Consistency Guarantees: Exploiting Application Semantics for
Consistency Management in a Collaboration Toolkit

Paul Dourish

Rank Xerox Research Centre, Cambridge Laboratory (EuroPARC)
and Department of Computer Science, University College, London

dourish@europarc.xerox.com

Abstract to toolkit design, and this paper will discuss a new technique

CSCW toolkits are designed to ease development of cCSCWH€veloped in Prospero, a prototype CSCW toolkits. First,

applications. They provide common, reusable componentst?ough. we will consider two examples of studies which

for cooperative system design, allowing application pro-
rammers to concentrate on the details of their particular . . .
gpplications. The underlying assumption is that too?kit com- -1 .The Relat|0n§h|p between Pe3|gn ar-1d Use)
ponents can be designed and implemented independently dPourish and Bellotti [1992] describe experimental studies of
the details of particular applications. However, there is gooda collaborative text editor, supporting groups of three authors
evidence to suggest that this is not true. in brainstorming and design tasks. The editor, ShrEdit
.) . [McGuffin and Olson, 1992], gives each author a separate
This paper presents a new technique which allows programxit point in a synchronously-shared text workspace. Each
structures can be adapted to different circumstances. Prosyjthough mechanisms are provided for synchronising views,
pero is a toolkit which uses this technique to meet differentracking others and so forth. An implicit region-locking

highlight the problem.

application needs flexibly. mechanism helps maintain consistency and avoid conflicts.
Keywords: application control, CSCW toolkits, Prospero, Working in ayshared data space, authors can see the effects
consistency management, consistency guarantees. of each other’s work as it is performed.

) Dourish and Bellotti’'s analysis highlights the collaborators’
1 Introduction continual use of the visualisations of each other’s work to

CSCW toolkits (such as Rendezvous [Hill et al., 1994], Maintain an ongoing awareness of the work of the group.
GroupKit [Roseman and Greenberg, 1996] or Suite [DewanTms allows them to continually relate their own work to that
and Choudhary, 1992]) are systems which make it easier folf others and of the group as a whole, and so achieve their
programmers to develop CSCW applications. They proVidelnformal f‘lelSlon_ of labour”. Unlike systems using expllc_lt
generic, reusable components and behaviours which applical0les or information exchange to manage group behaviour
tion programmers can incorporate into their systems.and provide a sense of ongoing activity, ShrEdit's shared
Components might include telepointers, shared data objectsféedback approach is more open and flexible and leads to
or mechanisms to join and leave conferences. Using thesénuch more fluid transitions between forms of working, by
components to capture common system elements, programprowdlng a continual sense of both the character and content

mers can concentrate on the particular details of their own,0f other people’s work. Similar mechanisms have been
specific applications. shown to operate in real-world collaborations in physical set-

) N)))) tings [e.g. Heath and Luff, 1992].
There is a critical assumption which underpins this sort of

reuse. It is that the components provided by the toolkit canGreenberg and Marwood [1994] discuss a range of distrib-
be designed independently of particular applications, anduted systems techniques used in CSCW systems to manage
can be reused wholesale to meet the different needs of differcollaborative access to distributed data. CSCW systems must
ent applications. However, there is evidence that this™Maintain representations of users’ work which may need be
assumption is problematic. This evidence suggests that thd® be V|S|b_le or acce55|ble_to dlfferent users at the same time,
usage patternsf CSCW applications depend, in a detailed and techniques for managing this are frequently embedded in
way, on the specifics of the component design. In other CSCW toolkits. Greenberg and Marwood show that
words, the details of toolkit components are as much of acommon mechanisms, such as locking and serialisation,
factor in supporting collaborative behaviour as the details of infroduce temporal dependencies which restrict the patterns

the application. The independence of toolkit from applica- Of collaboration in which groups can engage. For instance,
tion is undermined. the overhead of “locking” data representations can interfere

with free-wheeling interaction (such as brainstorming); and

This relationship, between details of system design andthe use of “rollback” techniques can actually cause data to
details of use, suggests that we should take a new approacghange under the users’ feet.

The fundamental point which Greenberg and Marwood point other techniques, before providing examples of how pro-
out is that the “distributed system” elements of collaborative grammers can use these techniques to make the toolkit
applications, which are often embodied in toolkit compo- responsive to application requirements.

nents, cannot be considered independently of the

interactional ones. They are mutually influential. 2 Divergence in Prospero

Although this paper concentrates on consistency manage-
ment, rather than data distribution, a brief sketch of the data
management mechanism is necessary here to set thé.scene

1.2 Toolkit Structures and Application Needs

The studies outlined above illustrate that the activities and
interactions of collaborating individuals are organised not
only around the work that they’re doing, but also around the Prospero’s data distribution strategy is basedivergence
details of the tools they have for doing that work—the col- [Dourish, 1995b]. Some approaches (such as centralisation
laborative technologies which support them. or floor control) control data flow and management by main-
taining a model of one-at-a-time action; that is, only one

This observation undermines the *independence assumpyergon can operate over the data at once, and so only one
tion” at _the_ heart of toolkit deglgn. The mdepenqlence copy of any data item is “active” at a time. In Prospero’s
assumption is that the collaborative components which are,

- . ; S - “model, on the other hand, multiple users can act over data
embodied in a toolkit are independent of the applications in

) . ; . items at once. These separate actions can cause different
which they will be used. Toolkit designers are concerned ,cars to have different views of the data; thigivergence

The complementary operation is tlgnchronisationof

' T 3hese divergent views to re-establish a common view of the
objects, then they want application programmers to be abléy,i3 5o data management takes the form of the continual

to use those in any situation where shared data objects argj,ergence and synchronisation of views of the data. Partic-

needed. Unfortunately, we've seen that the detailsoof lar threads of activity which diverge from each other are
objects are shared has an impact on the kinds of sharing angd,edstreams

collaborative behaviour that takes place. Toolkit designers
have to provide sharing mechanisms to make their shareddourish [1995b] discusses three primary benefits of this
data objects work; but these mechanisms cannot be comstrategy in a CSCW toolkit.

pletely independent of the application’s requirements 1

. : . It can be applied across a range of synchronisation fre-
concerning patterns of interaction.

guencies. Frequent synchronisation results in “synchro-

Prospero is a prototype CSCW toolkit which addresses these nhous™style interaction, where group members can

sorts of problems. Most toolkit designs try to exploit the gen-
eral applicability of components to a range of situations,
leaving application programmers to map application needs
onto the general facilities which the toolkit provides. Pros-

pero's approach is different. Using a recent software
abstraction technique called Open Implementation [Kicza-
les, 1996], Prospero allows application programmers to
tailor the toolkit, and match toolkit facilities onto the needs

of the application, rather than the other way around.

This approach is used to give application programmers con-
trol over a number of different areas of toolkit functionality.
This paper describes a mechanism catledsistency guar-
anteesvhich Prospero uses to give applications control over
the consistency management mechanisms in the toolkit.
Consistency mechanisms are the parts of the toolkit which
ensure that data representations remain consistent eve
though users may attempt to make simultaneous, conflicting

observe each other’'s work as it progresses; infrequent
synchronisation is more akin to traditional “asynchro-
nous” application styles.

2. Since it incorporates a notion of resolvable, simulta-

neous work, it provides support for parallel, discon-
nected activity—"multi-synchronous” work. Parallel
simultaneous activity is a common style of working, but
traditionally CSCW systems have provided poor support
for it.

3. For the same reason, it also supports the sorts of oppor-

tunistic activity in collaborative work which are revealed
by observational studies (e.g. [Beck and Bellotti, 1993]),
in which pre-arranged plans of activity and divisions of
labour—where they even exist—are subject to local
reorganisation and rearrangement.

ith that background, we can now focus on consistency

changes (such as when one user changes an object's colofffanagement in particular.

to blue, and another changes it to red). The goal is to allow

the programmer to express aspects of the application3 ~ Constraining Divergence

domain, so that the toolkit can manage consistency in a wayin database terms, Prospero’s divergence/synchronisation
which is responsive to the needs of the particular strategy is amptimisticone. It presumes that simultaneous

applications.

The next section outlines some background, and briefly sum
marises how Prospero deals with the distributed data ove
which consistency mechanisms operate. The section which

actions will probably not result in conflict, but that if conflict
doesoccur, things can be sorted out later. Locking, on the
pther hand, is pessimisticstrategy; it presumes that simul-

follows introduces promises and guarantees, the fundamen

tal mechanisms in the new consistency technique. | will then1. The reader is referred to [Dourish, 1995a] and [Dourish, 1995b]
discuss Prospero’s mechanisms in comparison with somégor more information and background on the techniques used.

2

taneous operations are likely to lead to conflict, and solnstead, the toolkit can focus on making the data consistent
should be prevented. for the purposes at hanth other words, it is taking advan-

Pessimistic strateqies quarantee the maintenance of Ccms.tage of details about the application domain and the
Imist gies gu ! 'Fircumstances in which the toolkit is being used.

tency, since they prevent the simultaneous action which
would lead to inconsistency on the first place. On the otherHowever, while using application-specific synchronisation

hand, optimistic strategies support more open styles of work-might postponesome of the problems of unbounded diver-

ing. Prospero uses an optimistic strategy because theyence, the basic problem of unbounded inconsistency
freedom and flexibility it provides is better suited to the remains with us. The same basic technique—taking advan-
needs of collaborative work. The price of this freedom is thattage of application semantics—can be applied to this
the toolkit must provide explicit means to maintain problem. Prospero introduces the notion of application-spe-
consistency. cific consistency guarantees to control for the divergence
process using details of particular circumstances. The roots

The problem is that the divergence moglef semakes no of this mechanism lie in the strategies of existing systems.

commitment to the nature or extent of the divergence. The
longer two streams of activity remain active but unsynchro-
nised, the greater their potential divergence, and so the mor

complex it becomes to resolve conflicts at synchronisation- . o .
time. Indeed, there’s nothing to say that the systemewét divergence (or, more accurately, for avoiding it altogether) is

be able to resolve two arbitrary streams into a single, coherlocking Locking is widely used in _curre?t C§CW systems.
ent view of the data store. Essentially, unconstrained!MPlicitly or explicitly, a user obtains a *lock” for some or

divergence leads to arbitrarily complex synchronisation; and@!! Of the data store. Since update access is restricted to cli-
that can be a practical inconvenience, to say the least ents holding a current lock, the availability of locks controls
' ' the emergence of divergence; and since, in typical configu-

3.1 Variable Consistency rations, only one client can hold a lock on a given piece of
data at any time, divergence is avoided. This sort of locking
"hehaviour can also be exhibited by systems in which locks
don’t appear explicitly in the interface; floor-control algo-
By “semantic” consistency, | mean that the data store con-rithms and other forms of asynchronous access are also
tains no inconsistencies from the perspective of the particular cases of the general locking approach.

application domain. The data is fit for its intended purpose.
This is the conventional, intuitive form of consistency in col-
laborative and distributed systems. Appeal to “syntactic”
consistency, on the other hand, allows for semantic inconsis
tencies, but ensures that the data store is structurally soun
so that some kind of activity can continue.

3.3 Constraining Divergence with Locks
ei'he most obvious traditional mechanism for constraining

The first approach used in Prospero is to distinguish betwee
syntacticandsemanticconsistency.

As outlined earlier, Greenberg and Marwood [1994] discuss
some issues surrounding concurrency control in CSCW sys-
tems. Most strategies for managing distributed data have
‘arisen in arenas such as distributed databases, distributed file
ystems, etc. Greenberg and Marwood point to a range of
ways in which these approaches have interactional implica-
As an example, consider a multi-user text editor which tions. Collaborative systems differ from many traditional
attempts to resolve a conflict—the same paragraph has beeflistributed systems in that CSCW, not only the applica-
completely rewritten, separately, by two different authors. If tion, but also the interface, is distribute@he choice of
the system were to throw away (say) the earlier of the twoconcurrency management strategy can have a significant
paragraphs, then it would be preserving semantic consisimpact on the styles of interaction which an application can
tency (although the reader should note that consistency doesupport. One obvious example is the way in which the tem-
not imply “correctness”). However, this “lossy” approach is poral properties of concurrency control strategies, such as
not necessarily the best suited to the needs of collaboratingelative execution times of actions over shared data, can
authors, even though the synchronisation procedure isinterfere with interactional requirements in the interface.
straight-forward. An alternative mechanism would be to Similarly, approaches which apply a post-hoc serialisation
retainboththe paragraphs within a structure which flags this on user actions may introduce unexpected interface behav-
as a conflict which the system cannot resolve—essentiallyiours (such as undo-ing actions).
preserving the text for the authors to sort out later. This

approach preserves syntactic. (structl_JraI) consistency. Bystrategies have been used in CSCW systems, varying in how
only preserving syntactic consistency in some cases, rathe{he locks are requested, obtained, granted and relinquished,

tha’? semantic consistency, a d|vergence-bas_ed System Cafl ot kinds of operations require locks, and the granularity of
achieve synchronisation more often, and continue operation

in the face of potential problems. Consistency from the data units controlled by a single lock. However, the basic

. PR . attern (lock-act-release) remains the same, and so do the
users’ perspective is often not the same as consistency fro asic problems of locking for CSCW applications. Locking
the system’s. :

is a pessimistic concurrency strategy; on the assumption that
any conflict could be damaging, it prevents conflict arising

32 Using Appll(?atlon Semf’;\ntlcs i) _in the first place. Locking restricts activity on the data store,
The key observation which lies behind the variable consis-znd hence restricts the activity of users.

tency approach above is that the toolkit components,
themselves, are not the final arbiters of “consistency”.

Locking is a very general approach. A wide range of locking

In many applications, it's quite appropriate to use locks, andstrict locking exchange (an absolute guarantee for an abso-
to avoid quite strictly the danger of conflict and potential lute promise), then it becomes obvious that this is a
inconsistency. For applications in which data integrity is negotiation; a client may make increasingly restrictive prom-
critical, and intra-group interactivity low—such as collabo- ises in exchange for increasingly strong guarantees of
rative software development—Ilocking strategies (such as theconsistency. The promise/guarantee cycle is the basis of the
check-out model) can be valuable, appropriate and effective consistency guarantees approach.

In other applications, though, strict locking mechanisms can, . t of hani I better interleavi ¢ activit
interfere with group interaction. Some systems, such as IS sort of mechanism allows better intérieaving of activity

ShrEdit, usémplicit locks, which are silently obtained and g‘c"’t‘.“ .quallcl)gks'b';{gp égi.g%r;’gr astl)ge’t mc;};et iecttatlnlrs\sozzﬁugi
released in the course of editing activity, to reduce the level ity W ISl ut w :

of interference and overhead. However, the locking strategys'mur[alneOUSIy performed by multiple users. From the client

is still visible to the group through the effect it has on the side, the ability to accept weaker guarantees than locks

interface, even in cases where working activity would not Would provide may allow activity to proceed where other-
result in conflict or inconsistency [Dourish and Bellott, wise it would be blocked. This flexible interleaving retains

1992]. In the case of even less structured, free-form data col:[h.e |mp(_)rtantpred|c‘,:t|ve eIerPent Of. locking—that is, _the
laboration such as a shared whiteboard. even thecllent still makes “up-front” promises of future activity
interactional overhead of implicit Iocking, becomes which give the server a better picture of the extent of future

unwieldy, and explicit locks are almost unusable. divergence and so enable more informed decision-making.

: : . - . However, this generalisation still suffers one of the major
Prospero is a toolkit for creating collaborative applications, : . ; ‘
and 50 it must embody more fle?dble mechanismpspwhich canProblems with the locking approach applied to CSCW. Since
be adapted or appropriated for a range of application needglvergence is still preceded by a description of expected

and interactional styles. Clearly, something more flexible activ_ities, thg possibil_ity of opportunistiq qctivity is .S.ti”
than locking—even when supp(;rted by a range of strate-restricted. This was raised earlier as a criticism of traditional

: : locking mechanisms, which interfere with the way in which
gies—is needed. . L 4
collaborative work proceeds naturalistically. Obviously we
34 Promises and Guarantees would like to address this problem in our redesign. So we
' find fexibl h than th ___introduce the second principkeclient can break a promise,
lln ?('.1 attempr: to find a rgore exible approgc thant edsm‘]itin which case the server is no longer held to its guarantee
ocking mel(l:(anism, and one more a.ttrl]me ot ‘T. nee sc; %0 the characterisation of future activity which a client
CSCW toolkit, our starting point is with a generalisation of o1 as__its promise—may not be binding; when the time

the traditional locking process. Locking is essentially a comeg, the client (or the user) may actually do something
means by which a clienteceives some guarantee of future ¢\se However, in this case, the server can no longer be held

consistency (“no other user can make changes, so COnsisy, the guarantee it made of the level of consistency which can
tency will be maintained”) in exchange for a prediction of po 4chieved.

the client’s future activity (“changes will only be applied to
the locked region”). So we state this as the first principle: With this second principle in place, the consistency guaran-
locks are guarantees of achievable consistency tee mechanism provides more direct support for

. L . o opportunistic working styles. Just as in naturalistic work,
Immediately, this view has a number of interesting implica- ganing outside previously-agreed lines is not impossible;
tions. First, there’s clearly a wide range of such guarantees, \+ the mechanism provides stronger guarantees when used

which could b?] made.hN?(rmally, |°le‘5 are aII-or-n]E)thing. cooperatively by both client and server. Of course, the user
guarantees. When we think in terms of guarantees of ConsiSpeaq not (often, should not) be exposed to this complexity

tency, then we can consider distinguishing between differenty,y nyredictability. In a toolkit, these facilities are provided
degreesof consistency, and the fact that a guarantee maygq, that they can be appropriately deployed (or not) by an
only hold for limited consistency (in the worst case, perhaps’application developer. A developer might chooss to
just syntactic consistency). Determining the achievable Ieveleprit the second principl® a given applicationwhere

of consistency is the responsibility of the server, based on,jication requirements or usage patterns would make it
currently-issued promises and the information about futurejn, 5o ronriate. These might include cases where the resulting
activity which the client provides. The nature of these client .jicts may be too difficult to synchronise later, or where

promises” will be discussed in more detail later; for NOW, y,qq of integrity in the data-store would be unacceptable. In
though, it's enoqgh to say that they are char_acten_sanpns Olther cases, an application developer might want to warn the
expected behaviour, such as whether the client will simply ser when such a situation was likely to occur, so that an

read data, write new data but not delete anything currentj,c,meqd decision could be made as appropriate to the par-
delete or modify existing data, and so forth. So, second, theSgc,jar circumstances. The framework supports these
promises could vary in specificity and detail, just as the guar-pahaviours. but doesn't require them.

antees can vary. Third, and perhaps most importantly, when

we think of this exchange as being less absolute than theéS0, adding consistency guarantees to Prospero provides a
way to overcome the problem of unbounded divergence;
2. Although I'll use the termslient andserver these mechanisms €y act as a curb to Prospero’s optimism. They provide
also apply to peer-to-peer structures. In fact, Prospero uses a peerSOme of the predl(;table consistency Wh|Ch.pessm'3“C strate-
to-peer model. gies support, but in a way which is sensitive to patterns of

4

collaborative work (rather than simply distributed systems). can guarantee that the transactions can safely be executed in
The examples in section six will show how these potential parallel. On the other hand, the presence of a conflict does

benefits are realised in actual applications. not imply that inconsistencwill result. For example, con-
sider a transaction which issues a read request but doesn’t
4 Related Approaches in Database use that result as part of a later computation (or does, but is
Research robust to particular changes). It could, quite safely, be exe-

_))) _ cuted in parallel with another which writes that same data.
The variable consistency approach outlined in section 3.1However, that would signal eead/write conflict and the
used knowledge of application semantics to specialise anthotential concurrency would be lost. More generally (and
improve the synchronisation process. Essentially, the consismore practically), transaction concurrency (and hence

tency guarantee mechanism introduced in section 3.4 usegroughput) could be improved with more detailed access to
knowledge of application semantics—and the semantics oftransaction semantics, or to application semantics.

particular operations—to increase thygportunitiesfor con-)
currency and parallel activity. Approaches of this sort have been explored by a number of

o - researchers. For instance, Herlihy [1990] exploits the seman-
Perhaps unsurprisingly, similar approaches have beenjcs of operations over abstract data types to produce
explored in database design, since database managemegtlidation criteria, which are applied before commit-time to
systems also involve multi-user activity over shared and per-yalidate transaction schedules. His approach uses predefined
haps replicated data. Barghouti and Kaiser [1991] provide asets of conflicting operations, derived from the data type
comprehensive survey of advanced concurrency controlspecifications. Looking at the data type operations which
techniques. However, since databases tend to hide the actitransactions execute allows a finer-grained view of potential
ities of multiple parties from each other (preserving the conflicts, and increases concurrency. Farrag and Oszu
illusion of sole access to a system), the primary (although nof1989] exploit operation semantics by introducing a break-
exclusive) focus of the database community has been orpoint mechanism into transactions, producing transaction
using concurrency to improve performance rather than toschedules in which semantically-safe transaction interleav-
open up data models for collaboration. Two aspects of dataings are allowed. Again, the potential for concurrency is

base research are particularly related to the consistencyncreased without disrupting transactional properties.
guarantees approach: semantics-based concurrency and

application-specific conflict resolution. One potential problem with each of these approaches is that
they requirepre-computationof conflicts, compatibilities
4.1 Semantics-Based Concurrency and safe partial break-points. The implication is that these

gnechanisms could not be seamlessly integrated into a gen-
éral-purpose database management system. However, this
doesn’t pose a problem for using semantically-based tech-
niques in Prospero, since Prospero doesn’'t need to provide a
complete general-purpose service independent of any appli-
cation. Instead, it provides a framework within which
eapplication-specific semantics can be added by application
&rogrammers (rather than being known to the system in

delays introduced while calculating appropriate serialisation advance). Particular behaviours are coded in Prospero in full
knowledge of the relevant semantic structure of application

orders for transaction streams will not have a significant X

impact on interactive performance. However, shared dataoPerations.
stores supporting interactive collaborative systems require4 2 Application-Specific Conflict Resolution
crisp performance, and so it's useful to look at how database °

research has investigated the opportunities to increase con Sécond approach from database research which is relevant
currency in transaction execution. to the consistency guarantees mechanism is the use of appli-

N o cation-specific conflict resolution. The Bayou system, under
Traditional database systems detect two principal forms ofdevelopment at Xerox PARC, is a replicated database system
conflict. Awrite/write conflict occurs when two transactions for mobile computers, which are frequently active but dis-
write to the same location in the database. An ordering has tonnected from their peers. In most systems, disconnection
be established for these transactions to retain the model ofs an unusual state, and the systems can normally be assumed

atomic, serialised execution. Aead/write conflict occurs o be connected to each other; but in mobile applications, dis-
when one transaction writes, and the other reads, the samgonnection is the rule, rather than the exception.

data. Inconsistency can result if the read falls before the write ,)) . o
during simultaneous execution. If conflicting transactions Bayou provides a mechanism by which client applications
are executed concurrently, then the transaction model's seri¢@n become involved in the resolution of database update

alisation properties may be lost; so conflicting transactions conflict which can occur with replicated, partially-discon-
must be executed serially. nected databases [Demers et al., 1994]. Bayou write

o . o operations can includenergeprocs-segments of code
However, this is a very expensive way to maintain the trans-which are interpreted within the database system and provide

action model, since the analysis of conflict is very coarse- application-specific management of conflicts. For instance,
grained. In the absence of transaction conflicts, the system

Database systems use a transaction model to partition th
instruction stream. Transactions provide serialisation
(ordered execution) and atomicity (all-or-nothing execu-
tion). However, if the system can detect that there is no
conflict between two transactions, then it might execute
them in parallel or interleaved, without interfering with

transactional properties. The interaction-time and respons
characteristics of database systems are generally such th

in a meeting scheduling application, a write (carrying a in a particular case, the programmer would create a new type
record of a scheduled meeting) might be accompanied withof stream and then associate with it just those methods
code which would shift the meeting to alternative times if the needed to express the new behaviour. Prospero then inte-
desired meeting slot is already booked. Mergeprocs providegrates these new mechanisms into its own operation.

a means for application specifics to be exploited within the
general database framework. Bayou also provides “sessio

guarantees” [Terry et al, 1994] which give applications con- of the toolkit, rather than the application. However, it pro-

trol over the degree of consistency they require for effectlvevides the means for programmers to override or modify

operation in specific circumstances. Clients can trade dataeIements of the policies which the toolkit uses, and to create
consistency for the ability to keep operating in disconnected P '

conditions. Both of these techniques are based on ar'€W ones. Multiple policies can co-exist in Prospero at the
approach similar to that exploited in Prospero—allowing cli- same time. For instance, different types of streams are pre-

ents to become involved in how infrastructure support is g?tg?i%’mseumrﬁ?)esrtr;‘aénser\gtri?)%hs ?géﬁ;ndaﬂgilLyd:énsi?ergmi?
configured to their particular needs. P '

and streams which only synchronise when explicitly
More generally, one focus of research, particularly in data-requested to by the user (called explicit-synch streams).
bases suppqrting software devel_opment or CAD/C-AM’ haSThe examples provided in the next section will show how
geerl_on va(r;ants oftthe tratr_lsactl(on m[(édel Suq%%gl]r)'g.rlﬁng'these ideag worr)k in practice. First, though, the rest of this
uration and group transactions (e.g. [Kaiser, . These_ . ¢) : ' '
are variants which exploit a general style of interaction, segtlon W!” outline E_O\;]vtlzrosper(_) trepresentshthe_ guaf%”teeg
rather than the specifics of particular applications; however, and promises on which the consistency mechanism Is based.
they do begin to address the needs of inherent collaborativ% 2 Semantics-Free Semantics
applications.)

AJnIike the traditional split between “mechanism” and “pol-
icy”, this approach keeps the encoding of policy at the level

The primary role of the semantic descriptions which are the

5 Encoding Promises and Guarantees Easis of this mechanism is to pr_ovide a“point _of Eoordination
etween the pre-divergence point (the “promise” phase) and
The use of activity descriptions and consistency guaranteesihe post-divergence point (“synchronisation”). The efficacy
as outlined above, provides a framework in which the of the approach is dependent on this coordination—actions
semantics of applications and their operations can be used teing described and later recognised—rather than on a
improve concurrency management for collaborative work. detailed, structured semantic account of user-level opera-
Before we can go on to look at some examples of these techtions. So while the properties which we would like to base
niques in use, however, we need to tackle the issue obur descriptions on asemantigproperties, the descriptions
representation. What does a programmer see when programhemselves do not haveliavesemantics. We need to create
ming with Prospero? How can we represent and encode the, way of referring to semantic properties, but not a language
semantic properties on which consistency guarantees argf semantics. It's enough to be able to distinguish and recog-
based? nise semantic propertjoo , without having to give an
] account of whatoo means

5.1 The Programming Interface
Prospero is written in Common Lisp. Applications built with
Prospero are Lisp programs; Prospero is available as
library of routines which programmers can incorporate into
their code.

This simplifies the problem immensely, by turning it from a
6gescriptionproblem into amamingproblem. Since the partic-
ular semantic properties which are of value in managing
concurrency are entirely application-specific, they are
named—for the purpose of coordination—by the application
Drawing on the Open Implementation structure, Prosperodeveloper. What's required of Prospero, then, is the means to
offers two interfaces to application programmers. The first— name them, to associate them with particular operations, and
called thebaseinterface—is a traditional library interface. It subsequently to recognise them in the process of managing
consists of a set of classes representing the basic structurggomises and synchronising streams.

of the toolkit, such as streams and guarantees, and provides

methods on those classes which encode toolkit functionality.5.3 Class-based Encoding

Application programmers make instances of these classesThe mechanism that Prospero uses to accomplish this is
and call the Prospero functions to manipulate them (e.g. toclass-based encodinghat is, the semantic properties for an
add an action to a stream, to synchronise two streams, or t@pplication are named as classes in an object-oriented frame-
perform an application action). work. Particular operations are represented explicitly as
command objects [Berlage, 1994]; that is, invocations of any
peration are represented explicitly as objects within the sys-
m. Each instance of a command object represents a
particular invocation, along with relevant parameters and
ject protocol[Kiczales et al., 1991]. Normally, tailoring is ~ contextual information. Command objects multiply inherit
done by specialising Prospero structures and then providingfrom the classes which represent their semantic properties.

new, tailored methods for the specialised classes. ForThe use of explicit command objects is, in itself, a useful
instance, to change the synchronisation strategy for streamgechanism for representing sequences of action and arriving

The second interface is called thetainterface. This is the
interface which the programmer uses to express applicatior?
details, and to tailor the toolkit structures to application
needs. This second interface is implemented usimgtaob-

6

(let ((guarantee (request (my-stream) *hibliodb* <read> <safe-write>)))
;i ... editing actions ...
(synchronise (my-stream) (remote-stream) guarantee))

(defmethod grant-guarantee (stream object (operation <safe-write>))
o] '
(let ((guarantee (construct-guarantee <auto-consistent> stream object)))
(record guarantee *guarantee-table*)))

(defmethod grant-guarantee (stream object (operation <write>))
;... restricted
(if (granted-entry? <auto-consistent> <write> *guarantee-table*)
(construct-guarantee <refused-guarantee>)
(record (construct-guarantee <auto-consistent> stream object)
guarantee-table)))

(defmethod grant-guarantee (stream object (operation <read>))
o] 'R
(record (construct-guarantee <consistent> stream object)
guarantee-table))

Figure 1: Methods defining access to the shared bibliographical database in Prospero.

at appropriate mechanisms for resolving conflicts which information is a shared database for bibliographical informa-
might arise; but encoding semantic properties in the inherit-tion. The key property which we want to exploit in this
ance structure of the command objects yields two particularexample is that updates to the database are normally non-
benefits for the problems which Prospero needs to addressdestructive. In a conventional locking approach, all updates
First, the mechanism is inherently extensible; the applicationwould be seen as equally likely to conflict, and so locks
developer can create new semantic properties from existingvould be used to prevent any simultaneous updates. How-
ones within the same mechanism as she uses to create appkver, one of the features of this particular application is that
cation structures and objects (i.e. subclassing andmost updating is in adding new information, rather than
specialisation). Second, class-based encoding allows semanremoving or changing information already present. Simulta-
tically-related behaviours to be defined in a declarative style.neous appends are much less likely to cause conflicts that
In the application, behaviours related to different semantic simultaneous revisions, and this can be used to specialise
properties (or combinations of them) are written separatelyconflict management in this particular application.
as methods specialised on the relevant classes, rather than
a complex, monolithic synchronisation handler. This relies
on the object system’s dynamic dispatch mechanism to
. , : . h
match semantic properties (classes) to associated behawou?/’&y
(methods) for particular command objects.

e can take advantage of this feature by introducing a class
of actions which correspond ton-destructivavrites (those

ich add new information, rather than changing anything).
standard access mode for the collaborative database
during disconnected operation, then, would be the combina-

6 Usi c . G tion of reads and non-destructive writes, and could be
sing Consistency Guarantees encoded in Prospero as shown in figure 1.

To provide a more detailed illustration of the use of consis- So, in the initial code fragment, the editing actions are brack-

tency guarantees in collaborative applications, this sectioneted by a request/svnchronisation bair. The aeneric function
presents two more extended examples, along with the frame- y d y paur. 9

work Common Lisgode which implements them. Since our request requestsa guarantee for the local data stream on
concern here is with the use of the meta interface to encodéhe whole database, specifying that the expected behaviours

application semantics and specialise the toolkit, the codelV!l P€ Of types<read> and<safe-write> (non-destruc-
examples focus on the use of Prospero rather than the desigh’® W?tehs)' Thehguaran'gee that it receives 'f] Iat%r_ used as
of the applications themselves. The examples show howPa't Of the synchronisation process, once the edit actions
application-specific semantic properties can be ugtin a have taken place.

toolkit framework to manage concurrency. Clearly, semanti- The rest of the code in figure 1 handles the other side of the
cally-informed concurrency control could be hand-coded transaction—evaluating the promise and granting the guar-
into applications, on a case-by-case basis; the issue here igntee. Taking advantage of the specifics of this application,
the way in which these application-specific features can bethe code can adopt the policy that, like read capabilities,
exploited within a generalised toolkit. safe-write capabilities can be granted to multiple clients at a

time.

6.1 A Shared Bibliographical Database

A simple example of an application whose collaborative per- 3 | this example, error conditions—and in particular, the refusal
formance can be enhanced by exploiting semantic of 5 guarantee—have been omitted for clarity.

(defmethod synchronise (stream action-list guarantee)
(let ((promise (guarantee-promise (find-guarantee guarantee))))
(if (valid? action-list (promise-properties promise))
(simple-synchronise stream action-list)
(salvage-synchronise stream action-list))))

(defmethod simple-synchronise ((stream <stream>) action-list)
(dolist (action action-list)
(synchronise-action stream action *stream*)))

(defmethod salvage-synchronise-action ((stream <stream>) (action <editor-action>))
(if (action-conflict? action (stream-history *stream* :relative-to stream))
;1 ... definite conflict ...
(syntactic-local-apply-action action)
(if (guarantee-conflict? action *guarantee-table*)

;; ... potential conflict ...
(tentative-local-apply-action action)

(local-apply-action action))))

Figure 2: Methods for synchronisation of the collaborative writing example in Prospero.

Here, we grant guarantees for read operations and for safeln the second case, however, the client has broken its prom-
write operations (although they receive different levels of ise. There are various ways in which this situation could have
consistency, which are also class-encoded). However, forarisen; and, critically, since a number of them are important
general write operations, a guarantee is only issued in thdeatures of naturalistic work practice, we would like to pro-
case that no other guarantee has been granted to another writide as much support for them as possible.

ing client. Guarantees are recorded so that they may be useﬁj

as the basis of later decision-making, as well as for synchro- 0 nandle this situation, the programmer calls the generic
nisation purposes later, functionsalvage-synchronise to provide fall-back syn-

chronisation. In this case, this involves stepping through the
The use of guarantees as part of the coordination strategy iactions attempting to apply them one-by-one. By comparing
part of the framework which Prospero provides. What the the classes of the operations (that is, their semantic charac-
programmer has done, in this case, is to specialise the toolterisation) with the activities of other streams, their
kit's structures to take account of semantics of the compatibility can be determined. Actions compatible with

application being supported. activities performed (and guarantees granted) since the
divergence point can be applied directly; other actions must
6.2 Collaborative Text Editing be processed specially.

The previous example showed the selective granting of conere there are three different means of applying potentially
sistency guarantees based on characterisations of expectedqfjicting actions locally. In the case of no conflicts we can
b_ehawour—the_semantlcs of act|V|ty_dur|ng the period of uselocal-apply-action which incorporates the remote
divergence. This second example illustrates the use ofyciions into the local data store. However, there are two
semantic properties in synchronisation. forms of potential conflict. The first is where the remote

Consider a collaborative text editing system in which multi- operation conflicts with an action arising in another stream.
ple authors work on a single document, obtaining guaranteedn this case, the application reverts to syntactic consistency
at the level of paragraphs or sections. As in the previousPy calling syntactic-local-apply-action , which
example, the guarantees obtained before divergence ar@pplies the action preserving syntactic, rather than semantic,
passed along at synchronisation-time. At this point, the guar-consistency. In the second case, the remote action conflicts

antee must be examined to verify that only promised actionswith a guarantee which has since been made to some other
were performed. stream. In this case, there are clearly various things that

o) o could be done; the application developer here chooses to
So there are two cases (distinguished in figure 2 by the predapply the operation tentatively, although it may be neces-
the actions performed by the client are indeed those whichinstead. Note that this decision—to maintain consistency at
were given in the promise. The promise has been upheld. Ifne expense of actions under broken promises—is a decision
this case, synchronisation should be straightforward sinceyhich the application developer, rather than the toolkit
the server was in a position to know what actions were geyeloper, can make in particular circumstances. The default
expected beforehand. At this point, then, the type of the syryctures of the toolkit may provide frameworks around
stream can be used to determine the appropriate synchronigch decisions, but they can be revised to suit particular
sation method (discussed in more detail elsewhere [DouriShappIication needs.
1995D]).

7 Mechanism and Policy in Open What we have observed here is that the semantics of specific
Implementations applications can be exploited to increase concurrency while

]) .. maintaining adequate consistency in a collaborative data
The systems community recognises the problems arisingsiore. By looking in detail at the semantic properties of par-

from the commitments which implementations make to par- icyjar actions in a CSCW system, we can find operations
ticular forms of application. One way to avoid these \hich can be performed in parallel without leading to incon-
problems is to “split mechanism and policy”. Mechanism is gjstency. This approach has been exploited in Prospero, a
that part of the system which provides basic functional ele-ioq|kit for collaborative applications which uses metalevel
ments; policy is that part which deals with how they will be {echniques to allow application developers to reach in and
put together and used. tailor toolkit structures and behaviours to the particular

Some CSCW systems have adopted the mechanism/polic e_eds of applications. The use _of explicit semantic represen-
split. Examples include COLA [Trevor et al., 1995] and the t@tions to tie toolkit-level consistency management to the
pero’s approach compare with these? use.

A full discussion of the relationship between Open Imple- This paper has introduced the notiorcofisistency guaran-
mentations and split mechanism and policy is beyond thel€€S as a technique to increase the effectiveness of the
scope of this paper (but see Kiczales et al., 1991; Kiczales,eXp“C't semantics approach. Essentially, consistency guar-

1996). However, there are two basic differences. antees generalise locks, regarding them as guarantees of
some level of achievable consistency. This more flexible

1. In the Open Implementation approach, policy remains ininterpretation allows applications to balance freedom of
the implementation. Control is available from the appli- action against eventual consistency as appropriate to the par-
cation level, but it is exerted over policy in the imple- ticular circumstances of use. In addition, by allowing clients
mentation. In the mechanism/policy split, on the other to break their promises of future activity (and hence not
hand, policy decisionsnigrate from the lower-level holding the server to its guarantee of later consistency), and

implementation to the application. by falling back to a model of syntactic consistency when
This allows clients to reuse aspects of policy control, ~ Necessary, we can support opportunistic work without com-
changing them to their own needs without having to pletely abandoning the synchronisation of parallel activities.

rebuild them from scratch. Prospero provides a framework in which application func-

2. Analogously, since the policy control is retained in the tionality and semantics can be integrated directly into the
implementation, the level of abstraction used to manipu- toolkit. The result is a level of flexibility beyond that obtain-
late it is higher (closer to the application’s level). The able with traditional toolkits, in which application details can
system does not have to reveal its basic components, foPlay no part in the operation of toolkit mechanisms. This
programmers to put app”cations together; instead, it CanﬂeXIb”Ity takes two forms. The first is that the toolkit can
interpret a higher-level modification interface, and map efficiently support a wider range of applications than would
it onto whatever implementation lies below. This also Otherwise be the case, since the toolkit structures can them-
make the modification interface itself portable across selves be specialised and adapted to new circumstances. The

implementations. second is that applications can be used more flexibly since
they more directly accommodate a range of working styles
8 Summary and Conclusions and interactional requirements.

One of the principal distinctions between CSCW systems In developing collaborative applications it's critical that we
and purely distributed systems is the interactional compo-understand the interactions between notionally “low-level”
nent. The need to distribute the interface as well as data anipsues such as distributed data management and notionally
application must be taken into account when considering ‘high-level” issues such as individual interaction and group
common distributed system issues such as concurrency corgctivity. Such understandings must, in turn, lead to frame-
trol. Traditional algorithms typically maintain consistency Works in which they can be applied broadly, rather than only
by restricting concurrency; however, this approach is unsat-in specific, hand-coded applications. Prospero is an attempt
isfactory in general, as it often interferes with the flexible to tackle just these issues and create a framework for the
management of group activity. holistic design of collaborative applications.

The problem is that the mechanisms which are encoded inrAcknowledgments

the software make premature commitments to particular py;, Bentley, Jon Crowcroft, John Lamping, Ellen Siegel and

styles of working. This problem compounded in designing g Terry made valuable contributions to the development
toolkits for CSCW, since the (toolkit) mechanisms and the ¢ ihase ideas and their presentation here.

application are designed in isolation. This is not simply a
case of a poorly-designed toolkit. The problem is inevitable, References
because providing working software means that decisions of
this sort have to be made, one way or another, in the cours
of implementation.

Barghouti and Kaiser, 1991] Naser Barghouti and Galil
aiser, “Concurrency Control in Advanced Database

Applications”, ACM Computing Surveys, 23(3), pp. 269— Abstract Data Types” ACM Transactions on Database
317, September 1991. Systems, 15(1), pp. 96-124, March 1990.

[Beck and Bellotti, 1993] Eevi Beck and Victoria Bellotti, [Hill et al., 1994] Ralph Hill, Tom Brinck, Steve Rohall,
“Informed Opportunism as Strategy: Supporting John Patterson and Wayne WilneiThe Rendezvous
Coordination in Distributed Collaborative Writing"Proc. Architecture and Language for Multi-User Applications”
Third European Conference on Computer-Supported ACM Transactions on Computer-Human Interaction, 1(2),
Cooperative Work ECSCW’93, Milano, Italy, September pp. 81-125, June 1994.

13-17, 1993. [Kaiser, 1994] Gail Kaiser,Cooperative Transactions for
[Berlage, 1994] Thomas Berlage¢A Selective Undo Multi-User Environments” in Won Kim (ed.), “Modern
Mechanism for Graphical User Interfaces Based on Database Management: The Object Model, Interoperability
Command Objects” ACM Transactions on Computer- and Beyond”, ACM Press, New York, 1994.

Human Interaction, 1(3), pp. 269-294, September 1994. [Kiczales, 1996] Gregor Kiczale$Beyond the Black Box:
[Demers et al, 1994] Alan Demers, Karin Petersen, Mike Open Implementation”|IEEE Software, pp. 6—11, January
Spreitzer, Doug Terry, Marvin Theimer and Brent Welch, 1996.

I\}l'ggiIga&c;lééchgtriiturgi:rsstuIpé)glr:_t f\c;\r/ODrE;arlephaorIlqngMaombicigg [Kizcales et al., 1991] Gregor Kiczales, Jim des Riviéres and

Daniel Bobrow, The Art of the Metaobject Proto¢pMIT
' Press, Cambridge, Mass., 1991.

[McGuffin and Olson, 1992] Lola McGuffin and Gary
Olson,“ShrEdit: A Shared Electronic WorkspaceCSMIL
Technical Report, Cognitive Science and Machine
Intelligence Laboratory, University of Michigan, 1992.

Computing Systems and Applications, Santa Cruz
California, Dec 8-9, 1994.

[Dewan and Choudhary, 1992] Prasun Dewan and Rajiv
Choudhary,“A High-Level and Flexible Framework for
Implementing Multiuser User Interfaces” ACM
Transactions on Information Systems, 10(4), pp. 345-380,
October 1992. [Roseman and Greenberg, 1993] Mark Roseman and Saul
Greenberg,‘Building Flexible Groupware Through Open
Protocols”, in Proc. ACM Conference on Organisational
Computing Systems COOCS’'93, Milpetas, Ca., November
1-4,1993.

[Roseman and Greenberg, 1996] Mark Roseman and Saul
OIGreenberg‘:BuiIding Real-Time Groupware with GroupKit,

a Groupware Toolkit",ACM Transactions on Computer-
" Human Interaction, 3(1), March 1996.

[Dourish, 1995a] Paul DouristiDeveloping a Reflective
Model of Collaborative SystemsACM Transactions on
Computer-Human Interaction, 2(1), pp. 40—63, March 1995.

[Dourish, 1995b] Paul DouristiThe Parting of the Ways:
Divergence, Data Management and Collaborative Wprk”
Proc. European Conference on Computer-Supporte
Cooperative Work ECSCW'95, Stockholm, Sweden
September 1995.

, , : i taria L1€rry et al, 1994] Doug Terry, Alan Demers, Karin
[BDe(I)Il:)ttltiSh “aAr\]/Sariﬁltleztg’ ;r?gzlcgnginggggsr} nan;j \S/'r?;?gg Petersen, Mike Spreitzer, Marvin Theimer and Brent Welch,

Workspace” Proc. ACM Conference on Computer- “Session Guarantees for Weakly Consistent Replicated

. , Data”, Proc. International Conference on Parallel and
ﬁggg%ﬁ? 1C$)S;)2peratlve Work CSCW'92, Toronto, Canada, Distributed Information Systems, Austin, Texas, September

1994.

Farrag and Ozsu, 1989] Abdel Aziz Farrag and M. Tamer
[Ozsu,q‘Using Semantic] Knowledge of Tgrjansactions to [Trevor et al.,, 1995] Jonathan Trevor, Tom Rodden and

Increase Concurrency” ACM Transactions on Database Gordon Blair,COLA: A Lightweight Platform for CSCW-

Systems, 14(4), pp. 503-525, December 1989. fgg&\;puter Supported Cooperative Work, 3, pp. 197-224,

[Greenberg and Marwood, 1994] Saul Greenberg and David
Marwood,“Real-Time Groupware as a Distributed System:
Concurrency Control and its Effect on the InterfacBtoc.
ACM Conference on Computer-Supported Cooperative
Work CSCW'94, Chapel Hill, North Carolina, October
1994,

[Heath and Luff, 1992] Christian Heath and Paul Luff,
“Collaboration and Control: Crisis Management and
Multimedia Technology in London Underground Line
Control Rooms’; Computer Supported Cooperative Work,
1(1-2), pp. 69-95, 1992

[Herlihy, 1990] Maurice Herlihy,“Apologizing Versus
Asking Permission: Optimistic Concurrency Control for

10

	Abstract
	1 Introduction
	1.1 The Relationship between Design and Use
	1.2 Toolkit Structures and Application Needs

	2 Divergence in Prospero
	1. It can be applied across a range of synchronisation frequencies. Frequent synchronisation resu...
	2. Since it incorporates a notion of resolvable, simultaneous work, it provides support for paral...
	3. For the same reason, it also supports the sorts of opportunistic activity in collaborative wor...

	3 Constraining Divergence
	3.1 Variable Consistency
	3.2 Using Application Semantics
	3.3 Constraining Divergence with Locks
	3.4 Promises and Guarantees

	4 Related Approaches in Database Research
	4.1 Semantics-Based Concurrency
	4.2 Application-Specific Conflict Resolution

	5 Encoding Promises and Guarantees
	5.1 The Programming Interface
	5.2 Semantics-Free Semantics
	5.3 Class-based Encoding

	6 Using Consistency Guarantees
	6.1 A Shared Bibliographical Database
	6.2 Collaborative Text Editing

	7 Mechanism and Policy in Open Implementations
	1. In the Open Implementation approach, policy remains in the implementation. Control is availabl...
	2. Analogously, since the policy control is retained in the implementation, the level of abstract...

	8 Summary and Conclusions
	Acknowledgments
	References

	Consistency Guarantees: Exploiting Application Semantics for Consistency Management in a Collabor...
	Paul Dourish
	Rank Xerox Research Centre, Cambridge Laboratory (EuroPARC) and Department of Computer Science, U...
	dourish@europarc.xerox.com

