Accounting for System Behaviour:
Representation, Reflection and Resourceful Action

Paul Dourish

Rank Xerox Research Centre, Cambridge Lab (EuroPARC)
and Department of Computer Science, University College, London

dourish@europarc.xerox.com

Abstract ditional view structures the way in which interfaces are
A clear tension exists between the traditional process_Ori_designed, evaluated and studied. Indeed, the regularisation it
ented view of interface design and the emerging embodies extends to interface design methodologies and for-
improvisation-oriented view of interface activity, which ‘r“nahsms, a},nd can be seen, for example, in the use of formal
arises particularly from sociological investigations of com- automata” structures in the description of interface activity,
puter-based work. This paper attempts to address thidTom Statecharts to workflow graphs.

disparity and begin to bridge the gap, focussing on techno-The alternative view, which arises from sociological investi-
logical foundations and implications, in a way which makes gations such as those cited above, is at odds with this process
the insights of sociological investigations “real” in computa- orientation. Instead, it focuses on work as the improvised
tional design. management of local contingencies, and emphasises the way
It presents a novel approach to interface architectures, basel Which regularisations in the conduct of activity at the
on the use of explicit, causally-connected self-representa-'”terface arise out of individual moment_—to—_moment a_ct|on
tions in computational systems. These are treated a<rather than the other way around). In this view, work is not
“accounts” which systems offer of their own activity. The SO Much “performed” aachievedhrough improvisation and
paper traces some of the consequences of this approach bo!0ca@l decision-making.

for system design and interaction, and shows how it Clearly, there is a tension between these two perspectives;
addresses current problems in the design of flexible interac-and this tension becomes particularly prominent when we

tive systems. attempt to relate the findings (or even simply the tone) of
sociological investigations to the needs of interface design.
1 Introduction In this paper, my concern is to address this disparity and to

discuss a model of design which sits more comfortably with
Over the past ten years or so, the performance of computerthese investigations of improvised work. Our starting point,
based work has increasingly become a focus of investigatiorthen, is the contrast between process and improvisation.
for social scientists. Studies such as those of Suchmar
[1987] or Heath and Luff [1992] examine work-at-the-inter-
face with the same sorts of techniques and orientations whict
are applied to other forms of work, looking at the wider In trying to understand how a view of improvised work
social and organisational settings in which such work takesrelates to the needs of system design, we might start by
place, and the methods by which work is organised moment-rying to consider the “process” of improvisation itself. How
to-moment. We might expect that studies from a sociological does this process proceed, and how is it managed? Unfortu-
or anthropological perspective would complement those nately, these questions are unwieldy and ill-formed. Long-
from more psychological or system-oriented standpoints.term ethnographic investigations of system use seek to find
Instead, however, a tension has arisen between the generdetailed answers in very specific situation so we could
tenor of their conclusions and more traditional views of scarcely expect to set down general answers here. However,
interfaces and interface design. we can step back from the detailed descriptions and try to
draw out some general issues from the broad sweep of these
investigations.

1.1 Improvisation and Resources

The traditional view of interface work is strongiyocess-
based From this perspective, the function of the interface is _ _ _ _ _ _
to guide the user through the regularised, well-understoodOur starting point, then, is the view that the actions which

sequence of actions by which some goal is reached. This traconstitute work at the interface are locally organised; indeed,
the work process as a whole emerges from this sequence of

Appears in Proc. of Computers in Context ‘95, Aarhus, Denmark, August 1995

locally improvised actions. If our goal is to support this char- a relationship can be established, then information about the
acter of work, then a critical focus of design must be the state of the system can be used to understand and organise
provision of the information aesourceswvhich support and on-going working activity.

inform the decision-making process, rather than the formali-

sation and encoding of the process itself. Relevant state information is readily apparent in most

devices which we deal with day to day. Visual access, oper-
This notion of design around resources reflects a concern noating noises and observable behaviour all provide
simply with thehowwe go about system design—such as is information about the system’s state from moment to

a central concern of Participatory Design, for example—but moment; we can see and hear information about the state of
with theartifacts of that design process. It suggests a changedevices and mechanisms which we might want to use. In
in the structure of computational systems we build, and latersaying that, though, it's important to recognise the distinc-

| will introduce a model of computation which provides sup- tion between what we see and hear, and what we understand
port for this form of design. The principle of explicit design about device state. On their own, the various resources
around resources for local decision-making has beenaccessible to use aren't of much use; some other context is
observed elsewhere (e.g. [Dourish and Bellotti, 1992]; needed before they become meaningful.

[Dourish, 1993]; [Robinson, 1993]), but here | want to
explore it more explicitly, and follow through the conse-
guences for the interactive systems we design.

In particular, a user’s view of the relationship between the
state of the system and the state of the activity is rooted in
some belie—however incomplete, inaccurate or naive—
It would be foolish to imagine that the design process canabouthow the system workdhis is true for all devices
captureall the relevant information which informs and sup- which mediate or support our activity. For instance, the vari-
ports the improvisation of computer-based work. Even for ety of resources which support the activity of driving a car—
this most restricted domain, this would be not only impossi- such as the sound of the engine and the feel of the clutch—
ble, but wrong-headed. The factors underlying such situatedare useful only within the context of some model of how a
activity are unbounded, and derive not only from the system,car works, or at least simple understandings such as that of
but also from knowledge of social and organisational situa-the relationship between engine pitch and the rev count.
tions, from ongoing interactions with others, and so forth. Such an understanding allows a user (or driver) to interpret
Rather, what is proposed here is a model of design whichnot only the information, but also its consequences for their
reveals some information which may be of value; and which activity. By the same token, activity (particularly “situated”

is sensitive to the improvised character of use. So there aractivity) is organised around, and depends upon, these sorts
various reasonable questions wan ask. What kinds of of understandings; they allow us to mediate between ques-
information can systems provide which may be of value in tions like, “what is the system doing?”, “what do | want to do
supporting improvisation in various contexts? What does it next?”, and “how should | go about it?".

mean to take this as a focus of system design? How deep

change to our model of systems is implied? here do such understandings come from? Obviously, there

are many sources; and so everybody’s understandings are
| will begin by looking at important factors which shape how highly personalised. One of the most important sources is
people interact with systems, and in particular, how systemsour own everyday experiences, and the general pictures of
present models of their operation. | will then go on to con- structure and causality which we build up as a result of daily
sider the status of such models in existing systems, and hovinteractions with all sorts of devices. Other sources include
we can exploit them to bridge between the conclusions of useghe experiences of others, related through stories, advice and
analysis and the needs of system design. anecdotes; whole others again come from more formal learn-
ing and instruction procedures—courses, manuals, and so
forth. One other important source is essentialljural—the
everyday understandings of devices which we gain as a
When an individual uses a computer system to achieve soméesult of living in a world of Euclidean space, Newtonian
work, it is clear that an important resource in the improvised mechanics and the internal combustion engine.
accomplishment of their activity is their belief aboutdtate

2 Operation and State

e) - Clearly, however, one of the most important components of
of the system. What is it doing? How much has it done? s \\nderstanding is thetory the system tells about itself
What will it do next? These questions are based on systeMyg yresentation of its own operation and state (and the rela-
state, and shape the sequential organisation of action, but thﬁ'onship between the two). Certain aspects of such a
state information itself is not intrinsically valuable. A user is presentation are explicit, being part of the way in which we
generally engaged in accomplishing some other work with gt interact with a device: others may be more implicit,

the system, rather than performing a detailed study of itSq,ch a5 the noises which devices make in operation. Explicit
behaviour; and so what's really important to the user is the, implicit, though, they all contribute to the story.

relationshipbetween the state of the system and the state of
the work which the user is trying to accomplish. When such

However, computational “devices” (software systems) tend “understanding” of the way in which the underlying compo-
not to be physically embodied—a printer is embodied, but anents operate. Since the interface software is constructed
network filesystem is ndt So the presentation of this infor- with information about the semantics and the structure of the
mation—the story that the system tells about itself—arisesother system components to which it provides a user inter-
primarily at the user interfaéeAspects of the interface and face, it can accurately present a view of their operation. In
the way it behaves are suggestive of the system’s capabiliview of the strong connection between the application and
ties, and of the sorts of temporal or causal constraints actingnterface, I'll call this theconnectedstrategy. The second,

on it. Along with all the other factors cited above, these con- disconnectedtrategy is perhaps more common in modern,
tribute to the understanding the user builds up of the“open” systems. In this approach, the interface has little
systems’s operation and the relationship of its componentsunderstanding of the workings of other system components,
and activity to the work the user is attempting to perform. which may actually have been created later than the interface
Again, this presentation has both explicit aspeetg. the itself, and so it must infer aspects of application behaviour
iconic representations in direct manipulation interfaces) andfrom lower-level information (network and disk activity,
implicit ones €.g.the dynamic or temporal properties of memory usagegtc). Essentially, iinterpretsthis informa-
interactions). tion according to some set of conventions about application
structure and behaviour; perhaps the conventions that sup-

Although the implications are much broader, the work dis- . .
port a particular interface metaphor.

cussed in this paper is focussed very specifically on this
issue—how a system presents a story about its actions. IiHowever, there are serious problems with each of these
particular, 1 will be concerned with the way in which the approaches. The connected approach is the more accurate,
interface represents and conveys this information. Tradi-since it gives interfaces direct access to the structure of
tional interfaces may work hard to convey useful underlying components and applications. However, this
information about ongoing action; however, since traditional accuracy is bought at the expense of modularity and extensi-
interface design is so heavily organised around the “process’bility. Modularity is broken because there are now a variety
model, this doesn’'t address the problem of directly support-of complex semantic relationships between details of the
ing the improvised nature of working activity. Here, then, | interface behaviour and details of the application behaviour.
will focus particularly on the implications of telling a richer The two are linked by a web of complex interconnections,
story at the interface, and doing so precisely to move towardanaking it very difficult to change one without necessitating

a model of design motivated primarily by situated accounts changing the other. This is regarded as bad practice; but per-
of everyday activity. haps, if it were the only problem, it would just be the price
we have to pay for effective interface design. Unfortunately,
it's not the only problem. Perhaps more criticadlytensibil-

ity is also broken. Because of the complex relationship
between interface and application, a new application cannot
be added later once the interface structure is in place. The
3 Connection and Disconnection interface and application cannot be designed in isolation, and

)))) S0 a new application cannot be added without changing the
Given the importance of this aspect of the interface, we must s nas of the interface software. The result is that this solu-

ask, what is the relationship between the presen'E;';ltion th&ion is simply inappropriate for generic interfaces, toolboxes
interface offers and trectualoperation of the system? How 54 jipraries, which provide standard interface functionality
is this relationship structured, and how is it malntamed?toarange of applications.

These are important questions, and they lead us to identify a _ _
problem in maintaining this relationship—a problem of So what of the disconnected approach? The problem here is

connection that, while it is modular and extensible, it is not reliably

. . .) _ . accurate. The relationship between the low-level informa-
The issue here is not how information about system activity ion it uses and the higher-level inferences it makes is

should be presented to the user, but rather, how the interfacgommex and imprecise. Also, there are problems of synchro-

component can find out what's going on in the first place. yisation. Because the representations of activity which the
There are essentially two ways that an interface can discovegc-onnected approach manipulates are implicit, its infer-

information about the activity of underlying system compo- onces can be consistent with the available information but
nents. The first is that it may be constructed with a built-in out-of-step with the actual behaviour of the system. This
approach, then, is largely heuristic; and so it's accuracy
cannot be relied upon, particularly for detailed information.

Before considering how systems might embody and manip-
ulate such “stories”, | will first discuss how they arise in
traditional systems.

1. Or rather, the embodiment is generally not a part of the user’s

world. Essentially, the connected approadmsconnected, and the
2. Note the familiar corollary—that any aspect of the system which disconnected approacht@ disconnected.

reveals informatiotis part of the interface.

client

P

requests and

/ responses

abstraction
/ barrier \
revealed .
structure
“meta-level”

interface
a. b.

FIGURE 1: (a) Clients interaction with traditional black-box abstractions through standard abstraction barriers.
(b) Open implementations also reveal inherent structure.

—

3.1 Example: Duplex Copying presents system activity purely in terms of the routine—or

Let's pause to consider an example as a way of groundind"’hen its ponnecti_on to the underlying system service gives_ it
this problem. Imagine a digital photocopier. It offers various "0 More information than that—then we encounter the famil-
familiar system services—such as copying, scanning, print-ia7 tension between technological rigidity and human

ing, faxing—as well as other computationally-based flexibility.

functions, such as image analysis, storage/retrieval and so

forth. A generic user interface system provides the means ta} Open Implementations

control these various services, perhaps remotely over a
network. A potential solution to this general problem is to be found in

))) another area of computer science where similar problems
Somebody wishes to use the copying service to copy & Papefjith the mappings between high-level descriptions and

document. The paper document is 20 pages long, printeqg,yer.jevel actions have ariséBpen implementatior&ic-

d_()uble55|ded|(?. 10 sheets), and the user requests 6 double-;51e5 1992] arose originally as an approach to the design of
sided ("duplex”) copies. Half way through the job, the copier ,oqramming languages, balancing elegance and descriptive
runs out of paper and halts. power in the language against efficiency over a range of spe-

What state is the machine in? How many copies has it com<ific implementations. More generally, however, it has been
pleted? Has it made 3 complete copies of the document, oRPplied to a range of areas of system architecture and design
has it made 6 half-copies? The answer isn't clear; in fact,Which share a range of common problems, focussed around
since copiers work in different ways, it could well be either. the issue o@bstraction.

However, the critical question is here concerns the 'nterface*TraditionaIIy, the notion of abstraction, as derived from

not the copiemer se How does the interface component yaihematics, has been one of the most powerful tools in the
react to this situation? What does it tell the user is the state.reation of software systems. The “black box” abstraction
of the device? And, given that this is a generic interface COM-(as illustrated in figure legncapsulatesertain structures
ponent which was constructed separately from the copier'syng pehaviours and makes them available to other system
other services, how does the interface componefr;tlmmm components through abstraction barrier The barrier iso-
what to tell the user, or how to find out the state* lates the implementation of the abstraction from the

This situation doesn't simply arise from “exceptional” cases, components which use it (itientg. This separation serves
such as empty paper trays’ paper jams and the like. It alsdwo functions. First, it makes it possible to reuse software
occurs at any point at which the user has to make&fammed Components without having to understand all the details of
judgementbout what to do next, such as whether to inter- their construction. Since the developer of the client software
rupt the]Ob to allow someone else to use the machineneed onIy understand how to use the abstraction which the
urgently, whether it's worth stopping to adjust copy quality, Software presents in order to make use of it, much larger and
and so forth. Even the decision to go and use a differentmore complex software systems can be built by combining
copier requires an assessment of the current machine’@nd reusing component modules. Abstraction aidsnie-
behaviour. What these situations have in common with theageability of large problems. Second, it allows the client
exception case of an empty paper tray is that, as users, W§oftware to be independent of the details of the abstraction’s
must re|y on the interface to Support and inform our action, implementation. Since the client refers onIy to the elements
even when we find ourselves Stepping outside the routinisecpf the abstraction itself, rather than to elements of the imple-
“process” which the interface embodies. When the interfacementation, any implementation which accords to the same

abstraction could be used. So, as long as well-definedwhich it provides (the manageability principle). There are
abstractions are the only point of contact between softwaretwo ways in which this is achieved in an open implementa-
modules, new pieces of software can be substituted for oldion. First, a standard or default interface is provided; that is,
ones, and so systems can be maintained and improved in the interface to the meta-level representaiagmentghe
reliable, modular way. Abstraction gives us a way of defin- traditional abstraction barrier, rather than replacing it. Sec-
ing and managingquivalence ond, the view into the implementation revealsititserent

This model of abstraction is based on one fundamental prin—StrUCture’ rather than the details of a specific implementa-

L . tion. It does not simply provide a set of “hooks” directly into
ciple: that, as long as the abstraction offered by a software[he implementation; that would both constrain the imple-
module is accurately maintained, the details of how that L .

mentor of the abstraction and require too much of the

abstraction is implementedb not matterto other system implementor of the client. Instead, it provides a rationalised

components. Indeed, by this principle, trshouldbe hid model of the inherent behaviour of a system offering its par-
den, to encourage independence between modules, . ; S o N
. o o ; ticular functionality. Clearly, this view of what is “inherent
However, this assumption is becoming increasingly open to. . o L .
. . : : is a normative one; typically, it is conditioned by an under-
guestion. The problem is that the abstractions we use in soft- . P ;)
. . . standing of the specific failings of standard abstractions in

ware engineering are not the pure abstractions of

: : . some particular domain. | will return to this issue later. For
mathematics. Instead, they are simply ¥fgble aspects of . . : . .
o : Lo S the moment, though, | will consider how this revised view of
underlying implementationsand, like icebergs floating in

) : o . abstraction can be used to solve the sorts of problems in
the sea, the structure of what lies hidden below is just as crit- ; : .
. - interface structure which were raised earlier.
ical to how we should treat them as the visible aspects above.
The structure of the implementation has important conse- _)
quences for the way in which clients will use the abstraction.5 Accounting for System Action
What's more, aspects of the implementation will always
show through the abstraction barrier, revealing themselves i
size limitations, performance limitations and dynamic prop-

erties of the module.

pust as open implementations address problems of connec-
tion between system components, we can use the same
approach to address the “interface connection” problems
related earlier. So consider an alternative view of an open
The open implementation approach is shown in figure 1b.implementation’s reflective self-representation. Consider it
Here, a system provides not only a standard interface to theys an “account” which a system or module presents of its
abstract structures and behaviours offered by this modulepown activity. A self-representation, it is generated from

but also a separate interface to ithigerent structureof that ~ within the component, rather than being imposed or inferred
module. This interface allows clients to view aspects of the from outside; reflective, it not only reliably describes the
structure ihtrospectior) but also, crucially, to make modifi- state of the system at any given point, but is also a means to
cations {ntercessiojr to “reach in” to the implementation affect that state and control the system’s behaviour.

and adapt it to the needs of specific clients. It provides access)))
to a computational “meta-level’, which talks not about what SUCh an account has a number of important properties. It is
the system does, but about how it does it. This approach ha&n €xplicit representation—that is, computationally extant
been fruitfully applied to a range of areas of system develop-a"d manipulable within the system. Itis, crucigplgrt of the
ment, including the design of the Common Lisp Object Systemrather than simply being a story we might tell about
System [Bobrovet al, 1988] and the Silica window system th€ systém from outside, or a view we might impose on its
[Rao, 1991]. A full treatment of the technical aspects and actions. It is @ehaviouralmodel, rather than simply a struc-

consequences of this approach is too long to present here—f[ural one; that is, it tells us how the system acts, dealing with

the interested reader is referred to Kiczatesl. [1991]. issues of causality, connection and temporal relationships,

However, certain aspects are worth discussion here. rather than just how the system’s elements are statically
related to each other. However, the account itself has struc-

The essence of this approachcsmputational reflection tyral properties, based on defined patterns of (behavioural)
[Smith, 1982]—the notion that a system maintains and hasrelationships between the components of the account (per-
access to a representation of its own behaviour. The cruciahaps relationships suchm®cedescontrols invokesand so
element of such reflective representations is that they argorth).

causally connectedo the behaviour they describe. Thus,

changes in the system are reflected in changes in the reprd/0St importantly, we place this requirement on the

sentation; and, critically, the behaviour of the system can be@ccount—that it “accounts for” the externally-observable

changed by making changes to the representation. states of the system which presents it. The behavioural
description which the system provides should be able to

At the same time as we introduce these ideas, it is importangxplain how an externally-observable state came about. This

to retain various important properties of the existing notion critical feature has various implications, which will be dis-
of abstraction, principally the conceptual simplification

cussed shortly. First, however, let's return to the duplex to accounts; but they may have particular consequences for a
photocopying example. use-oriented view.

One important issue raised in the description of open imple-
5.1 Accounting for Duplex Copying mentations was that they reveal aspectsltdrent structure

If we adopt this notion of *accounts”, then the copy service rather than the details of specific implementations. Just as
(which provides copying functionality in the copier, and that was critical to retaining the conceptual simplification

which lies below the interface component alongside other@nd separation which is so valuable in abstraction, it is also

system services) provides not only a set of entry points to itscritical to the value of accounts. After all, there is little ben-

functionality—the traditional abstraction interface, often Efitin separating two system components if each is forced to

called an “Application Programming Interface” or APl—but understand every detail of the other to use it. Instead, we

also an account, a structured description of its own behav-EXploit the system’s inherent structure and present a rationa-

iour. The API describes “what the service can do™ the !ised view of the behaviour of a module. The inherent
account describes “how the service goes about doing’ it". jtStructure captures elements such as the relationship between

describes, at some level, the sequence of actions which thé®€ components presented at the abstraction barrier; aspects
service will perform—or, more accurately, a sequence of Which are implied by the existence of those elements and
actions whichaccounts for the externally-observable states their roles in the abstract behaviour described. The account
of the systemSo, if the interface has access to details not St&nds in a two-way semantic relationship to the implemen-
only of the functionality offered by the copying service, but t@tion itself; this much is guaranteed by the causal
also an account of how it operates in terms of page Copyingconne_ctlon. But that relationship is not a direct oneTto-one
sequences and paper movement, then it can provide a us&f@PPing between the elements of the implementation and

with appropriate information on the state of the service as it!e élements of the account. We _c??n perhaps think of an
acts, and continuation or recovery procedures should it fail. ccount as being a particutgistratior of the implemen-
tation; a view of the implementation which reveals certain

So, this notion of reflective self-representations as aspects, hides others, and highlights and emphasises particu-
“accounts” provides a solution to the problems raised in the|ar relationships for some specific purpose.

duplex copying example. More importantly, in doing so, it
also provides a solution to the connection problem raised in
section 3. The interface module does not havefés activ-

ity information (as was necessary with the disconnecte
interface strategy). Instead, it can present information about™ ! Y -
the system accurately because the information it present§ircumstances. Imagine, for instance, that the “copying”
comes directly from the underlying components themselvesdccount (_)f se_zctlon_ 5.1 presented, for S|mpI|f|_cat|on, a model
(where it is causally connected to their actual behaviour). At°f OPeration in which only one page was being processed at
the same time, information about the structure and semantic&"Y moment. However, during normal operation, the system
of those components is not tacitly encoded in the interfaceMidht actually work on several pages at once—indeed, even
module (as it was in the connected interface strategy).fa'rly simple copiers typically do this in order to increase
Instead, this information is explicitly made available from throughput. This would be perfectly vabs long asor any

the components themselves. It is manifested in accounts thefPServable intermediate state—that is, any point where a
offer of their actions which the interface module can use, USer (or user interface) might intervene in the process, either
preserving the modularity and extensibility properties of a through choice or necessity—the system can put itself into a

disconnected implementation. This balance between theState which is accounted for purely in terms of the model
connected and disconnected approaches is maintaine@ffered.

through the two critical aspects of the reflective approach: Naturally, this begs the question: what states are observable?
explicit representationandcausal connection There is no absolute answer to this question; not only does it

To understand the ways in which accounts can support interdePend on the structure of an implementation, but it also

face activity, we first have to look in more detail at the depends on theeedsof the user in some particular situation.
properties of accounts themselves. This reflects a tension in the account betwaecuracyand

precision The account must, at all times, be accurate; that is,
) in its own terms, it must correctly represent the state and
6 Exploring Accounts behaviour of the system. However, this accuracy may be

Accounts and reflective self-representations are essentic'zlllya(:hlev8d by relaxing its precision, the level of detail which

the same thing; my use of the term “accounts” connotes a _ S
particular perspective on their value and use. By the same> My use of this term, and the flexibility it implies, draws on

. . . rian Smith’s treatment of representation, and especially computa-
token, the properties of reflective representations also apply;;;-, representation. [Smitforthcoming

So the account need not be “true” in an absolute sense; it is
accurate or precise for the purposes of some specific use.
g/ndeed, it is possible that the system will have to go to some
{engths to maintain the validity of the account in particular

the account provides. Relaxing precision allows the systemindeed, the structure of the account clearly constrains the
more flexibility in the way it operates. The invariant prop- sorts of modifications which are allowed, whether these are
erty, though, is that agfccountability that the system be able changes to the action of the system itself, or—more com-
to account for its actions in terms of the account, or that itmonly, perhaps—are manipulations of the internal
should be able to offer an account which is not incompatible processing of specific jobs in progress.

with previously offered accounts. In these terms, account-
ability is essentially a form afonstructed consistencit is

this notion of accountability, based in the direct relationship

between action and representation, which is at the heart oprevious sections used an example of a duplex copying task
this proposal, and which distinguishes accounts from simply as an illustration of the value of an account-based approach
simulations. to system architecture. The copying example illustrates one

However, accountability is by no means the only significant W& ©f using these representations. At the system level,
property which deserves discussion here. Another set ofdccounts can provide a critical channel of communication
properties revolve around the fact that accounts are inherP€tween system components or modules, and in particular

ently partial. An account selectively presents and hides oﬁerasolytion to the problem qf conn_ection_in generic inter-
particular aspects of a system and its implementation.faces' This use of accounts is derived directly from the

Indeed, the account isaftedfor specific purposes and uses. 9€neral perspective of open implementations, and the use of
By implication, then, it is alswariable the level of detail causally-connected self-representations to address failures in

and structure is dependent on particular circumstances and{1® notion of “abstraction” in software engineering. As such,

needs, as well as the state of the system itself at the time. ThiliS use of accounts focuses on issues in the architecture of

is another area where the balance between accuracy and préteractive systems.

cision becomes significant. This variability must also depend However, it’s interesting to examine a more radical use of
on the recipient of the account, whichdsectedtowards accounts—their use at theser level The goal here is to
specific other entities, be they system components or usersaddress more directly the disparity which was highlighted in
The whole range of ways in which accounts are only par-the introduction, between the improvised, resource-based
tially complete and are designed for particular circumstancesnature of working and the process-driven aspect of interface
(in a way which reflects the balance of needs between thejesign. The accounts model is an attempt to address this by
producer and receiver of the account) is reflected in the usehinking of computational representations as resources for
of the term “account”. Included in this is the principle that action. On the one hand, the account mechanism builds
variability is dynamic; the account is the means by which directly on the importance of the “stories systems tell” about
structure and information can be gradually revealed, accord+heir activity; and on the other, the causal connection and
ing to circumstances. To draw further on the metaphoric principle of accountability (or constructed consistency) sup-
structure of this proposal, these properties can be thought oports the variability of use. Accounts provide a

as embodying properties similar to those of the textipi- computational basis for artful action.
ent desigrin conversation analysis; the crafting of specific

utterances for a particular recipient or audience. This level of
specificity also emphasises that accountsaaalable for
exploration rather than being the primary interface to a Let's consider a second example—a real-world interface
system component. We don’t have to deal in terms of theproblem with its origins in a breakdown of abstraction.
account at all times, but we can make appeal to it in order tolmagine copying a file between two volumes (say, two disks)
understand, rationalise or explain other behaviour. under a graphical file system interface. You specify the name
of the file to be copied and the name of the destination file;
you start the copy and a “percentage done” indicator (PDI)
appears to show you how much of the copy has been com-
pleted. This generally works pretty well, especially when the

i . ; two volumes are both connected to your own machine. But
tem’s action, but stands in a causal relationship to it. . L

.)) consider another case, which isn’t so uncommon. You want

Changes in the system are reflected in changes in the repr

4 ; " Pl copy a file from a local volume to a remote volume on a
sentation, and vice versa. The critical consequence of this is

that the account is computationaliffective—an account nearby fileserver over a network. This time, when you copy

1 1 0,
provides the means not only to describe behaviour, but alsc;[he file, the PDB appears and fills up to 40% before the

. . .. system fails, saying “remote volume unavailable”. What's
tq qontr_ol it. The link betwe_en the account and the a_c_t|V|t_y 'S happened? Was 40% of the file copied? Did all of the file get
bidirectional. The account is a means to make modifications : !

:) : . 40% there? Most likely, none of the file ever reached the
to the way in which the system works—it provides the terms

. . e . remote volume; instead, 40% of it wasdon the local disk
and the structure in which such modifications are described. . ;
before the machine ever tried to reach the remote volume.

Accounts and Users

7.1 Example: File Copying

There is one final property which is important here. Again as
derived from reflective self-representations, an account is
causally connectetb the behaviour it describes. It is not

simply “offered up” as a disconnected “story” about the sys-

Name flow strategy name mapping Name

\ strategy\

SHEL]

FIGURE 2: A structural model of the file copying example in terms of data buckets and the connections
between them. Connections between elements of this model are the points at which strategies and policies can
be identified.

What's more, there’s no way to télbwthe remote volume system is determined by the strategies used at the connection
is unavailable; on some systems, this might even mean yopoints between the data buckets. There are a wide range of
don’t have your network cable plugged in (and so the remotemechanisms which could be used:

volume wasnever available). Finally, a failure like this
makes you wonder... just what's the PDI telling you when
thingsare working?

the flush on overflowstrategy. A bucket accumulates
data until it’s full; at that point, all the data in that bucket
is “flushed” into the next bucket;

In general, there’s simply no way to see at which point in the |
copy failure occurred, since the interface presents no notion
of the structure or breakdown of behaviour and functionality
that’s involved. In fact, the notion of a partially-completed
copy makes little sense when offered in the interface, sinces thechunking on overflowtrategy. A bucket accumulates
the interface doesn’t offer terms in which to think about data until it's full; at that point, a fixed amount of data (a
what's going on. What does it mean when the copy is par- “chunk”) is flushed to the next buffer to make space;
tially completed, and when the PDI indicates there’s more to |
do?

the trickle on overflowstrategy. A bucket accumulates
data until it's full; at that point, new incoming data dis-
places equal amounts of old data into the next bucket;

the explicit flush strategy. A bucket accumulates data
until it is explicitly told to flush it all to the next bucket.

We can begin to address this problem by looking for the thjs js by no means intended to be an exhaustive list. Rather,
inherent structure of the e>’<ample. There are various places; s intended to illustrate the wide range of strategies which
where data can reside—let’s call theiaéa bucketsSome of 4|4 e used. It can be seen that the choice of strategies at

them, perhaps, are files; others may be areas of temporark,c point—and there may be different strategies at each
storage. The network itself, for instance, is a data bucket buboint—characterises the flow of data from one end to the
not a file. In addition, there are caches, network interface jiqr.
buffers, and so on. The details are not important; they're spe-
cific elements of an implementation, rather than inherent We can map this inherent structure onto various specific sit-
features. The essential point is simply that there are somdlations, such as the case of networked file copying. There is
number of these data buckets; that some are files and som&ome number of data buckets, corresponding to the various
are not; and that the process of Copying a file involves Con-relevant entities in the system. Entities mlght include the
necting a series of them together to get data from one p|acéi|eS themselves, the filesystem cache, the network interface,
to another. So we end up with a structure rather like that inthe network itself, and so on. The precise set of elements
figure 2. involved is not directly important; the inherent structure, and
o its relation to the implementation, is of much greater signif-
In this figure, we see a set of data buckets connectedcance and the existence of a bucket is often more important
together, indicating the flow of data between two points. {han jts identity. When the particular configuration in some
Some of these buckets (the end points) are files; they exish;yen situation is available for exploration, we can begin to
independently of the particular copy operation, and are dis-5ng\yer questions about the interface and system behaviour.
tinguished with na_lmés The other data buckets are j,q 5 the set of flow strategies characterises the flow of data
temporary intermediate ones. The flow of data through thethrough the system as a whole, so the flow can be controlled
through the selection of strategies; and the behaviour of the
4. 1n fact, naming is a separate issue in the account which a systemhecentage-done indictor is connected to (characterised and
povdes nths Gampc s ol ol U Sorce it (_1LCLed £t pot i s sequence.where 1 1
exists there. However, the issue of naming is not discussed in this “attached”. Should it be attached towards the left-hand side,
example. for instance, then it will tend to reflect only the local process-

ing of data—not its transmission across the network, whicha piece of software—ameified or rendered explicit in this

is often of greater importance to the user, and which causednodel. This accords to a general principle in the engineering
the failure in the case we were considetittpwever, with- of large, flexible software systems, the separatiam&tha-

out any terms of reference, it isn't possible to talk about nism (the means for accomplishing action) gralicy (the
“where” the indicator is attached—far less to move it around. means of deciding what action is appropriate). However, it
When needed, then, the account provides these terms of refalso extends this model, since policies are given as structured
erence; an explicit structure within which specific actions behavioural models. This means that the system can break
can be explained, and their consequences explored. Thislown and “reason about” a policy. An account is not simply
structure—one within which exploration and improvisation a name for a way of doing something, but describes the pat-
can be supported—is not supported by traditional interactivetern of relationship between its constituent activities; and
software structures which make details inaccessible behindhis is critical to the way it's used.

abstraction barriers.

The basic problem reflected in this example arises directly8 Perspectives and Current Work
from the traditional view of abstraction discussed in section _)
This paper has used some simple examples to show the way

4—in this case, the use of abstraction inside the file system,

It arises because file system operations are characteriself! Which accounts can be used to solve problems in system
purely in terms ofead andwrite operations. This takes no interaction. In particular, these problems have arisen because

account of whether the operations are performed locally ortraditional notions of representation in computational sys-

remotely, and the consequences of such features for the walfMS Provide poor support for the management of

in which the interface should behave. The abstraction hascontingencies that arise in the course of conducting some

hidden the details from higher levels of the system, but those?CtiVity. Whether we look at the interactions of people with
details turn out to be crucial to our interactfons systems or of system components with each other, we find

problems which arise from the way in which conventional
This example illustrates a number of general points on themodels of abstraction break down.
nature and use of accounts. First, consider the relationship)] o
between the model and the system itself. The model arisedt’s important to recognise that a reflective representation is

from the structure of the system; but it is aésobodied in still a representation; it is still a normative description of
the system. It is not imposed from outside. It is general, in SOMe system. An account is a designed artifact, and it incor-

that it does not reflect the details of a particular implementa-POrates a set of assumptions and expectations about usage
tion, but rather reflects the inherent structure of all (or a Paterns in exactly the same way as other artifacts do. The
range of) implementations. It is a gloss for the implementa- K€Y difference, though, is in the way in which the represen-

tion, explicitly revealing and hiding certain features deemed t@tion is related to the system or activity it represents. In a
“relevant”. conventional system, not only is the representation of system

action partial, but so is the way in which the representation
Second, consider the relationship between the account an@nd action are connected. In effect, this constrains not only
the activity. The causal relationship renders the accountthe information which the representation can reveal, but also
“true” for external observation; because it is of the systemthe ways in which the representation can be used.

itself, rather than simply of an interface or other external)]])
component, it is reliable in its relationship to the actual The account mechanism addresses this relationship between

behaviour represented. However, the level of detail it pre- representations and the behaviours they represent, and opens

sents reflects the balance between accuracy and precisior!P the way in which these representations can be used. This
while it accurately accounts for the behaviour of the system,S One step on a path towards a model of computational
it only reveals as much as is necessary for some particulaf€Sign which is rooted firmly in studies of the nature of
purpose—in this case, explaining the curious “40% completework'ng activity, and in attempting to understand their

then 100% failure” behaviour. implications not only for the way in which design is done,

_ _ _ o but also for the nature of the artifacts which are designed.
Third, consider the importance of explicit references to The reflective approach is also being employed in the design
“strategies”. Strategies—normally implicit in the creation of of Prospero, a toolkit for CSCW applications [Dourish,
1995].

5. Note a second extremely confusing—and potentially danger- : - : o .
ous—failure which can result here. The PDB can indicate 100% Ongoing activities focus on other issues arising from this

copied, before the remote volume complains that it's full after model of representation and interaction. For instance, noth-
writing only 40% of the file. Which report should be trusted? ing has been said here of the issues surrounding where an
6. In fact, problems of this sort can be seen in a wide range of sys-account originates. Like the structure of the account, these
tems where network filestores have been grafted on within the =~ might also have their origins in understandings of how users
abstractions designed for local filestores, because “you needn't approach, use and understand systems. In the case of photo-
worry if the file is local or remote”. copying, we should perhaps look to a notion of “naive

xerography” as providing a starting point for our description here, provide a means by which users can more accurately
of how systems operate. The case of hybrid electronic/match the functionality of a system or device to the immedi-
mechanical systems, such as photocopiers, is particularlyate requirements of the practical accomplishment of their
interesting because of their embodied nature. Photocopiersvork; and more generally that they point the way towards a
make noises, produce output, and occasionally exhort usersleeper relationship between the insights of observational
to open them up and muck around inside; a computationalanalysis and the practice of systems design.

account is no use at all if it is directly belied by the clear and

obvious path of paper through a machine. Acknowledgments

It's critical, though, to recognise and maintain the distinction Many colleagues have contributed to these ideas and to this
between accounts and mental models of device behaviour—Presentation of them. | am particularly indebted to Annette
the kinds of understandings of the world which people bring Adler and Austin Henderson, who helped me start thinking
to bear when interacting with systems and devices. Clearly 2Pout these issues in the first place, and to Bob Anderson,
the two are strongly related. However, they exist on different Graham Button, Beki Grinter, Brian Smith and Randy Trigg
sides of the interface. We distinguish betweeaamount of ~ for comments, inspiration and help in the development of
system behaviouas offered by a system, and theder- this paper.

standing of system behavioformed by a user in response.
Accounts are explicit technological artifacts—computa-
tional representations which stand in special semantic[Bobrow et al 1988] Daniel Bobrow, Linda Demichiel, Richard

relationships to the systems they describe. Gabriel, Sonya Keene, Gregor Kiczales and David Moon,
“Common Lisp Object System Specificdtid3J13 Document 88-
002R, June 1988.

9 Summary and Conclusions [Dourish and Bellotti, 1992] Paul Dourish and Victoria Bellotti,

)) o . “Awareness and Coordination in Shared Workspa¢aec. ACM
There is a tension between the traditional process-orientedconference on Computer-Supported Cooperative Work CSCW
view of user interfaces and interaction—interfaces as cur-‘92, Toronto, Canada, November 1992.
rently designed—and the view of interface work as the poyrish, 1993] Paul DouristCulture and Control in a Media
locally-improvised management to contingencies which hasSpace” Proc. Third European Conference on Computer-Supported
been emerging particularly over the past ten years or so. Thi€ooperative Work ECSCW93, Milano, Italy, September 1993.
tension becomes particularly .troublesom_e Wh_en we attemp{pourish, 1995] Paul DouristiPeveloping a Reflective Model of
to incorporate some of the insights of sociological investiga- Collaborative Systems’ACM Transactions on Computer-Human
tions into system design. | have argued that addressing thignteraction, 2(1), 40-63, March 1995.
problem means not only rethinking the way in which we go [Heath and Luff, 1992] Christian Heath and Paul Lt8f/stem Use
about systems design, but also a new approach to the natu@d Social Organisation” in Button (ed.), “Technology in
of the systems which we design. In taking a focus on theWorking Order: Studies of Work, Interaction and Technology”,
resources which support improvised work at the interface, |Routledge, 1992.
have been concerned here with how users understand systeff§izcaleset al 1991] Gregor Kiczales, Jim des Rivieres and Daniel
activity, and in particular with the way that systems and Bobrow, ‘The Art of the Metaobject ProtocpIMIT Press,

. Cambridge, Mass., 1991.

devices find and present such information. This reveals a

problem in the structure of interactive systems—a problem [Kiczales, 1992] Gregor Kiczales,Towards a New Model of
of connectiorbetween system components Abstaction in Software Engineerihdroc. IMSA'92 Workshop on

Reflection and Metalevel Architectures, Tokyo, Nov 4-7, 1992.
Accounts are causally-connected representations of systenRao, 1991] Ramana Ratmplementational Reflection in Silica”
action which systems offer as explications of their own activ- Proc. European Conference on Obiject-Oriented Programming
ity. They are inherently partial and variable, selectively ECOOP'91, Geneva, Switzerland, July 1991.

highlighting and hiding aspects of the inherent structure of [Robinson, 1993] Mike RobinsorfDesign for Unanticipated

the systems they represent, but, being views of the systense”, Proc. Third European Conference on Computer-Supported
from within rather than without, they are reliable representa- Cooperative Work ECSCW93, Milano, Italy, September 1993.
tions of ongoing activity. A system is held accountable to its [Smith, 1982] Brian Smith, Reflection and Semantics in a
account; that is, the account must adequately “explain” theProcedural Languade MIT Laboratory for Computer Science
observable states of the system which offered it. Report MIT-TR-272, 1982.

[Smith, forthcoming Brian Smith,“On the Origin of Objects;
MIT Press, Cambridge, Masforthcoming.

References

This is an attempt, then, to look at the balance in interface

design betweenbstractionanddetail; on the one hand, the) .

abst?action and generalisation which is inherent in the ro_[Suchman, 1987] Lucy SuchmaRlans and Situated Actions: The
9 . p problem of human-machine communication”Cambridge

cess of software construction, and on the other hand, thejniversity Press, Cambridge, UK, 1987.

detailed moment-to-moment activity which makes up the

work at the interface. The hope is that accounts, as described

	Accounting for System Behaviour: Representation, Reflection and Resourceful Action
	Paul Dourish
	Rank Xerox Research Centre, Cambridge Lab (EuroPARC) and Department of Computer Science, Universi...
	dourish@europarc.xerox.com
	1 Introduction
	1.1 Improvisation and Resources

	2 Operation and State
	3 Connection and Disconnection
	3.1 Example: Duplex Copying

	4 Open Implementations
	5 Accounting for System Action
	5.1 Accounting for Duplex Copying

	6 Exploring Accounts
	7 Accounts and Users
	7.1 Example: File Copying

	8 Perspectives and Current Work
	9 Summary and Conclusions

