
or
ng

th
n
e
a-

s
t

e
 b
 
a

t
ti

r-
i

e
e
n

c
s
ts
e

o

 i
o

 t

re
on it
 for-
mal
ty,

ti-
cess
ed
 way
e
n
ot

ves;
we
of
gn.
 to

ith
nt,

k
 by
w
rtu-
g-

find
ld
ver,
 to
ese

ch
ed,
e of

Accounting for System Behaviour: 
Representation, Reflection and Resourceful Action

Paul Dourish

Rank Xerox Research Centre, Cambridge Lab (EuroPARC)
and Department of Computer Science, University College, London

dourish@europarc.xerox.com
Abstract

A clear tension exists between the traditional process-
ented view of interface design and the emergi
improvisation-oriented view of interface activity, which
arises particularly from sociological investigations of com
puter-based work. This paper attempts to address 
disparity and begin to bridge the gap, focussing on tech
logical foundations and implications, in a way which mak
the insights of sociological investigations “real” in comput
tional design.

It presents a novel approach to interface architectures, ba
on the use of explicit, causally-connected self-represen
tions in computational systems. These are treated 
“accounts” which systems offer of their own activity. Th
paper traces some of the consequences of this approach
for system design and interaction, and shows how
addresses current problems in the design of flexible inter
tive systems.

1 Introduction

Over the past ten years or so, the performance of compu
based work has increasingly become a focus of investiga
for social scientists. Studies such as those of Suchm
[1987] or Heath and Luff [1992] examine work-at-the-inte
face with the same sorts of techniques and orientations wh
are applied to other forms of work, looking at the wid
social and organisational settings in which such work tak
place, and the methods by which work is organised mome
to-moment. We might expect that studies from a sociologi
or anthropological perspective would complement tho
from more psychological or system-oriented standpoin
Instead, however, a tension has arisen between the gen
tenor of their conclusions and more traditional views 
interfaces and interface design.

The traditional view of interface work is strongly process-
based. From this perspective, the function of the interface
to guide the user through the regularised, well-understo
sequence of actions by which some goal is reached. This
Appears in Proc. of Computers in Context ‘95, Aarhus, De
i-

-
is

o-
s

ed
a-
as

oth
it
c-

er-
on
an

ch
r
s
t-

al
e
.
ral

f

s
d

ra-

ditional view structures the way in which interfaces a
designed, evaluated and studied. Indeed, the regularisati
embodies extends to interface design methodologies and
malisms, and can be seen, for example, in the use of for
“automata” structures in the description of interface activi
from Statecharts to workflow graphs.

The alternative view, which arises from sociological inves
gations such as those cited above, is at odds with this pro
orientation. Instead, it focuses on work as the improvis
management of local contingencies, and emphasises the
in which regularisations in the conduct of activity at th
interface arise out of individual moment-to-moment actio
(rather than the other way around). In this view, work is n
so much “performed” as achieved through improvisation and
local decision-making.

Clearly, there is a tension between these two perspecti
and this tension becomes particularly prominent when 
attempt to relate the findings (or even simply the tone) 
sociological investigations to the needs of interface desi
In this paper, my concern is to address this disparity and
discuss a model of design which sits more comfortably w
these investigations of improvised work. Our starting poi
then, is the contrast between process and improvisation.

1.1 Improvisation and Resources

In trying to understand how a view of improvised wor
relates to the needs of system design, we might start
trying to consider the “process” of improvisation itself. Ho
does this process proceed, and how is it managed? Unfo
nately, these questions are unwieldy and ill-formed. Lon
term ethnographic investigations of system use seek to 
detailed answers in very specific situation so we cou
scarcely expect to set down general answers here. Howe
we can step back from the detailed descriptions and try
draw out some general issues from the broad sweep of th
investigations.

Our starting point, then, is the view that the actions whi
constitute work at the interface are locally organised; inde
the work process as a whole emerges from this sequenc
nmark, August 1995.



 the
nise

st
er-
de
to
e of
 In
c-
tand
ces
xt is

he
d in
—

ri-
—
h—
 a
t of
nt.
ret
eir
”
orts
es-
o

ere
 are
 is
 of
ily
de
 and
rn-
 so

s a
n

 of

ela-
 a
e

it,
licit
locally improvised actions. If our goal is to support this char-
acter of work, then a critical focus of design must be the
provision of the information or resources which support and
inform the decision-making process, rather than the formali-
sation and encoding of the process itself.

This notion of design around resources reflects a concern not
simply with the how we go about system design—such as is
a central concern of Participatory Design, for example—but
with the artifacts of that design process. It suggests a change
in the structure of computational systems we build, and later
I will introduce a model of computation which provides sup-
port for this form of design. The principle of explicit design
around resources for local decision-making has been
observed elsewhere (e.g. [Dourish and Bellotti, 1992];
[Dourish, 1993]; [Robinson, 1993]), but here I want to
explore it more explicitly, and follow through the conse-
quences for the interactive systems we design.

It would be foolish to imagine that the design process can
capture all the relevant information which informs and sup-
ports the improvisation of computer-based work. Even for
this most restricted domain, this would be not only impossi-
ble, but wrong-headed. The factors underlying such situated
activity are unbounded, and derive not only from the system,
but also from knowledge of social and organisational situa-
tions, from ongoing interactions with others, and so forth.
Rather, what is proposed here is a model of design which
reveals some information which may be of value; and which
is sensitive to the improvised character of use. So there are
various reasonable questions we can ask. What kinds of
information can systems provide which may be of value in
supporting improvisation in various contexts? What does it
mean to take this as a focus of system design? How deep a
change to our model of systems is implied?

I will begin by looking at important factors which shape how
people interact with systems, and in particular, how systems
present models of their operation. I will then go on to con-
sider the status of such models in existing systems, and how
we can exploit them to bridge between the conclusions of use
analysis and the needs of system design.

2 Operation and State

When an individual uses a computer system to achieve some
work, it is clear that an important resource in the improvised
accomplishment of their activity is their belief about the state
of the system. What is it doing? How much has it done?
What will it do next? These questions are based on system
state, and shape the sequential organisation of action, but the
state information itself is not intrinsically valuable. A user is
generally engaged in accomplishing some other work with
the system, rather than performing a detailed study of its
behaviour; and so what’s really important to the user is the
relationship between the state of the system and the state of
the work which the user is trying to accomplish. When such

a relationship can be established, then information about
state of the system can be used to understand and orga
on-going working activity.

Relevant state information is readily apparent in mo
devices which we deal with day to day. Visual access, op
ating noises and observable behaviour all provi
information about the system’s state from moment 
moment; we can see and hear information about the stat
devices and mechanisms which we might want to use.
saying that, though, it’s important to recognise the distin
tion between what we see and hear, and what we unders
about device state. On their own, the various resour
accessible to use aren’t of much use; some other conte
needed before they become meaningful.

In particular, a user’s view of the relationship between t
state of the system and the state of the activity is roote
some belief—however incomplete, inaccurate or naive
about how the system works. This is true for all devices
which mediate or support our activity. For instance, the va
ety of resources which support the activity of driving a car
such as the sound of the engine and the feel of the clutc
are useful only within the context of some model of how
car works, or at least simple understandings such as tha
the relationship between engine pitch and the rev cou
Such an understanding allows a user (or driver) to interp
not only the information, but also its consequences for th
activity. By the same token, activity (particularly “situated
activity) is organised around, and depends upon, these s
of understandings; they allow us to mediate between qu
tions like, “what is the system doing?”, “what do I want to d
next?”, and “how should I go about it?”.

Where do such understandings come from? Obviously, th
are many sources; and so everybody’s understandings
highly personalised. One of the most important sources
our own everyday experiences, and the general pictures
structure and causality which we build up as a result of da
interactions with all sorts of devices. Other sources inclu
the experiences of others, related through stories, advice
anecdotes; whole others again come from more formal lea
ing and instruction procedures—courses, manuals, and
forth. One other important source is essentially cultural—the
everyday understandings of devices which we gain a
result of living in a world of Euclidean space, Newtonia
mechanics and the internal combustion engine.

Clearly, however, one of the most important components
this understanding is the story the system tells about itself—
its presentation of its own operation and state (and the r
tionship between the two). Certain aspects of such
presentation are explicit, being part of the way in which w
might interact with a device; others may be more implic
such as the noises which devices make in operation. Exp
or implicit, though, they all contribute to the story.



-
ted

the
ter-
 In
nd

n,
tle
nts,
ace
ur

,

ion
up-

ese
rate,
 of
is

nsi-
ty

the
ur.
s,
g

per-
e
ly,

ip
not
The
and
the
lu-
es
ity

re is
ly
a-

 is
ro-
the
er-
but
is
cy
.

However, computational “devices” (software systems) tend
not to be physically embodied—a printer is embodied, but a
network filesystem is not1. So the presentation of this infor-
mation—the story that the system tells about itself—arises
primarily at the user interface2. Aspects of the interface and
the way it behaves are suggestive of the system’s capabili-
ties, and of the sorts of temporal or causal constraints acting
on it. Along with all the other factors cited above, these con-
tribute to the understanding the user builds up of the
systems’s operation and the relationship of its components
and activity to the work the user is attempting to perform.
Again, this presentation has both explicit aspects (e.g. the
iconic representations in direct manipulation interfaces) and
implicit ones (e.g. the dynamic or temporal properties of
interactions).

Although the implications are much broader, the work dis-
cussed in this paper is focussed very specifically on this
issue—how a system presents a story about its actions. In
particular, I will be concerned with the way in which the
interface represents and conveys this information. Tradi-
tional interfaces may work hard to convey useful
information about ongoing action; however, since traditional
interface design is so heavily organised around the “process”
model, this doesn’t address the problem of directly support-
ing the improvised nature of working activity. Here, then, I
will focus particularly on the implications of telling a richer
story at the interface, and doing so precisely to move towards
a model of design motivated primarily by situated accounts
of everyday activity.

Before considering how systems might embody and manip-
ulate such “stories”, I will first discuss how they arise in
traditional systems.

3 Connection and Disconnection

Given the importance of this aspect of the interface, we must
ask, what is the relationship between the presentation the
interface offers and the actual operation of the system? How
is this relationship structured, and how is it maintained?
These are important questions, and they lead us to identify a
problem in maintaining this relationship—a problem of
connection.

The issue here is not how information about system activity
should be presented to the user, but rather, how the interface
component can find out what’s going on in the first place.
There are essentially two ways that an interface can discover
information about the activity of underlying system compo-
nents. The first is that it may be constructed with a built-in

“understanding” of the way in which the underlying compo
nents operate. Since the interface software is construc
with information about the semantics and the structure of 
other system components to which it provides a user in
face, it can accurately present a view of their operation.
view of the strong connection between the application a
interface, I’ll call this the connected strategy. The second,
disconnected strategy is perhaps more common in moder
“open” systems. In this approach, the interface has lit
understanding of the workings of other system compone
which may actually have been created later than the interf
itself, and so it must infer aspects of application behavio
from lower-level information (network and disk activity
memory usage, etc.). Essentially, it interprets this informa-
tion according to some set of conventions about applicat
structure and behaviour; perhaps the conventions that s
port a particular interface metaphor.

However, there are serious problems with each of th
approaches. The connected approach is the more accu
since it gives interfaces direct access to the structure
underlying components and applications. However, th
accuracy is bought at the expense of modularity and exte
bility. Modularity is broken because there are now a varie
of complex semantic relationships between details of 
interface behaviour and details of the application behavio
The two are linked by a web of complex interconnection
making it very difficult to change one without necessitatin
changing the other. This is regarded as bad practice; but 
haps, if it were the only problem, it would just be the pric
we have to pay for effective interface design. Unfortunate
it’s not the only problem. Perhaps more critically, extensibil-
ity is also broken. Because of the complex relationsh
between interface and application, a new application can
be added later once the interface structure is in place. 
interface and application cannot be designed in isolation, 
so a new application cannot be added without changing 
internals of the interface software. The result is that this so
tion is simply inappropriate for generic interfaces, toolbox
and libraries, which provide standard interface functional
to a range of applications.

So what of the disconnected approach? The problem he
that, while it is modular and extensible, it is not reliab
accurate. The relationship between the low-level inform
tion it uses and the higher-level inferences it makes
complex and imprecise. Also, there are problems of synch
nisation. Because the representations of activity which 
disconnected approach manipulates are implicit, its inf
ences can be consistent with the available information 
out-of-step with the actual behaviour of the system. Th
approach, then, is largely heuristic; and so it’s accura
cannot be relied upon, particularly for detailed information

Essentially, the connected approach is too connected, and the
disconnected approach is too disconnected.

1. Or rather, the embodiment is generally not a part of the user’s 
world.

2. Note the familiar corollary—that any aspect of the system which 
reveals information is part of the interface.



or
s it
il-
n

 in
ms
nd

n of
tive
pe-
en
sign
und

m
 the
on

tem

re
 of
re

 the
and
ing

t
n’s
nts
le-
me

a. b.
FIGURE 1: (a) Clients interaction with traditional black-box abstractions through standard abstraction barriers. 
(b) Open implementations also reveal inherent structure.

abstraction
barrier

client

revealed
structure

“meta-level”
interface

requests and
responses
3.1 Example: Duplex Copying

Let’s pause to consider an example as a way of grounding
this problem. Imagine a digital photocopier. It offers various
familiar system services—such as copying, scanning, print-
ing, faxing—as well as other computationally-based
functions, such as image analysis, storage/retrieval and so
forth. A generic user interface system provides the means to
control these various services, perhaps remotely over a
network.

Somebody wishes to use the copying service to copy a paper
document. The paper document is 20 pages long, printed
double-sided (i.e. 10 sheets), and the user requests 6 double-
sided (“duplex”) copies. Half way through the job, the copier
runs out of paper and halts.

What state is the machine in? How many copies has it com-
pleted? Has it made 3 complete copies of the document, or
has it made 6 half-copies? The answer isn’t clear; in fact,
since copiers work in different ways, it could well be either.
However, the critical question is here concerns the interface,
not the copier per se. How does the interface component
react to this situation? What does it tell the user is the state
of the device? And, given that this is a generic interface com-
ponent which was constructed separately from the copier’s
other services, how does the interface component even know
what to tell the user, or how to find out the state?

This situation doesn’t simply arise from “exceptional” cases,
such as empty paper trays, paper jams and the like. It also
occurs at any point at which the user has to make an informed
judgement about what to do next, such as whether to inter-
rupt the job to allow someone else to use the machine
urgently, whether it’s worth stopping to adjust copy quality,
and so forth. Even the decision to go and use a different
copier requires an assessment of the current machine’s
behaviour. What these situations have in common with the
exception case of an empty paper tray is that, as users, we
must rely on the interface to support and inform our action,
even when we find ourselves stepping outside the routinised
“process” which the interface embodies. When the interface

presents system activity purely in terms of the routine—
when its connection to the underlying system service give
no more information than that—then we encounter the fam
iar tension between technological rigidity and huma
flexibility.

4 Open Implementations

A potential solution to this general problem is to be found
another area of computer science where similar proble
with the mappings between high-level descriptions a
lower-level actions have arisen. Open implementations [Kic-
zales, 1992] arose originally as an approach to the desig
programming languages, balancing elegance and descrip
power in the language against efficiency over a range of s
cific implementations. More generally, however, it has be
applied to a range of areas of system architecture and de
which share a range of common problems, focussed aro
the issue of abstraction.

Traditionally, the notion of abstraction, as derived fro
mathematics, has been one of the most powerful tools in
creation of software systems. The “black box” abstracti
(as illustrated in figure 1a) encapsulates certain structures
and behaviours and makes them available to other sys
components through an abstraction barrier. The barrier iso-
lates the implementation of the abstraction from the
components which use it (its clients). This separation serves
two functions. First, it makes it possible to reuse softwa
components without having to understand all the details
their construction. Since the developer of the client softwa
need only understand how to use the abstraction which
software presents in order to make use of it, much larger 
more complex software systems can be built by combin
and reusing component modules. Abstraction aids the man-
ageability of large problems. Second, it allows the clien
software to be independent of the details of the abstractio
implementation. Since the client refers only to the eleme
of the abstraction itself, rather than to elements of the imp
mentation, any implementation which accords to the sa



re
ta-
 is,

c-

ta-
o
e-
he
ed
ar-

r-
 in
or
of
 in

nec-
ame
ms
en
 it
 its
m
ed
e
s to

It is
nt

ut
its
-
ith

ips,
ally
ruc-
ral)
er-

e
le
ral

 to
his
-

abstraction could be used. So, as long as well-defined
abstractions are the only point of contact between software
modules, new pieces of software can be substituted for old
ones, and so systems can be maintained and improved in a
reliable, modular way. Abstraction gives us a way of defin-
ing and managing equivalence. 

This model of abstraction is based on one fundamental prin-
ciple: that, as long as the abstraction offered by a software
module is accurately maintained, the details of how that
abstraction is implemented do not matter to other system
components. Indeed, by this principle, they should be hid-
den, to encourage independence between modules.
However, this assumption is becoming increasingly open to
question. The problem is that the abstractions we use in soft-
ware engineering are not the pure abstractions of
mathematics. Instead, they are simply the visible aspects of
underlying implementations; and, like icebergs floating in
the sea, the structure of what lies hidden below is just as crit-
ical to how we should treat them as the visible aspects above.
The structure of the implementation has important conse-
quences for the way in which clients will use the abstraction.
What’s more, aspects of the implementation will always
show through the abstraction barrier, revealing themselves in
size limitations, performance limitations and dynamic prop-
erties of the module.

The open implementation approach is shown in figure 1b.
Here, a system provides not only a standard interface to the
abstract structures and behaviours offered by this module,
but also a separate interface to the inherent structure of that
module. This interface allows clients to view aspects of the
structure (introspection) but also, crucially, to make modifi-
cations (intercession); to “reach in” to the implementation
and adapt it to the needs of specific clients. It provides access
to a computational “meta-level”, which talks not about what
the system does, but about how it does it. This approach has
been fruitfully applied to a range of areas of system develop-
ment, including the design of the Common Lisp Object
System [Bobrow et al, 1988] and the Silica window system
[Rao, 1991]. A full treatment of the technical aspects and
consequences of this approach is too long to present here—
the interested reader is referred to Kiczales et al. [1991].
However, certain aspects are worth discussion here.

The essence of this approach is computational reflection
[Smith, 1982]—the notion that a system maintains and has
access to a representation of its own behaviour. The crucial
element of such reflective representations is that they are
causally connected to the behaviour they describe. Thus,
changes in the system are reflected in changes in the repre-
sentation; and, critically, the behaviour of the system can be
changed by making changes to the representation.

At the same time as we introduce these ideas, it is important
to retain various important properties of the existing notion
of abstraction, principally the conceptual simplification

which it provides (the manageability principle). There a
two ways in which this is achieved in an open implemen
tion. First, a standard or default interface is provided; that
the interface to the meta-level representation augments the
traditional abstraction barrier, rather than replacing it. Se
ond, the view into the implementation reveals its inherent
structure, rather than the details of a specific implemen
tion. It does not simply provide a set of “hooks” directly int
the implementation; that would both constrain the impl
mentor of the abstraction and require too much of t
implementor of the client. Instead, it provides a rationalis
model of the inherent behaviour of a system offering its p
ticular functionality. Clearly, this view of what is “inherent”
is a normative one; typically, it is conditioned by an unde
standing of the specific failings of standard abstractions
some particular domain. I will return to this issue later. F
the moment, though, I will consider how this revised view 
abstraction can be used to solve the sorts of problems
interface structure which were raised earlier.

5 Accounting for System Action

Just as open implementations address problems of con
tion between system components, we can use the s
approach to address the “interface connection” proble
related earlier. So consider an alternative view of an op
implementation’s reflective self-representation. Consider
as an “account” which a system or module presents of
own activity. A self-representation, it is generated fro
within the component, rather than being imposed or inferr
from outside; reflective, it not only reliably describes th
state of the system at any given point, but is also a mean
affect that state and control the system’s behaviour.

Such an account has a number of important properties. 
an explicit representation—that is, computationally exta
and manipulable within the system. It is, crucially, part of the
system, rather than simply being a story we might tell abo
the system from outside, or a view we might impose on 
actions. It is a behavioural model, rather than simply a struc
tural one; that is, it tells us how the system acts, dealing w
issues of causality, connection and temporal relationsh
rather than just how the system’s elements are static
related to each other. However, the account itself has st
tural properties, based on defined patterns of (behaviou
relationships between the components of the account (p
haps relationships such as precedes, controls, invokes, and so
forth).

Most importantly, we place this requirement on th
account—that it “accounts for” the externally-observab
states of the system which presents it. The behaviou
description which the system provides should be able
explain how an externally-observable state came about. T
critical feature has various implications, which will be dis



for a

le-

 as
n
lso
n-
 to
we
na-
nt
een
ects
nd
unt
n-
al
ne
nd

 an

in
ticu-

 it is
use.
me
ar
g”
el

d at
em
ven
e

e a
her
o a
el

ble?
s it
lso
.

 is,
nd
be
h

ta-
cussed shortly. First, however, let’s return to the duplex
photocopying example.

5.1 Accounting for Duplex Copying

If we adopt this notion of “accounts”, then the copy service
(which provides copying functionality in the copier, and
which lies below the interface component alongside other
system services) provides not only a set of entry points to its
functionality—the traditional abstraction interface, often
called an “Application Programming Interface” or API—but
also an account, a structured description of its own behav-
iour. The API describes “what the service can do”; the
account describes “how the service goes about doing it”. It
describes, at some level, the sequence of actions which the
service will perform—or, more accurately, a sequence of
actions which accounts for the externally-observable states
of the system. So, if the interface has access to details not
only of the functionality offered by the copying service, but
also an account of how it operates in terms of page copying
sequences and paper movement, then it can provide a user
with appropriate information on the state of the service as it
acts, and continuation or recovery procedures should it fail. 

So, this notion of reflective self-representations as
“accounts” provides a solution to the problems raised in the
duplex copying example. More importantly, in doing so, it
also provides a solution to the connection problem raised in
section 3. The interface module does not have to infer activ-
ity information (as was necessary with the disconnected
interface strategy). Instead, it can present information about
the system accurately because the information it presents
comes directly from the underlying components themselves
(where it is causally connected to their actual behaviour). At
the same time, information about the structure and semantics
of those components is not tacitly encoded in the interface
module (as it was in the connected interface strategy).
Instead, this information is explicitly made available from
the components themselves. It is manifested in accounts they
offer of their actions which the interface module can use,
preserving the modularity and extensibility properties of a
disconnected implementation. This balance between the
connected and disconnected approaches is maintained
through the two critical aspects of the reflective approach:
explicit representations and causal connection.

To understand the ways in which accounts can support inter-
face activity, we first have to look in more detail at the
properties of accounts themselves.

6 Exploring Accounts

Accounts and reflective self-representations are essentially
the same thing; my use of the term “accounts” connotes a
particular perspective on their value and use. By the same
token, the properties of reflective representations also apply

to accounts; but they may have particular consequences 
use-oriented view.

One important issue raised in the description of open imp
mentations was that they reveal aspects of inherent structure
rather than the details of specific implementations. Just
that was critical to retaining the conceptual simplificatio
and separation which is so valuable in abstraction, it is a
critical to the value of accounts. After all, there is little be
efit in separating two system components if each is forced
understand every detail of the other to use it. Instead, 
exploit the system’s inherent structure and present a ratio
lised view of the behaviour of a module. The inhere
structure captures elements such as the relationship betw
the components presented at the abstraction barrier; asp
which are implied by the existence of those elements a
their roles in the abstract behaviour described. The acco
stands in a two-way semantic relationship to the impleme
tation itself; this much is guaranteed by the caus
connection. But that relationship is not a direct one-to-o
mapping between the elements of the implementation a
the elements of the account. We can perhaps think of
account as being a particular registration3 of the implemen-
tation; a view of the implementation which reveals certa
aspects, hides others, and highlights and emphasises par
lar relationships for some specific purpose.

So the account need not be “true” in an absolute sense;
accurate or precise for the purposes of some specific 
Indeed, it is possible that the system will have to go to so
lengths to maintain the validity of the account in particul
circumstances. Imagine, for instance, that the “copyin
account of section 5.1 presented, for simplification, a mod
of operation in which only one page was being processe
any moment. However, during normal operation, the syst
might actually work on several pages at once—indeed, e
fairly simple copiers typically do this in order to increas
throughput. This would be perfectly valid as long as for any
observable intermediate state—that is, any point wher
user (or user interface) might intervene in the process, eit
through choice or necessity—the system can put itself int
state which is accounted for purely in terms of the mod
offered.

Naturally, this begs the question: what states are observa
There is no absolute answer to this question; not only doe
depend on the structure of an implementation, but it a
depends on the needs of the user in some particular situation
This reflects a tension in the account between accuracy and
precision. The account must, at all times, be accurate; that
in its own terms, it must correctly represent the state a
behaviour of the system. However, this accuracy may 
achieved by relaxing its precision, the level of detail whic

3. My use of this term, and the flexibility it implies, draws on 
Brian Smith’s treatment of representation, and especially compu
tional representation. [Smith, forthcoming].



the
are
m-
al

task
ach
ne
el,

on
ular
r-

he
e of
s in
h,
e of

 of

 in
sed
ace
s by
for
ilds
ut
nd
p-
a

ce
n.
s)

me
ile;
DI)
om-
he
ut

ant
 a
py
he
’s
et

he

e.
the account provides. Relaxing precision allows the system
more flexibility in the way it operates. The invariant prop-
erty, though, is that of accountability; that the system be able
to account for its actions in terms of the account, or that it
should be able to offer an account which is not incompatible
with previously offered accounts. In these terms, account-
ability is essentially a form of constructed consistency. It is
this notion of accountability, based in the direct relationship
between action and representation, which is at the heart of
this proposal, and which distinguishes accounts from simply
simulations.

However, accountability is by no means the only significant
property which deserves discussion here. Another set of
properties revolve around the fact that accounts are inher-
ently partial. An account selectively presents and hides
particular aspects of a system and its implementation.
Indeed, the account is crafted for specific purposes and uses.
By implication, then, it is also variable; the level of detail
and structure is dependent on particular circumstances and
needs, as well as the state of the system itself at the time. This
is another area where the balance between accuracy and pre-
cision becomes significant. This variability must also depend
on the recipient of the account, which is directed towards
specific other entities, be they system components or users.
The whole range of ways in which accounts are only par-
tially complete and are designed for particular circumstances
(in a way which reflects the balance of needs between the
producer and receiver of the account) is reflected in the use
of the term “account”. Included in this is the principle that
variability is dynamic; the account is the means by which
structure and information can be gradually revealed, accord-
ing to circumstances. To draw further on the metaphoric
structure of this proposal, these properties can be thought of
as embodying properties similar to those of the term recipi-
ent design in conversation analysis; the crafting of specific
utterances for a particular recipient or audience. This level of
specificity also emphasises that accounts are available for
exploration, rather than being the primary interface to a
system component. We don’t have to deal in terms of the
account at all times, but we can make appeal to it in order to
understand, rationalise or explain other behaviour.

There is one final property which is important here. Again as
derived from reflective self-representations, an account is
causally connected to the behaviour it describes. It is not
simply “offered up” as a disconnected “story” about the sys-
tem’s action, but stands in a causal relationship to it.
Changes in the system are reflected in changes in the repre-
sentation, and vice versa. The critical consequence of this is
that the account is computationally effective—an account
provides the means not only to describe behaviour, but also
to control it. The link between the account and the activity is
bidirectional. The account is a means to make modifications
to the way in which the system works—it provides the terms
and the structure in which such modifications are described.

Indeed, the structure of the account clearly constrains 
sorts of modifications which are allowed, whether these 
changes to the action of the system itself, or—more co
monly, perhaps—are manipulations of the intern
processing of specific jobs in progress.

7 Accounts and Users

Previous sections used an example of a duplex copying 
as an illustration of the value of an account-based appro
to system architecture. The copying example illustrates o
way of using these representations. At the system lev
accounts can provide a critical channel of communicati
between system components or modules, and in partic
offer a solution to the problem of connection in generic inte
faces. This use of accounts is derived directly from t
general perspective of open implementations, and the us
causally-connected self-representations to address failure
the notion of “abstraction” in software engineering. As suc
this use of accounts focuses on issues in the architectur
interactive systems.

However, it’s interesting to examine a more radical use
accounts—their use at the user level. The goal here is to
address more directly the disparity which was highlighted
the introduction, between the improvised, resource-ba
nature of working and the process-driven aspect of interf
design. The accounts model is an attempt to address thi
thinking of computational representations as resources 
action. On the one hand, the account mechanism bu
directly on the importance of the “stories systems tell” abo
their activity; and on the other, the causal connection a
principle of accountability (or constructed consistency) su
ports the variability of use. Accounts provide 
computational basis for artful action.

7.1 Example: File Copying

Let’s consider a second example—a real-world interfa
problem with its origins in a breakdown of abstractio
Imagine copying a file between two volumes (say, two disk
under a graphical file system interface. You specify the na
of the file to be copied and the name of the destination f
you start the copy and a “percentage done” indicator (P
appears to show you how much of the copy has been c
pleted. This generally works pretty well, especially when t
two volumes are both connected to your own machine. B
consider another case, which isn’t so uncommon. You w
to copy a file from a local volume to a remote volume on
nearby fileserver over a network. This time, when you co
the file, the PDB appears and fills up to 40% before t
system fails, saying “remote volume unavailable”. What
happened? Was 40% of the file copied? Did all of the file g
40% there? Most likely, none of the file ever reached t
remote volume; instead, 40% of it was read on the local disk
before the machine ever tried to reach the remote volum



ction
e of

s
et

s
-

;

s
a

a

her,
ich
s at

ach
he

sit-
e is
ous
he
ce,
nts
nd
if-
tant
e

 to
iour.
data
lled
 the
and
is
de,
s-

Name Name

FIGURE 2: A structural model of the file copying example in terms of data buckets and the connections 
between them. Connections between elements of this model are the points at which strategies and policies can 
be identified.

flow strategy name mapping
strategy
What’s more, there’s no way to tell how the remote volume
is unavailable; on some systems, this might even mean you
don’t have your network cable plugged in (and so the remote
volume was never available). Finally, a failure like this
makes you wonder... just what’s the PDI telling you when
things are working?

In general, there’s simply no way to see at which point in the
copy failure occurred, since the interface presents no notion
of the structure or breakdown of behaviour and functionality
that’s involved. In fact, the notion of a partially-completed
copy makes little sense when offered in the interface, since
the interface doesn’t offer terms in which to think about
what’s going on. What does it mean when the copy is par-
tially completed, and when the PDI indicates there’s more to
do?

We can begin to address this problem by looking for the
inherent structure of the example. There are various places
where data can reside—let’s call these data buckets. Some of
them, perhaps, are files; others may be areas of temporary
storage. The network itself, for instance, is a data bucket but
not a file. In addition, there are caches, network interface
buffers, and so on. The details are not important; they’re spe-
cific elements of an implementation, rather than inherent
features. The essential point is simply that there are some
number of these data buckets; that some are files and some
are not; and that the process of copying a file involves con-
necting a series of them together to get data from one place
to another. So we end up with a structure rather like that in
figure 2.

In this figure, we see a set of data buckets connected
together, indicating the flow of data between two points.
Some of these buckets (the end points) are files; they exist
independently of the particular copy operation, and are dis-
tinguished with names4. The other data buckets are
temporary intermediate ones. The flow of data through the

system is determined by the strategies used at the conne
points between the data buckets. There are a wide rang
mechanisms which could be used:

• the flush on overflow strategy. A bucket accumulate
data until it’s full; at that point, all the data in that buck
is “flushed” into the next bucket;

• the trickle on overflow strategy. A bucket accumulate
data until it’s full; at that point, new incoming data dis
places equal amounts of old data into the next bucket

• the chunking on overflow strategy. A bucket accumulate
data until it’s full; at that point, a fixed amount of data (
“chunk”) is flushed to the next buffer to make space;

• the explicit flush strategy. A bucket accumulates dat
until it is explicitly told to flush it all to the next bucket.

This is by no means intended to be an exhaustive list. Rat
it is intended to illustrate the wide range of strategies wh
could be used. It can be seen that the choice of strategie
each point—and there may be different strategies at e
point—characterises the flow of data from one end to t
other.

We can map this inherent structure onto various specific 
uations, such as the case of networked file copying. Ther
some number of data buckets, corresponding to the vari
relevant entities in the system. Entities might include t
files themselves, the filesystem cache, the network interfa
the network itself, and so on. The precise set of eleme
involved is not directly important; the inherent structure, a
its relation to the implementation, is of much greater sign
icance, and the existence of a bucket is often more impor
than its identity. When the particular configuration in som
given situation is available for exploration, we can begin
answer questions about the interface and system behav
Just as the set of flow strategies characterises the flow of 
through the system as a whole, so the flow can be contro
through the selection of strategies; and the behaviour of
percentage-done indictor is connected to (characterised 
controlled by) the point in this sequence where it 
“attached”. Should it be attached towards the left-hand si
for instance, then it will tend to reflect only the local proces

4. In fact, naming is a separate issue in the account which a system 
provides; in this example, its relevance is that the source point 
named is a file, whereas the end point is given a name before a file 
exists there. However, the issue of naming is not discussed in this 
example.



ing

, it
ured
eak
ly
at-

nd

way
tem
use
s-
of
me
th
ind
al

 is
of
or-

sage
he
n-
 a

tem
ion
nly
lso

een
pens
This
nal
of
ir
e,
ed.
ign
,

is
th-
 an

ese
ers
hoto-
e

ing of data—not its transmission across the network, which
is often of greater importance to the user, and which caused
the failure in the case we were considering5. However, with-
out any terms of reference, it isn’t possible to talk about
“where” the indicator is attached—far less to move it around.
When needed, then, the account provides these terms of ref-
erence; an explicit structure within which specific actions
can be explained, and their consequences explored. This
structure—one within which exploration and improvisation
can be supported—is not supported by traditional interactive
software structures which make details inaccessible behind
abstraction barriers.

The basic problem reflected in this example arises directly
from the traditional view of abstraction discussed in section
4—in this case, the use of abstraction inside the file system.
It arises because file system operations are characterised
purely in terms of read and write operations. This takes no
account of whether the operations are performed locally or
remotely, and the consequences of such features for the way
in which the interface should behave. The abstraction has
hidden the details from higher levels of the system, but those
details turn out to be crucial to our interactions6.

This example illustrates a number of general points on the
nature and use of accounts. First, consider the relationship
between the model and the system itself. The model arises
from the structure of the system; but it is also embodied in
the system. It is not imposed from outside. It is general, in
that it does not reflect the details of a particular implementa-
tion, but rather reflects the inherent structure of all (or a
range of) implementations. It is a gloss for the implementa-
tion, explicitly revealing and hiding certain features deemed
“relevant”.

Second, consider the relationship between the account and
the activity. The causal relationship renders the account
“true” for external observation; because it is of the system
itself, rather than simply of an interface or other external
component, it is reliable in its relationship to the actual
behaviour represented. However, the level of detail it pre-
sents reflects the balance between accuracy and precision;
while it accurately accounts for the behaviour of the system,
it only reveals as much as is necessary for some particular
purpose—in this case, explaining the curious “40% complete
then 100% failure” behaviour.

Third, consider the importance of explicit references to
“strategies”. Strategies—normally implicit in the creation of

a piece of software—are reified or rendered explicit in this
model. This accords to a general principle in the engineer
of large, flexible software systems, the separation of mecha-
nism (the means for accomplishing action) and policy (the
means of deciding what action is appropriate). However
also extends this model, since policies are given as struct
behavioural models. This means that the system can br
down and “reason about” a policy. An account is not simp
a name for a way of doing something, but describes the p
tern of relationship between its constituent activities; a
this is critical to the way it’s used.

8 Perspectives and Current Work

This paper has used some simple examples to show the 
in which accounts can be used to solve problems in sys
interaction. In particular, these problems have arisen beca
traditional notions of representation in computational sy
tems provide poor support for the management 
contingencies that arise in the course of conducting so
activity. Whether we look at the interactions of people wi
systems or of system components with each other, we f
problems which arise from the way in which convention
models of abstraction break down.

It’s important to recognise that a reflective representation
still a representation; it is still a normative description 
some system. An account is a designed artifact, and it inc
porates a set of assumptions and expectations about u
patterns in exactly the same way as other artifacts do. T
key difference, though, is in the way in which the represe
tation is related to the system or activity it represents. In
conventional system, not only is the representation of sys
action partial, but so is the way in which the representat
and action are connected. In effect, this constrains not o
the information which the representation can reveal, but a
the ways in which the representation can be used.

The account mechanism addresses this relationship betw
representations and the behaviours they represent, and o
up the way in which these representations can be used. 
is one step on a path towards a model of computatio
design which is rooted firmly in studies of the nature 
working activity, and in attempting to understand the
implications not only for the way in which design is don
but also for the nature of the artifacts which are design
The reflective approach is also being employed in the des
of Prospero, a toolkit for CSCW applications [Dourish
1995].

Ongoing activities focus on other issues arising from th
model of representation and interaction. For instance, no
ing has been said here of the issues surrounding where
account originates. Like the structure of the account, th
might also have their origins in understandings of how us
approach, use and understand systems. In the case of p
copying, we should perhaps look to a notion of “naiv

5. Note a second extremely confusing—and potentially danger-
ous—failure which can result here. The PDB can indicate 100% 
copied, before the remote volume complains that it’s full after 
writing only 40% of the file. Which report should be trusted?

6. In fact, problems of this sort can be seen in a wide range of sys-
tems where network filestores have been grafted on within the 
abstractions designed for local filestores, because “you needn’t 
worry if the file is local or remote”.



tely
di-
eir
s a
nal

this
tte
ng
on,
g

 of

n,

i,

W

ted

”,

iel

ing

ted
xerography” as providing a starting point for our description
of how systems operate. The case of hybrid electronic/
mechanical systems, such as photocopiers, is particularly
interesting because of their embodied nature. Photocopiers
make noises, produce output, and occasionally exhort users
to open them up and muck around inside; a computational
account is no use at all if it is directly belied by the clear and
obvious path of paper through a machine.

It’s critical, though, to recognise and maintain the distinction
between accounts and mental models of device behaviour—
the kinds of understandings of the world which people bring
to bear when interacting with systems and devices. Clearly,
the two are strongly related. However, they exist on different
sides of the interface. We distinguish between an account of
system behaviour as offered by a system, and the under-
standing of system behaviour formed by a user in response.
Accounts are explicit technological artifacts—computa-
tional representations which stand in special semantic
relationships to the systems they describe.

9 Summary and Conclusions

There is a tension between the traditional process-oriented
view of user interfaces and interaction—interfaces as cur-
rently designed—and the view of interface work as the
locally-improvised management to contingencies which has
been emerging particularly over the past ten years or so. This
tension becomes particularly troublesome when we attempt
to incorporate some of the insights of sociological investiga-
tions into system design. I have argued that addressing this
problem means not only rethinking the way in which we go
about systems design, but also a new approach to the nature
of the systems which we design. In taking a focus on the
resources which support improvised work at the interface, I
have been concerned here with how users understand system
activity, and in particular with the way that systems and
devices find and present such information. This reveals a
problem in the structure of interactive systems—a problem
of connection between system components.

Accounts are causally-connected representations of system
action which systems offer as explications of their own activ-
ity. They are inherently partial and variable, selectively
highlighting and hiding aspects of the inherent structure of
the systems they represent, but, being views of the system
from within rather than without, they are reliable representa-
tions of ongoing activity. A system is held accountable to its
account; that is, the account must adequately “explain” the
observable states of the system which offered it.

This is an attempt, then, to look at the balance in interface
design between abstraction and detail; on the one hand, the
abstraction and generalisation which is inherent in the pro-
cess of software construction, and on the other hand, the
detailed moment-to-moment activity which makes up the
work at the interface. The hope is that accounts, as described

here, provide a means by which users can more accura
match the functionality of a system or device to the imme
ate requirements of the practical accomplishment of th
work; and more generally that they point the way toward
deeper relationship between the insights of observatio
analysis and the practice of systems design.

Acknowledgments

Many colleagues have contributed to these ideas and to 
presentation of them. I am particularly indebted to Anne
Adler and Austin Henderson, who helped me start thinki
about these issues in the first place, and to Bob Anders
Graham Button, Beki Grinter, Brian Smith and Randy Trig
for comments, inspiration and help in the development
this paper.

References

[Bobrow et al, 1988] Daniel Bobrow, Linda Demichiel, Richard
Gabriel, Sonya Keene, Gregor Kiczales and David Moo
“Common Lisp Object System Specification”, X3J13 Document 88-
002R, June 1988.

[Dourish and Bellotti, 1992] Paul Dourish and Victoria Bellott
“Awareness and Coordination in Shared Workspaces”, Proc. ACM
Conference on Computer-Supported Cooperative Work CSC
‘92, Toronto, Canada, November 1992.

[Dourish, 1993] Paul Dourish, “Culture and Control in a Media
Space”, Proc. Third European Conference on Computer-Suppor
Cooperative Work ECSCW93, Milano, Italy, September 1993.

[Dourish, 1995] Paul Dourish, “Developing a Reflective Model of
Collaborative Systems”, ACM Transactions on Computer-Human
Interaction, 2(1), 40–63, March 1995.

[Heath and Luff, 1992] Christian Heath and Paul Luff, “System Use
and Social Organisation”, in Button (ed.), “Technology in
Working Order: Studies of Work, Interaction and Technology
Routledge, 1992.

[Kizcales et al, 1991] Gregor Kiczales, Jim des Rivières and Dan
Bobrow, “The Art of the Metaobject Protocol”, MIT Press,
Cambridge, Mass., 1991.

[Kiczales, 1992] Gregor Kiczales, “Towards a New Model of
Abstaction in Software Engineering”, Proc. IMSA’92 Workshop on
Reflection and Metalevel Architectures, Tokyo, Nov 4–7, 1992.

[Rao, 1991] Ramana Rao, “Implementational Reflection in Silica”,
Proc. European Conference on Object-Oriented Programm
ECOOP’91, Geneva, Switzerland, July 1991.

[Robinson, 1993] Mike Robinson, “Design for Unanticipated
Use”, Proc. Third European Conference on Computer-Suppor
Cooperative Work ECSCW93, Milano, Italy, September 1993.

[Smith, 1982] Brian Smith, “Reflection and Semantics in a
Procedural Language”, MIT Laboratory for Computer Science
Report MIT-TR-272, 1982.

[Smith, forthcoming] Brian Smith, “On the Origin of Objects”,
MIT Press, Cambridge, Mass., forthcoming.

[Suchman, 1987] Lucy Suchman, “Plans and Situated Actions: The
problem of human-machine communication”, Cambridge
University Press, Cambridge, UK, 1987.


	Accounting for System Behaviour: Representation, Reflection and Resourceful Action
	Paul Dourish
	Rank Xerox Research Centre, Cambridge Lab (EuroPARC) and Department of Computer Science, Universi...
	dourish@europarc.xerox.com
	1 Introduction
	1.1 Improvisation and Resources

	2 Operation and State
	3 Connection and Disconnection
	3.1 Example: Duplex Copying

	4 Open Implementations
	5 Accounting for System Action
	5.1 Accounting for Duplex Copying

	6 Exploring Accounts
	7 Accounts and Users
	7.1 Example: File Copying

	8 Perspectives and Current Work
	9 Summary and Conclusions



