access in this community. At a conference, 
one graduate student we were talking with abruptly left our 
conversation so that he could go “schmooze [with a more senior 
scientist] for data.” 
In earthquake engineering, we spoke at length with several 
researchers about their attitudes toward data sharing in the NEES 
collaboratory. One theme that emerged repeatedly was a willingness 
to share a low-resolution abstraction, such as a graph of 
experimental data immediately, but significant reluctance to share 
the full data set. For example, many researchers indicated that they 
would be happy to allow any interested parties to “tune in” to a live 
experiment and view graphical displays or summaries of data , but 
they did not want others to have access to the numerical data files 
for at least six months. In this way they are able to retain control 
over their data and potential findings, in addition to influencing the 
degree to which outsiders can become involved in their research and 
the field as a whole.   
In another example, this one in HIV/AIDS research, data often 
cannot be understood without a thorough understanding of the 
clinical and laboratory processes that produced them. For instance, 
an Elispot test is used to determine whether an individual’s immune 
system is responding to particular portions of the HIV virus. White 
blood cells and sections of the virus are mixed in a small well with 
various chemicals and dyes. If the white blood cells recognize the 
piece of the HIV virus as a threat, they secrete a chemical that reacts 
with the dye to produce a dark spot on a reaction plate. These dots 
are counted, and a determination is made as to whether this number 
of reactions constitutes a positive response to the virus. The number 
of dots and the amount of background noise (that is, dots that appear 

but are not due to a white blood cell reaction) are highly 
contextually dependent. The number of dots that must appear before 
achieving a “positive” response depends on the individual’s and 
population’s general immune health, the procedures used to prepare 
the reaction plates, the amount, type, and quality of the reagents, and 
the general level of quality control within the lab where the test is 
conducted. The important piece of data—the number of dots that 
appear—cannot be interpreted, and the experiment cannot be 
replicated without an understanding of all of these (and probably 
more) factors (for a similar example, see [9]).  
This degree of contextual dependence means that giving access to 
data requires more than merely handing over a data set. To use the 
data set, the receiver must often visit the laboratory or clinic where 
the data were generated and must spend time with the researchers to 
understand what the data mean. In busy research labs, these visits 
can be both time-consuming and disruptive to the day-to-day work. 
One lab has formalized this process by requiring any visiting 
researchers to submit an application that details not only their own 
research, but how they can give back to the lab (often by providing 
training or seminars). “We want to know that they have a legitimate 
reason for being here, and we want to know what we are going to 
get in return [for letting them in].” 
Thus, access to both data and their surrounding tacit knowledge 
become valuable resources for those seeking scientific legitimacy. 
Those senior researchers who determine who can and cannot have 
access to these resources effectively become gatekeepers of the field. 

5.3 Data as indication of status in a community 
of practice 
In the scientific communities we are studying, data often indicate 
status. Having one’s own data is often seen as “better” than using 
publicly available or borrowed data sets. This is highly significant in 
that it illustrates that some fields have not just a reluctance to share 
data, but a reluctance to use other people’s data as well.  
For example, one of the proposed benefits of the NEES 
collaboratory is the ability to share data sets from large experiments, 
so that many experimental researchers may analyze them. The data 
sets from these experiments are frequently much larger than 
necessary to study the phenomenon specifically being investigated 
by the researcher, as the cost of adding additional instruments and 
sensors is low once the specimen has been prepared. Interestingly, 
many of the researchers we spoke with are interested in making their 
data public and sharing it, but no experimental researchers indicated 
a desire to analyze data from other researchers. Some informants 
suggested that there is a stigma in the community associated with 
using data collected in somebody else’s experiment for one’s own 
analyses. This stigma can affect one’s chances at getting papers 
accepted in journals and conferences, as well as the respect that is 
accorded by the community.  
In space physics, there is also a sense in which possession of data by 
virtue of institutional access to a data source affords a certain status 
and enhances one’s reputation in the community. One who has 
ready access to such data, for example, does not have a need for co-
authors and has the clear upper hand in negotiations with more 
junior scientists requesting access to said data.  
In HIV/AIDS research, data quality is an important status marker. 
Obviously, the quality of data is important for the ability to make 
scientific conclusions, but assessments of data quality often function 
as commentaries about the researchers themselves. In newer labs, 
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producing high quality data is a signal that the lab had reached a 
certain level of maturity. Especially in laboratories located in Africa, 
we often heard comments like, “Our data is as good as any lab in 
Europe or the United States.” We heard a good deal of boasting 
when an external review board rated a project’s data quality as 
“excellent.” Anecdotal evidence suggests that a discovery of low 
data quality in a published study resulted not only in disputes about 
the scientific merit of the work, but also in a loss of status in the 
HIV/AIDS research community for the associated researchers. 
In many ways, these examples make sense in light of what Fuchs 
[15] and Whitley [43] refer to as the level of task uncertainty in a 
research area. Task uncertainty refers to the degree to which the 
researchers in a given area agree on the problems that are to be 
solved and the methods that should be used to solve them. In areas 
with low task uncertainty, such as high energy physics, it stands to 
reason that the stigma attached to using shared data will be lower 
than in the fields we are studying because the experimental 
apparatus and means for data collection, and the community faith in 
these are not likely to differ substantially between researchers. 
Where there is high task uncertainty, on the other hand, there is 
more variation between researchers. Because of this, much of the 
creative effort involved in the conduct of research goes into the 
design of the experiment itself and conceiving of novel ways to 
collect data. Simply analyzing somebody else’s data bypasses this 
step, which arguably “counts” for less in the battle for scientific 
reputation. 

5.4 Data enable inbound trajectories 
As noted above, communities are dynamic groupings of individuals. 
Wenger argues that communities of practice are comprised of 
individuals on various types of trajectories [42]. One type, the 
inbound trajectory, is characterized by individuals on their way to 
core participation in the community. Inbound trajectories are made 
possible when non-members or peripheral members of a community 
of practice are given opportunities for full participation. 
We have observed that possession of data can be a powerful tool for 
those on inbound trajectories in certain scientific communities of 
practice. In AIDS research, for example, a graduate student or junior 
researcher is often given responsibility for a subset of the data on a 
study. They will have to collect, maintain, and analyze that data on 
their own. In return, they get valuable mentorship from senior 
researchers, learning not only how to manage data, but also how to 
be a member of this community of practice. Even though the junior 
scientists remain outside the core of the community—they cannot 
initiate studies on their own, and they do not have ultimate 
responsibility for a study—this arrangement gives them the 
opportunity to learn how to interact with funding agencies, ethics 
review boards, and other scientists. They also gain some of the 
status markers of community membership, especially authorship on 
publications that result from their data. This is a kind of “legitimate 
peripheral participation,” in which students are given a real 
opportunity to act as a part of the community [29]. The work of 
collecting and managing data provides a peripheral member the 
opportunity to move closer to the center of the community of 
practice.  
The same does not appear to be true in experimental earthquake 
engineering. Here, it is largely the graduate students who are at the 
core of research practice. Rather than having a student assigned to a 
small “slice” of a larger experiment, each student is typically 
assigned to his or her own experiment which is worked on with a 
faculty advisor. The student supervises (and often participates in) 

the construction of the specimen, the running of the tests, and is 
solely responsible for the analysis of the data. This responsibility is 
rarely shared, and we observed no cases where junior students or 
undergraduate lab assistants were permitted to assist in the analysis. 
Thus, for earthquake engineers, data are the privilege enjoyed 
primarily by core (and nearly so, in the case of advanced graduate 
students) participants in the community who have run their own 
experiments. Those wishing to establish an inbound trajectory may 
do so through laboratory work, but not through data analysis.  
This distinction between AIDS research and earthquake engineering 
is critical in understanding willingness to share data. In AIDS 
research, sharing data with a new student is a typical way to give 
them some experience and bring them into a community. In 
earthquake engineering, on the other hand, these opportunities for 
legitimate peripheral participation occur in the planning and 
execution of the experiment itself. Thus, willingness to share data in 
this community is likely to be lower. 

6. DISCUSSION 
We have seen here that social issues frequently act as barriers to data 
sharing in ways that technical systems will not soon be able to 
change. At the same time, however, there are opportunities to use 
technical systems to support social behavior in ways that can 
facilitate the sharing of data. We believe that our observations have 
implications for two issues in the design of CSCW systems to 
support the sharing of data in science and engineering work in fields 
such as the ones we studied: 1) promoting sharing behavior, and 2) 
considering context. We conclude this section with a set of specific 
recommendations. 

6.1 Promoting data sharing 
One way to think about data sharing involves economic incentives. 
Grudin [17] argued that people will be unlikely to use a system if it 
requires them to do additional work from which they will not 
benefit. It stands to reason, then,  that they will be even less likely to 
use a system which requires extra work and has the risk of a 
negative payoff. 
We noted above that scientists with their own data have the 
opportunity to extract monopolistic “rents,” or revenues, from these 
data in the form of reputation, publications, and such. Sharing these 
data often amounts to risking the loss of these benefits. At the same 
time, however, because data are regarded as representations of the 
external world, it can be said that many data sets incorporate a larger 
set of potential rents than the creator is capable of or interested in 
extracting. After all, scientists can only do things with their data that 
they are capable of,  have thought of and are interested in doing. 
From this, we can divide the theoretical full set of potential revenues 
that the creator of a given data set can extract into four categories. 
Consider the hypothetical example of Jane the earthquake engineer.  
Jane has sensor data from recent laboratory tests of two concrete 
columns, each built with a slightly different concrete composition.  
Uses of these data can be categorized as follows:  
(1) “A scientist’s data set is her castle” includes revenues from 

activities the creator is capable of and plans to do.  In Jane’s 
case, this might be a basic statistical comparison of the 
performance of the two columns under simulated earthquake 
conditions.  

(2) “With a little help from my friends” includes revenues from 
activities the creator has thought of and wants to do, but seeks 
collaborators with the necessary skills to do them ([19] lists 
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this as a central reason for much collaboration in science).  For 
example, Jane may wish to run more sophisticated statistical 
analyses that are beyond her ability.  In order to do this, she 
seeks a collaborator with the necessary skills. 

(3) “One scientist’s junk is another one’s treasure” includes 
revenues from activities not relevant to questions of interest to 
the creator.  In this case, Jane is interested in the performance 
of the two types of concrete, and has very little interest in the 
steel reinforcement bars (rebar).  She has sensor data from the 
rebar, however, that she collected in case of unexpected 
behavior.  She would be happy to give these data away to 
anybody interested, because they do not help answer her core 
questions.   

(4) “D’oh!” includes revenues from activities the creator has not 
thought of, but that are relevant to questions she finds 
interesting. Jane is a good earthquake engineer, but she does 
not know everything.  If it turns out that there are some basic 
statistical analyses of the columns’ performance that she did 
not think of but that reveal interesting discoveries, it could be 
quite embarrassing to Jane to have these pointed out by an 
outsider analyzing her data. 

If we assume that people are honest and give credit where it is due, 
we can suppose that the reputational payoffs of types 1 - 3 are all 
positive, and that they are listed in descending order of value. 
Category 4 activities carried out by someone other than the creator 
are potentially embarrassing, however, and could have a negative 
impact on the creator’s reputation.  
Now think about how these categories of revenues might impact a 
researcher’s propensity to share data. The risk of losing category 1 
and 2 revenues is arguably too great to warrant sharing one’s raw 
data publicly with the hope of accruing category 3 revenues (in the 
form of possible co-authorships and acknowledgements). 
Additionally, there is a risk of embarrassment from category 4 
activities that might preclude immediate sharing of data with 
colleagues interested in similar questions. Instead, as we (and 
others) have observed, scientists seek to control who has access to 
their data and share it only with those whom they trust after they 
have finished preliminarily analyzing it.    
Notice that one common feature of the “barrier” data roles we 
illustrated is that virtually all involve social relationships. 
Researchers frequently wish to limit access to their data and 
communities to those with whom they already have relationships. In 
other words, there is a sense in which the sharing of data follows the 
paths established by existing social networks  
Thus, one possible way to encourage data sharing behavior may be 
to provide facilities for communication around shared data 
abstractions. With data abstractions that give a sense of what is 
captured in the data without giving away too much detail, such as 
the graphically represented data from live earthquake engineering 
experiments mentioned above, the risk of losing category 1 revenues 
can be reduced to the point where the possibility of accruing 
category 2 and 3 revenues provides sufficient incentive to share 
these abstractions.  
In this scenario, note that category 2 revenues become a possible 
benefit, rather than a risk, in that the creator is arguably more likely 
to find a collaborator for category 2 activities by sharing an 
abstraction than by sharing nothing at all. In this way, the 
abstractions become a signaling mechanism within the data system 
in that they provide a limited set of information about what 
researchers in a particular lab are working on.  These signals, in 

turn, serve both to reinforce the community-of-practice boundary 
role of data that we observed by limiting access to the full data sets, 
while at the same time allowing researchers to tentatively reach out 
across these boundaries and seek out new collaborators. 
This strategy may also help reduce the risk of hidden category 4 
activities that could result in reputation loss. Sharing preliminary 
data abstractions gives the creator a chance to receive comments and 
questions that may reveal additional avenues of inquiry before they 
become embarrassing. The creator can then turn a potential “D’oh” 
into a category 1 or 2 revenue. 
One implication of signaling one’s activity via abstraction to a larger 
community is the potential need for filtering of incoming 
communications.  Indeed, not all incoming requests for data will be 
from competent or serious potential collaborators.  Thus, there will 
likely be value for automated filtering mechanisms to assess the 
seriousness and utility of such incoming messages. 
Resnick [36] suggests that using technical systems to build value in 
social networks results in “sociotechnical capital.” We are 
suggesting that by sharing data abstractions and intentionally 
leveraging the power of communications tools, scientists can build 
relationships with potential collaborators. At first, these 
relationships will facilitate data sharing. After that, they will 
facilitate the sharing of important aspects of the context of data 
collection and interpretation. 
We are not suggesting that merely adding communication tools will 
remove all barriers to data sharing. Indeed, there are already a large 
number of communication tools available to scientists who wish to 
share data, such as email and the telephone. Instead, we believe that 
these tools combined with data abstractions can facilitate the 
development of social relationships that surround the important 
roles that data play in research communities. Specifically, sharing 
data abstractions and providing means for communication around 
these abstractions could allow more people access to the “gist” of 
the data, and perhaps inspire a student with a novel idea to contact 
the data’s creator. They could discuss this idea, and if it is truly 
novel, the creator could elect to share the full data set. This can 
further serve to reduce barriers to entering the core of a community 
[21, 24]. 

6.2 Considering context 
We believe that data standards have been difficult to establish for 
two reasons: 1) they do not consider the roles that data play in 
research communities, and 2) metadata models are not as simple as 
they seem.  
In the first place, those developing community standards for data 
repositories and the like must carefully consider the roles that data 
and data standards play in that community. In their analysis of the 
International Classification of Disease (ICD), Bowker and Star [7] 
note that the numbered labels comprising the ICD are part of a 
larger “genre system” that includes codification practices and 
nomenclature lists. This genre system, in turn, is embedded in a 
large and complex social context. Disagreement between doctors on 
what constitutes various diseases (for example, when does a patient 
move from being merely HIV-positive to “having AIDS”) is 
common. In this way, the system is not foolproof and is not viewed 
as a complete or static solution. It nonetheless serves an important 
function by providing a stable classificatory reference point within 
the community. 
Similarly, we argue that those developing community data standards 
should not seek to create a complete solution that pleases every 
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researcher in the field. As research fields evolve, so too will the data 
standards. We have suggested that data are not simply carriers of 
meaning, and that converting raw data into scientific or social 
meaning is an active, context-dependent process. Data cannot be 
easily handed off from one scientist to another. Understanding what 
data mean is more than just a simple process of re-running some 
analyses. While metadata can help make sense of data sets, metadata 
alone will not resolve these complexities. Indeed, the metadata 
model for one project we are involved with includes a possible 297 
fields for each individual data point! Even with this level of detail, 
however, several of our interview informants suggest that this model 
is not sufficient to fully understand what took place in an 
experiment.  
Rather, we argue that it is more important to understand the roles 
that data play in communities and to support sharing the crucial 
contextual bits of information that data users will need. For 
example, an archival system for a “stream”-based research 
community will likely look quite different from one designed for an 
“event”-based community in that the context of data collection is 
vastly different. While understanding the data for an EE experiment, 
requires a detailed description of the experimental apparatus at the 
moment of testing, , understanding HIV/AIDS study data requires 
knowledge of the study population and how it changed over time. 
Some of this can be captured through documentation, but conveying 
certain tacit components might benefit from the communication 
tools mentioned above.  
There is also a crucial distinction in how data and contextual 
information might be stored for communities that use data to look 
for news, as compared with communities that use primarily 
confirmatory studies. This distinction is particularly important in 
considering the way in which anomalous data are treated. For 
confirmatory research, anomalies are generally considered to be 
“noise” and are often deleted or ignored as part of the standard data 
“cleaning” process that precedes analysis. In “news” research, on the 
other hand, these anomalies are at the center of the investigation and 
have the power to shift the nature of the research. In this way, 
communication of the context of data processing also emerges as 
central to the sharing process. 

6.3 Design recommendations and future work 
We have identified three specific CSCW design recommendations 
that stem from this work: 
(1) Support social interaction around data abstractions and the data 

themselves – We have shown that data sharing in the fields we 
have studied requires existing relationships in which sharing 
takes place. Understanding others’ data also requires the 
sharing of tacit knowledge about the creation and interpretation 
of the data. The significant recommendation here is that of 
shared abstractions. By enabling shared data abstractions, we 
believe the propensity to build relationships to foster sharing 
will be increased. Once these relationships are established, 
CSCW tools for data sharing must support interaction between 
those who created the data and those who wish to use it.  

(2) Do not rely on metadata alone – Metadata models are useful 
for understanding how data were collected, but they are an 
inherently incomplete abstraction of what actually took place in 
an experiment.  We believe that it is also necessary to support 
the sharing of supplementary materials that enhance the value 
of the data. Such materials might include indicators of data 
quality, design documents for an experiment, and clear 

indicators not only of what the data represent, but who 
collected them. Data have many meanings, and reputation 
matters a great deal. By supporting the sharing of information 
that enhances the value of data to both creator and user, the 
actual uses of data are better supported and sharing will be 
more likely to occur. 

(3) Support social and scientific roles of data – Existing data 
sharing systems focus heavily on support for scientific uses for 
data. We have illustrated that data serve a variety of other roles 
in communities of practice, and suggest careful observation as 
part of an iterative design process, so that all of these roles may 
be effectively supported.  

We have further identified two areas for future CSCW research in 
the area of supporting data sharing for communities of practice: 
(1) We need a better understanding of data abstractions. 

Specifically, we need to know how much information about 
data can be released without risk of losing what we have 
referred to as category 1 and 2 rents in various fields. Where 
earthquake engineers have suggested that graphical 
representations may be effective in their field, it is likely the 
case that this will not be the case in all fields or even within 
fields. Galison [16], for example, distinguishes between the 
“image” and “logic” traditions of high energy physics which 
rely on visual depictions of data in qualitatively different ways. 
Where the logic tradition views images as mere abstractions of 
“real” numeric data, the image tradition treats the same images 
as representations of the real world from which conclusions 
can be drawn directly. We believe that understanding how to 
represent data in ways that are useful to potential users without 
being too risky for creators is a major challenge of efforts to 
support data sharing.  

(2) We have argued repeatedly that metadata is not an effective 
long-term solution for the types of fields we studied in that it 
fails to capture the context and tacit knowledge of what 
happened. Metadata protocols further require tremendous 
amounts of information to be stored for each data point. We 
believe that metadata protocols have an important role to play 
in the sense that Bowker and Star [7] describe with regard to 
the ICD, but that finding more elegant ways to share contextual 
information is a much harder problem. 

7. CONCLUSION 
This paper has argued that data serve multiple roles in science and 
engineering work, and that these roles must be carefully considered 
in the design of CSCW systems to support research teams. It was 
shown that data sharing, particularly in fields with high task 
uncertainty, is a nontrivial problem because of the difficulty of 
communicating contextual information in the absence of 
interpersonal interaction. Gaining access to this contextual 
information, which is often tacit, requires an understanding of: 1) 
the nature of the data itself, 2) the scientific purpose of its collection, 
and 3) its social function in the community that created it. 
As we write this, we recognize that there are also new forms of data 
collection and aggregation that are only possible because of 
advances in computer networks. As the conduct of science becomes 
larger and projects involve more people, data sets also get larger, 
responsibility for them is diffused, and the social norms around how 
data is produced and consumed will change. The ATLAS high 
energy physics experiment, for example, consists of nearly two 
thousand scientists who are currently making plans to analyze 
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hundreds of terabytes of data, which will start becoming available in 
2007. Technologists can and should take an active role in the 
discussions surrounding these projects, but we must also recognize 
that understanding the roles played by data in these communities is 
crucial for facilitating effective sharing and collaboration. 
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