
s
o

lly
e
 a
i
W
e
ly
s

s”
,

iv

y
e

b
r
a
p
n
 t
is
e

l
t
”
c

, in
he
rs’

a is

tri-
nt;
is-
ing

ive

an

t-
ill

his

two
n be
rn,

and
ms
se

ms,
has
ted
uted
een
ting
l

The Parting of the Ways: Divergence, Data Management
and Collaborative Work

Paul Dourish

Rank Xerox Research Centre, Cambridge Laboratory (EuroPARC)
and Dept of Computer Science, University College, London

dourish@europarc.xerox.com
Abstract

Systems coordinating distributed collaborative work mu
manage user data distributed over a network. The strong c
sistency algorithms which designers have typica
borrowed from the distributed systems community are oft
unsuited to the particular needs of CSCW. Here, I outline
alternative approach based on divergence and synchron
tion between parallel streams of activity. From a CSC
perspective, this strategy offers three primary advantag
First, it is scalable, allowing smooth transitions from high
interactive collaboration to more extended, “asynchronou
styles of work. Second, it supports “multi-synchronou
work, in which parties work independently in parallel. Third
it directly supports observed patterns of opportunistic act
ities in collaborative working.

1 Introduction: Distributed Data
Management

Collaborative applications coordinate activities which ma
be distributed in time and/or space. Distribution in tim
means that activities may take place at different times,
are coordinated to achieve a unified effect (such as the p
duction of a document). Distribution in space means th
activities may take place on different computers, perha
linked by a data network. Collaborative applications, the
are heir to a set of design problems which have arisen in
development of distributed computing systems (or just “d
tributed systems”), concerning the distributed managem
of data.

This paper considers strategies which can be employed
meet the conflicting demands placed on collaborative app
cations, in presenting users with a single, uniform da
“space”. We are primarily concerned here with “user data
that is, largely the computational representations of artefa
ms
s-
en
e

A version of this paper appears in the Proceedings of t
Fourth European Conference on Computer-Supported Coo
erative Work (ECSCW’95), Stockholm, Sweden, Septemb
1995.
t
n-

n
n

sa-

s.

”

-

ut
o-
t
s
,
he
-
nt

to
i-
a
;
ts

which are manipulated directly by the system’s users. So
a collaborative writing system, user data would include t
computational representation of the document, or of use
activities over that document.

There are a number of criteria must be met when this dat
distributed across a network: availability—users should be
able to gain access to data when they need it; transparency—
users should not have to worry about patterns of data dis
bution, or the details of the distribution manageme
consistency—users should see identical (or, at least, cons
tent) views of shared data, even though they may be work
at different places or different times; and responsiveness—
data management should not interfere with the interact
response of the system.

However, these criteria place conflicting demands on
implementation. For example, availability can be enhanced
by maintaining multiple copies of the data on different ne
work nodes, increasing the probability that some copy w
be available to a user when it is required. Unfortunately, t
approach—data replication—conflicts with consistency,
since two users can make incompatible changes to
copies of the same piece of data. Various strategies ca
used to avoid or resolve these conflicts, but these, in tu
endanger transparent operation, by introducing more ways
in which users can be exposed to the consequences
details of distributed data management. Different syste
have different requirements, and differently prioritise the
criteria.

These issues are endemic to distributed computer syste
and much research in the distributed systems community
focussed on their implications in areas such as distribu
databases, distributed transaction processing and distrib
file systems. This paper concerns the relationship betw
distributed data management and applications suppor
specifically collaborative work. I will argue that traditiona
mechanisms which we might adopt from distributed syste
are frequently ill-suited to the needs of collaborative sy
tems. I will outline an alternative approach, which has be
developed in Prospero, a toolkit for building collaborativ

he
p-

er
1

ns
ta.

ncy
ely
in
 key
 a

in
es.
the
trib-
s
le
sure

one
ame
tent
at a
e
er.
tro-

ugh

ca-
m.
nd is
an

 are
be
nt
s,
 by

as
di-

o-
he
nd-

one
s a
on-
d

applications, and show how it addresses problems in effec-
tively supporting collaborative systems in an open and
flexible way. Such flexibility is crucial to the design of a
toolkit (rather than individual applications). First, though, I
will outline some current approaches to the problems of dis-
tributed data management, and in doing so, set out some
issues, parameters and terminology

1
.

2 Distributed Data and Collaborative
Work

A range of approaches have been employed to manage dis-
tributed data problems in collaborative technologies. In this
section, I will focus on the design decisions and trade-offs
which system designers make, particularly in CSCW sys-
tems, before going on to outline some of the inherent
problems and an alternative strategy.

2.1 Distribution

One set of decisions concern the mechanisms which deter-
mine where a particular data structure will reside in the
system at any given time—data distribution. The distinction
between centralised and replicated approaches, has long
been a concern for CSCW developers (Ahuja et al, 1990;
Lauwers, 1990; Greenberg et al, 1992). Centralisation con-
centrates all the data at one point in the system; clients
communicate with this central point to retrieve or update
information, and so “consistency” is a trivial issue since
there is only one copy of a data item at any time. Replication,
however, allows multiple copies of data structures—possi-
bly as many copies are there are participants. Replication
improves availability, but complicates consistency
management.

Orthogonal to this is the issue of data location. While most
systems are static—that is, the “location” of any given piece
of data is fixed during execution—this is not an inherent
property. In a dynamic system, objects may migrate from
location to location. Distributed document management sys-
tems, or Workflow systems, might use this approach,
moving the active data set from user to user. This technique
may be used along with either centralised or replicated
approaches.

2.2 Management

The critical question for any distribution strategy, however,
is how consistency can be maintained in the face of the
simultaneous activity of multiple users

In many cases, this is a “non-problem”. Many applicatio
simply do not require absolute consistency in their user da
For instance, in a “shared whiteboard”, absolute consiste
is generally not a concern and the system would be unlik
to attempt to rigorously maintain data integrity. However,
more structured applications, consistency can become a
requirement. The kinds of inconsistency acceptable on
shared whiteboard are unacceptable in a spreadsheet.

Inconsistency generally arises through misorderings
applying individual changes to user data at different sit
User actions arise independently at different points in
network, and are then propagated to other users. This dis
uted activity introduces timing problems; event notification
may arrive at different nodes in different, unpredictab
sequences. To maintain consistency, the system must en
that each client sees the result of these changes appliedin a
consistent order.

In a centralised system, this is not a problem. Since every
sees the single copy of any data item, they see the s
changes arise; there is a single, network-wide consis
ordering of events. Only one event can be processed
time, so changes which arrive at the “same” time will still b
processed seperately, in some specific (if arbitrary) ord
Thus, a centralised approach to data storage inherently in
duces a serialisation of change events, which, while
potentially unpredictable, maintains consistency.

Replicated systems can also achieve consistency thro
global serialisation. The simplest approach is data locking.
System components declare their intent to perform modifi
tions on a data item by requesting a “lock” on the data ite
Once the change has been made, the lock is released a
available to other clients. Since only one client at a time c
hold the lock on an specific item, simultaneous changes
prohibited and consistency is maintained. Locks can
defined at different granularities, from the whole docume
down to the level of individual objects or insertion point
but their role remains the same—to avoid inconsistency
preventing simultaneous action on data items.

Many common floor control policies can be regarded
locks on the entire workspace, restricting activity to one in
vidual at a time. This is input multiplexing—the reduction of
multiple input channels (one or more per individual collab
rator) to a single channel (the input channel to t
workspace). Mechanisms such as baton-passing and rou
robin divide access between the participants so that only
has control at any point. Essentially, that participant hold
lock on the entire workspace; no other participant can c
tribute until she loses control (relinquishes her “lock”), an
so consistency is maintained.

1. At this point, I beg the indulgence of more technical readers. In
a spirit of fairness, I’ll beg the indulgence of non-technical readers
later on.
2

an-
 of

a

ave
is
g

ble

er
nal
 of

iple

ral-

 in
ata
,
an

e
del.
ip-
lso
enta-
 for
s-
ign

he
CW

ce.
as

 as
we
ms

nu-
 of
ata
e
the

is
is-
ve
3 Managing Divergence

The variety of data management strategies is testament to the
fact that no single approach is applicable in all cases. In part,
this is simply due to the considerable variation in the needs
of CSCW systems. In addition, it is because the choice of
management strategies has strong implications for the inter-
face and for the nature of collaborative interaction in a
CSCW system (e.g. Greenberg and Marwood (1994)). Col-
laborative systems differ crucially from other distributed
systems in that not only the application, but also the inter-
face, is distributed. The trade-offs between availability,
transparency, consistency and responsiveness must be made
with this in mind, and so design must be constantly mindful
of the way in which application distribution and interface
distribution are mutually influential.

These issues become particularly problematic when trying to
design a CSCW toolkit, which will be used to create and sup-
port a wide range of applications. The toolkit designer is
even further separated from end-users than is the developer
of individual applications; and so it becomes even more dif-
ficult to understand the implications of distributed data
strategies for particular usage situations. Here, we need to
develop a general characterisation of distributed data man-
agement in CSCW.

3.1 Inconsistency Avoidance and Streams of
Activity

We begin with a simple but crucial observation; that most
approaches to data management in CSCW deal with incon-
sistency avoidance rather than consistency management.
Rather than working to achieve data consistency, they erect
barriers which prevent inconsistency arising in the first
place. This is a distributed systems approach; the system
manages the action of the separate components to avoid
inconsistency arising. However, applying this same strategy
to collaborative systems is problematic. Our distributed enti-
ties are users, not programs; and they're less prepared to
accept the imposition of global mechanisms to constrain
their activity!

Since inconsistency arises through the simultaneous execu-
tion of conflicting operations, the simplest approach to
avoiding inconsistency is to avoid simultaneous action over
individual data items. In other words, this approach attempts
to define single, global stream of activity over the data space.
Various common elements of CSCW systems embody this
model of a single stream of activity. Asynchronous access to
the workspace—using the distribution of work in time as a
means to control access—does just this, by sharing the single
stream between multiple participants, one at a time. Floor
control policies do likewise, as do conventional locking
mechanisms, from the point of view of individual data items;
locks ensure that each item is subject to a single thread of
control, currently available to whoever holds the lock.

The alternative approach which I wish to explore here ab
dons this attempt to construct or create a single stream
activity out of multi-user activity. Instead, it begins with
picture of multiple, simultaneous streams of activity over
user data, and then looks to manage divergence between
these streams. Divergence occurs when two streams h
different views of the system’s state or of the data. Th
could arise through simultaneous execution of conflictin
operations; or through a lag in the propagation of compati
operations.

Since this general view does not imply any particular numb
of parallel streams of activity, it encompasses the traditio
views outlined earlier; they correspond to the special case
just one stream. A model based on divergence and mult
streams of activity is the more general case; it subsumes
attempts to maintain a single thread of control. This gene
ity is critical to the design of a toolkit.

The purpose of exploring this divergence-based view is
pursuit of a generic, specialisable model of distributed d
management. By generic, I mean that this model describes
in general terms, a range of distribution strategies which c
be or have been adopted in a variety of systems. By special-
isable, I mean that any particular example can b
operationally described as a refinement of the general mo
The model, then, is not simply a tool for the analytic descr
tion of CSCW architectures and implementations; it can a
be used to generate new ones, as the basis of an implem
tion. It has been developed as part of Prospero, a toolkit
CSCW application design which employs explicit speciali
able models as a basis for highly flexible, open-ended des
(Dourish, 1995a); and the framework which it provides is t
basis for creating data management strategies in CS
applications.

3.2 Divergence

The elements of the divergence model are now in pla
First, we look upon activity within a collaborative system
the progress of multiple, simultaneous streams of activity.
Second, we look upon the emergence of inconsistency
divergence between these streams’ views of data. Hence,
view the problems of distributed data management in ter
of the re-synchronisation of divergent streams of activity. As
the collaboration progresses, the streams of activity conti
ally split and merge, diverge and synchronise. At points
synchronisation, they re-establish a common view of the d
store; further individual activity will cause them to diverg
again, necessitating further synchronisation further down
line.

3.2.1 Divergence and Versioning

This view of continual divergence and synchronisation
similar to that of versioning systems, which maintain a h
torical record of the versions of some object which ha
3

by
ity
sac-
ce
 be
n the
on
es
lica-
ed
an
s
on-

ans-
nd

d
rue
col-
his
ers
li-

om
 of
otes
l
id-

er-
loit

ree
hly
m
nd,
ion

ly
on
els

en-
are
or,
f

h
ime
existed over time. They typically allow multiple versions of
an object to exist at once, and in some, multiple versions can
be simultaneously active. GMD’s CoVer (Haake and Haake,
1993) uses a version system to manage the cooperative work.
CoVer, however, emphasises the creation and management
of parallel versions rather than the subsequent integration of
different versions (divergent streams). Munson and Dewan
(1994) go further in providing a framework explicitly organ-
ised around version merging, but, like Haake and Haake,
they primarily emphasise versioning and merging within a
context of “asynchronous” work, rather than as a more gen-
eral approach to distributed data management. I want to
consider the wider use of divergence as a general strategy
(discussed in more detail below).

3.2.2 Divergence and Operational Transformation

An alternative technique which has been employed effec-
tively in a number of collaborative systems is operational
transformation (Ellis and Gibbs, 1989; Beaudoiun-Lafon
and Karsenty, 1992). Operational transformation employs a
model of multiple streams, and uses a transformation matrix
to transform records of remote operations before applying
them locally, using information about the different contexts
in which the operations arose. Clearly, this approach is much
closer to the divergence model advocated here,but there are
two principal differences. First, just as versioning
approaches have typically emphasised asynchronous activ-
ity, operational transformation has typically emphasised
synchronous; as will be discussed, Prospero's model
attempts to be more general. Second, operational transfor-
mation relies upon the transformation matrix to resolve
conflicts (easier in the tightly-coupled, synchronous
domain); whereas Prospero employs a more general notion
of sychronisation which potentially offers a much wider
scale of applicability.

In many ways, what’s critical about the divergence view is
what it doesn’t say, because those areas of openness are the
keys to the specialisable nature of the model. So far, nothing
has been said about the defined units of activity, or what con-
stitutes a “stream”; nothing has been said about the
granularity of “divergence” per se and how it is recognised;
and nothing has been said about the timescale on which
divergence and resynchronisation takes place. In fact, these
elements of openness are critical to the particular advantages
of divergence for CSCW.

3.2.3 Divergence and Replicated Databases

One area of research in which divergence has been consid-
ered is replicated database management. In a replicated
database, multiple copies of all or part of the database are
maintained in parallel, in order to increase availability. The
relationship between this proposal and replicated databases
is discussed in detail elsewhere (Dourish, 1995b), but an out-
line is appropriate here.

In database work, consistency is normally maintained
supporting the transaction model, in which database activ
can be decomposed into a sequence of transactions. Tran
tions group related operations for atomic execution; sin
transactions execution is all-or-nothing, consistency can
maintained. In replicated databases, research focusses o
detection of transaction conflicts and on finding an executi
order which avoids potential conflicts. Various approach
can be used to sustain the transaction model under rep
tion. For instance, distributed conflict detection can be us
to generate the consistent serialisation globally, rather th
individually at each replication point; or rollback technique
can be used as an optimistic concurrency model, so that c
flicting transactions can be undone and reexecuted later.

Both of these techniques, and in general the use of the tr
action model, place the detection, avoidance a
management of conflicts within the database itself; unlike
this proposal, the application itself is typically not involve
in the conflict management process. This is generally t
when database technology is used as infrastructure for
laborative applications. However, there are times when t
model must break down. In Lotus Notes, for example, us
interact directly with document databases which are rep
cated amongst different sites but largely disconnected fr
each other, and so conflicts can occur during periods
simultaneous work (as here). However, in these cases, N
merely flags the conflict (i.e. it maintains what I will cal
“syntactic consistency”) and carries on, rather than prov
ing any means for conflict resolution.

Replicated databases deal with some problems which div
gence raises; however, they generally do not directly exp
divergence to support multi-user activity.

3.3 Capitalising on Divergence

Divergence-based data management in CSCW offers th
particular advantages over other techniques. First, it is hig
scalable, supporting inter-application communication fro
periods of milliseconds to periods of weeks or more. Seco
it opens up direct CSCW support for an area of applicat
use—one I term multi-synchronous—which are supported
poorly or not-at-all by existing approaches. Third, it direct
supports common patterns of working activity based
observational studies which are at odds with the mod
embodied in most systems today.

3.3.1 Scalability

Scalability refers to graceful operation across some dim
sion of system design. In particular, the dimension we
interested in here is the pace of interaction (Dix, 1992);
more technically, its relationship to the period o
synchronisation.

The period of synchronisation is the regularity with whic
two streams are synchronised, and hence the length of t
4

nd
e

y a

us,

lti-
to
-

of
-
ir

n
ivity

n
yn-
e
ter
g-
is

ent
nt

ly

tti
h
e
al
-
fic

ors
ved
hat
nts
iv-
an
ns
n as

c-
se
ce
lly

ol
ns
o-
that two streams will remain divergent. When the period is
very small, then synchronisation happens frequently, and
therefore the degree of divergence is typically very small
before the streams are synchronised and achieve a consistent
view of the data store. When individuals use a collaborative
system with a very small period of synchronisation, their
view of the shared workspace is highly consistent, since syn-
chronisation takes place often relative to their actions. This
essentially characterises “real-time” or synchronous group-
ware, in which users work “simultaneously” in some shared
space which communicates the effects of each user’s actions
to all participants “as they happen”. The synchronous ele-
ment arises from precisely the way in which the delay
between divergence(an action taking place) and synchroni-
sation (the action being propagated to other participants) is
small. This is one end of the “pace of interaction” dimension.

At the other end, synchronisation takes place much less fre-
quently in comparison to the actions of the users. There is
considerably more divergence, arising from different sorts of
activities which take place between synchronisation points.
When the period of synchronisation is measured in hours,
days or weeks, we approach what is traditionally thought of
as “asynchronous” interaction. A (well-worn) example
might be the collaborative authoring of an academic paper,
in which authors take turns revising drafts of individual sec-
tions or of the entire paper over a long period, passing the
emerging document between them.

Within the CSCW community, these sorts of asynchronous
interactions have generally been seen and presented as being
quite different from real-time or synchronous interactions;
“synchronous or asynchronous” has been a distinction made
in both design and analysis. However, by looking at them in
terms of synchronisation rather than synchrony, we can see
them them as two aspects of the same form of activity, with
different periods of synchronisation. Being highly scalable
across this dimension, the divergence approach provides the
basis of a toolkit which generalises across this distinction.

3.3.2 Multi-Synchronous Applications

In fact, we can exploit a divergence-based view of distrib-
uted data management to go further than standard
“synchronous” and “asynchronous” views of collaboration.

Standard techniques attempt to maintain the illusion of a
single stream of activity within the collaborative workspace.
We know, however, that groups don’t work that way; it’s
much more common to have a whole range of simultaneous
activities, possibly on different levels. Consider the collabo-
ratively-authored paper again. In the absence of restrictions
introduced by particular technologies or applications, indi-
viduals do not rigorously partition their activity in time, with
all activity concentrated in one place at a time; that is, they
do not work in the strongly asynchronous style, one at a time,
that many collaborative systems embody. A more familiar
scenario would see the authors each take a copy of the cur-

rent draft on paper (or on their portable computers...), a
work on them in parallel—at home, in the office, on th
plane or wherever. Here we have simultaneous work b
number of individuals and subsequent integration of those
separate activities; neither synchronous, nor asynchrono
but multi-synchronous work.

The divergence model, and in particular the notion of mu
ple, parallel streams of activity, is a natural approach
supporting this familiar pattern of collaborative work. Work
ing activities proceed in parallel (multiple streams
activity), during which time the participants are “discon
nected” (divergence occurs); and periodically the
individual efforts will be integrated (synchronisation) i
order to achieve a consistent state and progress the act
of the group.

Here, we're concerned with the nature of synchronisation;
this is what allows for flexiblity, and will be discussed i
more detail subsequently. At this stage, the details of s
chronisation in a variety of cases are not of prim
importance; examples will be considered in more depth la
on. For the moment, however, what’s important is to reco
nise the support for multi-synchronous working within th
model of distributed data management.

3.3.3 Supporting Opportunistic Work

However, the use of divergence-based data managem
techniques is not simply a route to supporting a differe
style of working; it’s also a means to more naturally support
the other working styles to which CSCW has traditional
addressed itself.

In studies of collaborative authoring, Beck and Bello
(1993) highlighted the opportunistic way in which muc
activity was performed. In particular, they pointed to th
ways in which opportunistic action on the parts of individu
collaborators often went against pre-defined roles, responsi
bilities or plans. Individuals acted in response to speci
circumstances; while the plans and strategies formed one
guide to their actions, they were by no means the only fact
at work, and in each of their case studies, they obser
occasions on which agreements about who would do w
and when were broken. Critically, these broken agreeme
are neither unusual nor problematic; this opportunistic act
ity is part of the natural process of collaboration. (Suchm
(1987) has, of course, made similar telling observatio
about the status of plans as resources for action rather tha
rigorous constraints upon it.)

The implication here is clear. We must be wary of introdu
ing technology which inappropriately reifies plans and u
pre-formed strategies to organise collaborative activity sin
observational studies show that they are opportunistica
broken in the course of an activity. Turn-taking floor contr
policies, or partitioning a workspace into separate regio
accessible to different individuals, are examples of techn
5

ng
ire
pa-
 the
arly
ra-
be
ve
—
he
tive
h
t

to
tic
the
ser
e
h
er,

le,
and
 we
f
 that

an
ork
sis-

is-
 is
ss

nsis-
ly

ion,
on-

ent
can

d a
es
he
 the
ot
ate-
e

ncy
logical approaches which structure user interaction around
plans of this sort. Once again, this contrasts the particular
needs of CSCW systems with traditional distributed systems,
and shows that a distributed interface is an important consid-
eration. To support the sort of opportunistic working
described by Beck and Bellotti, then, our technology must
relax rules about exclusion and partitioning; exactly the rules
which have been employed to maintain the fiction of the
single stream of activity.

So the same sorts of mechanisms which were described ear-
lier as supporting multi-synchronous collaboration have, in
fact, a wider range of applicability; they support a more nat-
uralistic means of making asynchronous collaboration work.
Divergence is a direct consequence of these ways of work-
ing; and so a model of distributed data management based on
a pattern of repeated divergence and sychronisation fits well
with support for a wide range of working styles.

4 Constraining Divergence:
Consistency Guarantees

The previous sections have outlined a model of distributed
data management based on a continual cycle of divergence
and synchronisation, and shown how this approach fits natu-
rally with the needs of CSCW systems.

However, there’s a problem; and it’s one which must be
addressed if we hope to use divergence as a strategy for
building CSCW systems rather than simply talking about
them. At any given point, how can we maintain reasonable
expectation that synchronisation will be possible? If two
streams diverge arbitrarily, how can we be sure that a consis-
tent view can be constructed later?

4.1 Syntactic and Semantic Consistency

The answer to this question has two components. The first
lies in the very general nature of “synchronisation”. The
notion of synchronisation is in not meant to imply that con-
sistency can be achieved automatically. Certainly, it may be
possible in many cases—particularly where divergence is
slight, or user activity over the data is highly structured—to
resolve divergence by purely automatic mechanisms; but
this automation is not central to the model. In other cases,
conflict resulolution may require human intervention. How-
ever, crucially, we can make a distinction between semantic
and syntactic consistency. By “semantic” consistency, I
mean that the data is internally “consistent” and “appropriate
for its intended use”. By “syntactic” consistency, I mean
merely that two streams see the same view of the data, even
if that view doesn’t necessarily make sense in context.

Consider an example in collaborative writing again. Some
changes—simple changes in formatting, text insertion, spell-
ing correction and so forth—can be automatically integrated
and so synchronisation is largely automatic (indeed, unless

this were true, it would be impossible to build shared editi
systems at all). Others, however, are conflicts which requ
human intervention. For instance, if two authors have se
rately reworked the same paragraph in such a way that
new paragraphs can not be integrated textually, then cle
the authors should be responsible for deciding which pa
graph text should be used, and how the conflict can
resolved. So human intervention is required to achie
semantic consistency; but a different form of consistency
syntactic—can be achieved without human intervention. T
system can apply the same approach which collabora
authors might well employ when out-of-touch with eac
other; preserving both texts, along with some marker tha
“this choice remains to be resolved”. This approach is aggre-
gation—the combination of unresolvable data elements
form a single larger unit. Aggregation achieves syntac
consistency, which retains the property we require at
system level—that the two streams share a view of the u
data. It is sufficient for the two individuals involved to b
able to carry on with their work for the moment, althoug
they will have to come back and sort out the problem lat
together.

So, by maintaining semantic consistency when possib
resorting to syntactic consistency when necessary,
potentially using weak techniques such as aggregation,
can achieve a working level of consistency under a variety o
circumstances. However, we can do more to help ensure
this works smoothly.

4.2 Consistency Guarantees

The second aspect of our solution is technological. We c
augment the divergence and synchronisation framew
with someething to manage expected divergence—con
tency guarantees.

Clearly, we can be more confident about achieving cons
tency if we have some idea of what type of divergence
likely to occur. The longer the periods of divergence, the le
sure we can be about this, and hence about achieving co
tency. If we knew in advance what sort of actions were like
to occur on a stream before the next point of synchronisat
we could make some kind of guarantee of the degree of c
sistency which can be achieved.

In Prospero, consistency guarantees explicitly repres
these interactions. Before divergence, one stream
“describe” the likely actions which will occur during the
period of divergence. For instance, if a user has opene
document for reading only, then it’s likely that no chang
will be made. Alternatively, it may be possible to say that t
expected changes are all structural, rather than affecting
content, or that the user will only add information but n
delete any. In exchange for this, the client can receive a st
ment of the level of synchronisation which can likely b
achieved at the next synchronisation point—a consiste
6

The

ca-
to

r of
ave
 in
 the
sis-
ples

ep-
ept
ns

pro-
the
e
ng
ght
en
t

ion
de
 to
he
rd

eri-
nts
ly-
s,

put
er-

er

the
ate
n-
ed.
wn,
yn-

n a

lass.

ata

 is
guarantee. Again, these are explicit computational artefacts
in Prospero. Essentially, the guarantee says, “if only actions
of those sorts occur, given other declarations of expected
activities in other streams, this level of consistency should be
achievable when synchronisation occurs.”

Consistency guarantees are a more general mechanism than
traditional locks, although they share certain properties.
Consistency guarantees are used to manage simultaneous
action (rather than to avoid it, which is the role of locks); and
as a result, they embody more limited guarantees of later
consistency (while locks guarantee absolute consistency).
However, they share the principle of providing information
about activities in advance, in exchange for guarantees of
later consistency. We must be careful to avoid the problems
of locking described above, such as poor support for oppor-
tunistic working. So Prospero introduces the following
principle: the client can break its “promise” about expected
behaviour, in which case the system will no longer be held to
its guarantee. If the client, or the user, performs actions
which were not part of its declaration, then it may only be
possible to achieve some weaker form of consistency (e.g.
through aggregation).

We use consistency guarantees, then, as a way to manage
expectations, but not to enforce activity. Space is too limited
here to go into the full details of this approach and the way
in which it is embodied in Prospero; and in later sections, I
will pass over the relationship between divergence, synchro-
nisation and consistency guarantees. A fuller discussion is
presented elsewhere (Dourish, 1995b).

5 Divergence in Prospero

Now that the major components of the divergence approach,
and its benefits, have been outlined, we can look at how it
operates in practice.

Prospero is a CSCW toolkit written in Common Lisp which
has been designed to provide application developers with a
great deal of flexibility in tailoring the toolkit’s components
and strategies to the needs of specific applications or usage
situations. It employs computational reflection (Smith,
1984) and open implementation (Kiczales, 1992) to open up
the implementation and allow application developers—the
toolkit’s users—principled access to internal aspects of the
toolkit. This approach exploits specialisable generic models
of the sort outlined here.

Prospero’s data distribution strategies are based on diver-
gence. The divergence/synchronisation patterns form a
generalised framework within which particular mechanisms
are implemented. This is encoded in an object-oriented class
hierarchy; new strategies are developed by specialising these
descriptions.

Here, I will present examples to illustrate the use of the
divergence mechanism in Prospero and show how diver-

gence supports a wide range of application strategies.
examples take the form of code fragments

2
 illustrating the

framework's specialisation to the needs of particular appli
tions. After presenting these examples, I’ll step back
consider the structure of the framework itself.

Before going into more detail, though, there are a numbe
points which should be made. First, the examples here h
been considerably simplified to illustrate the main points
the space available. In particular, as suggested above,
interaction between divergence management and con
tency guarantees has been omitted. Second, these exam
operate on three levels at once, and it’s critical to a conc
tual understanding of the approach that these are k
separate. The first level is that of the example applicatio
used to illustrate the ideas; the second level is the use of
gramming structures to realise these applications, and
third level—the most important for this exposition—is th
use of the divergence model in providing a programmi
framework. The examples have been structured to highli
this third level; the result is that certain liberties have be
taken with application requirements and efficien
programming.

5.1 Example: Shdr

Shdr is a simple multi-user shared whiteboard applicat
with a replicated architecture. Originally designed outsi
the divergence framework, its approach lends itself well
that model. Individual user actions are performed on t
user’s own copy of the data (the record of whiteboa
marks), and are recorded in a buffer of activity records. P
odically, the accumulated history is sent to other participa
using a simple protocol defined at the level of semantical
meaningful events (that is, in terms of drawing action
rather than in terms of mouse movements or other in
operations). The frequency of updates is variable, but gen
ally the event history will be transmitted multiple times p
second.

We can reconstruct the approach used by shdr within
divergence framework, as in figure 1. Local actions cre
divergence from a shared view of the whiteboard until sy
chronisation occurs when the history records are exchang
Each user’s actions are associated with a stream of their o
and are accumulated in the stream data structure until s
chronisation occurs.

In Prospero, user actions are explicitly represented withi
class hierarchy rooted in the abstract class <action> . Dif-
ferent types of action are instances of subclasses of this c
In this example, we use the subclass <edit-action> to
represent those actions which have an effect on the d

2. At this point, and as promised, I beg the indulgence of non-
technical readers. However, the structure of the code fragments
more important than their detail.
7

on-
g
ut
h a
ips

uc-
dy
nges
sed
lus-
n.

g
rds,
yn-

s"
n-

 the

ar-
ons,
f
ntil
 or
ore
ld
nd,
rise.
of
the

Figure 1: Mapping shdr’s strategy into the Prospero framework.

(defmethod perform-local-action ((action <edit-action>))
 (add-action-to-stream action *my-stream*))

(defmethod add-action-to-stream ((action <edit-action>) (stream <stream>))
 (push action (stream-actions stream)))

(defmethod add-action-to-stream :after (action (stream <bounded-stream>))
 (if (full-p stream)
 (synchronise stream (stream-remote stream))))

(defmethod synchronise ((stream <bounded-stream>) (remote <remote-stream>))
 (dolist (action (reverse (stream-actions stream)))
 (propagate-action-to-stream action remote))
 (stream-reset stream))

(defmethod propagate-action-to-stream (action <remote-stream>))
 (remote-call (stream-host stream) incorporate-action action))
store. So, actions which result in drawing activities (such as
making or erasing a mark) would be classes as instances of
<edit-action> , whereas those which have no effect
on the data itself, such as cursor movement, are not.

Activity streams are also explicitly represented, under the
abstract class <stream> . Two subclasses of <stream>
are used here. The first, <remote-stream> , represents
non-local streams (i.e. the streams of other users); the sec-
ond, <bounded-stream> , is a particular kind of local
stream with specialised behaviours. It captures those behav-
iours which are particular to the way in which we want to use
streams in this example; the way that shdr manages use data.
In particular, a <bounded-stream> is one which accu-
mulates some number of local actions and periodically
flushes them to other participants.

We map shdr’s strategy into the Prospero framework by
defining specific methods on a generic function framework

3

which in turn describes the general model that Prospero
embodies. These are the hooks onto which specialised
behaviour can be hung. For instance, we use the generic
function perform-local-action , which Prospero
uses to effect operations on the local copy of user data, as a
place to “attach” the association of user actions with a spe-
cific stream. This is defined for <edit-action>
operations, rather than all <action> operations, since it is
only the actions which cause a change in the data store which
contribute to divergence between the two streams. Next, the
test for whether a stream is “full” and needs to be synchro-
nised—a behaviour particular to bounded streams—is made
after any new action record is stored there, and so the after-
method we define for add-action-to-stream is
specialised on <bounded-stream> rather than
<stream> and hence applies only to bounded streams.

5.2 Example: Source Code Control

As a second example, consider a traditional source code c
trol system in a collaborative software engineerin
environment. Typically, these will use a check-in/check-o
model for software components or modules, together wit
dependency mechanism which records relationsh
between them.

With the previous example under our belts, most of the str
ture of this example is already provided for us. We alrea
have a means to accumulate and distribute sets of cha
which arise in one place or another, which can be reu
here. The most important change we have to make, as il
trated in figure 2, concerns user-initated synchronisatio
The code fragment uses a new class of action (called <syn-
chronise-action>) to distinguish user operations
which explicitly force synchronisation. For normal editin
activities, the system simply accumulates the action reco
as before. However, for synchronisation actions, the s
chronisation function is invoked.

5.3 Example: Multi-synchronous Editing

The first example modelled a fairly standard "synchronou
tool while the second used an application type normally co
sidered asynchronous. As a final example, let's consider
implications of multi-synchronous working.

With the exception of the possible use of consistency gu
antees, which are omitted here due to space considerati
multi-synchronous activity is no different at the point o
divergence Once again, we can accumulate actions u
some synchronisation action occurs, either automatically
by user request. This, however, is the point at which a m
complex strategy is required. In the first example, we cou
simply ignore data consistency problems, and in the seco
asynchronous access ensured that such problems didn't a
In this example, we have to be aware of the possibility
mutually inconsistent changes and act accordingly. So

3. I use CLOS terminology here for object-oriented concepts. In
Smalltalk, the closest relative of a “generic function” is a “mes-
sage”; in C++, a “virtual function”.
8

 in
ns.
ich
nt.
s-

.
dif-
er

 of
odel
se

nd
nts
es-
 the
e

.
h
ar-
nd
re
can
ion
sh,

 Figure 2: Check-in/check-out strategy.

(defmethod add-action-to-stream ((action <edit-action>) stream)
 (push action (stream-actions stream)))

(defmethod add-action-to-stream ((action <syncrhonise-action>) stream)
 (synchronise stream (stream-remote stream)))

(defmethod synchronise (stream (remote <remote-stream>))
 ;; ... as figure 1 ...
 ...)

(defmethod propagate-action-to-stream (action (stream <remote-stream>))
 ;; ... as figure 1 ...
 ...)
focus of attention in this case is on the synchronisation
procedures.

The code frament in figure 3 illustrates two points. The first
is that synchronisation is now requires processing (i.e. it's
not simply the transmission of information); and the second
is that its now the mutual achievement of both parties (i.e. its
no longer sufficient for the originating side to send the infor-
mation and move on).

The approach is very simple. For the first time, the synchro-
nisation procedure pays attention to the return value of
propagate-action-to-stream , since this can
return information from the remote side. Here, we work to
the model that integration work will be done by the remote
stream, which may pass back modified data to reflect the res-
olution of conflicts; and so it must be reintegated into the
local stream's view. We also see the way in which incor-
porate-action is processes records of activities
originating in some other stream. In this case, we use the
simplest strategy; if the remote action is an edit action, and if
it is compatible with local changes, then it is applied, and if
not, then syntactic consistency is achieved through aggrega-
tion. Since the open strategy used in Prospero allows
specialised definition of functions such as compatible-
p and locally-perform , then we can be quite loose
in what is accepted, and work to achieve semantic consis-
tency when possible.

5.4 Specialisation in Prospero

From these examples, a pattern has built up of the way
which Prospero supports a diverse range of applicatio
First, Prospero provides a set of default behaviours wh
embody mechanisms for collaborative data manageme
This is the function of a toolkit, and so in this respect, Pro
pero is not particularly different from other toolkits
(Clearly, the detail of Prospero’s management strategies
fers from the particular strategies employed in specific oth
toolkits; but in the more general sense of the provision
management mechanisms, it accords to the standard m
of toolkits.) Second, and critically, Prospero structures the
mechanisms within an object-oriented framework a
reveals to applications and application developers eleme
of this framework as a means to introspection and interc
sion. Prospero, then, provides two, orthogonal interfaces
functionality of its collaboration support mechanisms. Th
first, traditional or base-level interface provides facilities
which clients can use to create collaborative applications
The second, meta-level interface provides a means by whic
internal functionality can be specialised to the needs of p
ticular applications. Design decisions are not locked in a
hidden behind traditional abstraction barriers but a
revealed so that they can be manipulated, so the toolkit
be used to support a much wider range of applicat
requirements than would otherwise be possible (Douri
1995a).
9

(defmethod synchronise (stream (remote <remote-stream>))
 (dolist (action (reverse (stream-actions stream))
 (integrate (propagate-action-to-stream action remote)))
 (stream-reset stream))

(defmethod propagate-action-to-stream (action (stream <remote-stream>))
 (remote-call (stream-host stream) incorporate-action action))

(defmethod incorporate-action (action <edit-action>)
 (if (compatible-p action) (locally-perform action)
 (aggregate action)))

 Figure 3: Supporting multi-synchronous activity.

in
l

a
f

, R.
up

e
trol

g

n

0):
A
s

ct

n
g

6 Summary

Managing the consistency of distributed data is a critical
issue for many collaborative systems. However, the interac-
tive nature of CSCW systems means that many of the
techniques which might be adopted from other areas of dis-
tributed systems engineering are not appropriate. Even when
they can be used, the implications of particular strategies
typically limit them to a restricted set of applications; and
hence they are not suitable for a toolkit to support a wide
range of applications.

This paper has outlined an alternative approach. Rather than
attempting to maintain the illusion of a single stream of
activity, it is based on divergence and synchronisation
between multiple, parallel streams. This general approach is
particularly suited to the requirements of CSCW applica-
tions, and, as a specialisable model, it can be used as flexible
basis for development. Along with the consistency guarantee
mechanism, divergence forms the basis of the distributed
data management in Propsero, a reflective toolkit for the
design of collaborative applications. Prospero is a vehicle for
the exploration of issues of flexibility and openness in the
design and use of collaborative applications; and the use of
divergence is a critical component of its open approach to
CSCW design.

Acknowledgements

Alan Dix and John Lamping provided inspiration, while Dik
Bentley, Jon Crowcroft and the conference reviewers
improved the quality of exposition.

References

Ahuja, S., Ensor, J. and Lucco, S. (1990): “A Comparison of
Application Sharing Mechanisms in Real-time Desktop
Conferencing”, in Proc. ACM Conf. Office Information
Systems COIS’90, Boston, 1990.

Beaudouin-Lafon, M. and Karsenty, A. (1992):
"Transparency and Awareness in Real-Time Groupware
Systems", in Proc. ACM Conf. User Interface Software and
Technology UIST'92, Monterey, Ca., November 1992.

Beck, E. and Bellotti, V. (1993): “Informed Opportunism as
Strategy”, in Proc. Third Eruopean Conference on
Computer-Supported Cooperative Work ECSCW’93,
Milano, Italy, 1993.

Dix, A. (1992): “Pace and Interaction”, in People and
Computers VII: Proc. of HCI’92, York, UK, 1992.

Dourish, P. and Bellotti, V. (1992): “Awareness and
Coordination in Shared Workspaces”, in Proc. ACM Confe.
Computer-Supported Cooperative Work CSCW’92,
Toronto, Canada, 1992.

Dourish, P. (1995a): “Developing a Reflective Model of
Collaborative Systems,” ACM Transactions on Computer-
Human Interaction, 1995 (in press).

Dourish, P. (1995b): “Consistency Guarantees: Exploiting
Operation Semantics for Consistency Management
Collaborative Systems”, Rank Xerox EuroPARC Technica
Report, Cambridge, UK, 1995.

Ellis, C. and Gibbs, S. (1989): “Concurrency Control in
Groupware System”, in Proc. ACM Conf.Manamagement o
Data SIGMOD’89, Seattle, Washington, 1989.

Greenberg, S., Roseman, R., Webster, D. and Bohnet
(1992): “Human and Technical Factors in Distributed Gro
Drawing Tools”, Interacting with Computers, 4(3), pp. 364-
392, 1992.

Greenberg, S. and Marwood, D. (1994): “Real-tim
Grouopware as a Distributed System: Concurrency Con
and its Effect on the Interface”, in Proc. ACM Conf
Computer Supported Coooperative Work CSCW’94, Chapel
Hill, North Carolina, 1994.

Haake, A. and Haake, J. (1993): “Take CoVer: Exploitin
Version Management in Collaborative Systems”, in Proc.
InterCHI’93, Amsterdam, Netherlands, 1993.

Kiczales, G. (1992): “Towards a New Model of Abstractio
in the Engineering of Software”, in Proc. Workshop on
Reflection and Meta-level Architectures IMSA’92, Tokyo,
Japan, 1992.

Lauwers, C., Joseph, T., Lantz, K. and Romanow, A. (199
“Replicated Architectures for Shared Window Systems:
Critique”, in Proc. ACM Conf. Office Information System
COIS’90, Boston, Massachussetts, 1990.

Munson, J. and Dewan, P. (1994): “A Flexible Obje
Merging Framework”, in Proc. ACM Conf. Computer-
Supported Cooperative Work CSCW’94, Chapel Hill, North
Carolina, 1994.

Smith, B. (1984): “Reflection and Semantics in LISP”, i
Proc. ACM Symposium on Principles of Programmin
Languages POPL, Salt Lake City, Utah, 1984.

Suchman, L. (1987): “Plans and Situated Actions”,
Cambridge University Press, Cambridge, UK, 1987.
10

	Abstract
	1 Introduction: Distributed Data Management
	2 Distributed Data and Collaborative Work
	2.1 Distribution
	2.2 Management

	3 Managing Divergence
	3.1 Inconsistency Avoidance and Streams of Activity
	3.2 Divergence
	3.2.1 Divergence and Versioning
	3.2.2 Divergence and Operational Transformation
	3.2.3 Divergence and Replicated Databases

	3.3 Capitalising on Divergence
	3.3.1 Scalability
	3.3.2 Multi-Synchronous Applications
	3.3.3 Supporting Opportunistic Work

	4 Constraining Divergence: Consistency Guarantees
	4.1 Syntactic and Semantic Consistency
	4.2 Consistency Guarantees

	5 Divergence in Prospero
	5.1 Example: Shdr
	5.2 Example: Source Code Control
	5.3 Example: Multi-synchronous Editing
	5.4 Specialisation in Prospero

	6 Summary
	Acknowledgements
	References

	The Parting of the Ways: Divergence, Data Management and Collaborative Work
	Paul Dourish
	Rank Xerox Research Centre, Cambridge Laboratory (EuroPARC) and Dept of Computer Science, Univers...
	dourish@europarc.xerox.com

