
ue
st,
h

 of
ors
dit
ate
ch
tly,
s,

g
ts.

fects

s’
 to
up.
at
heir
t
our
ed

s to
y
tent
en
et-

rib-
nage
ust

 be
me,
d in
at
on,
rns
ce,
ere
nd
 to

Consistency Guarantees: Exploiting Application Semantics for 
Consistency Management in a Collaboration Toolkit

Paul Dourish

Rank Xerox Research Centre, Cambridge Laboratory (EuroPARC)
and Department of Computer Science, University College, London

dourish@europarc.xerox.com
Abstract

CSCW toolkits are designed to ease development of CSCW
applications. They provide common, reusable components
for cooperative system design, allowing application pro-
grammers to concentrate on the details of their particular
applications. The underlying assumption is that toolkit com-
ponents can be designed and implemented independently of
the details of particular applications. However, there is good
evidence to suggest that this is not true.

This paper presents a new technique which allows program-
mers to express application requirements, so that toolkit
structures can be adapted to different circumstances. Pros-
pero is a toolkit which uses this technique to meet different
application needs flexibly.

Keywords: application control, CSCW toolkits, Prospero,
consistency management, consistency guarantees.

1 Introduction
CSCW toolkits (such as Rendezvous [Hill et al., 1994],
GroupKit [Roseman and Greenberg, 1996] or Suite [Dewan
and Choudhary, 1992]) are systems which make it easier for
programmers to develop CSCW applications. They provide
generic, reusable components and behaviours which applica-
tion programmers can incorporate into their systems.
Components might include telepointers, shared data objects,
or mechanisms to join and leave conferences. Using these
components to capture common system elements, program-
mers can concentrate on the particular details of their own,
specific applications.

There is a critical assumption which underpins this sort of
reuse. It is that the components provided by the toolkit can
be designed independently of particular applications, and
can be reused wholesale to meet the different needs of differ-
ent applications. However, there is evidence that this
assumption is problematic. This evidence suggests that the
usage patterns of CSCW applications depend, in a detailed
way, on the specifics of the component design. In other
words, the details of toolkit components are as much of a
factor in supporting collaborative behaviour as the details of
the application. The independence of toolkit from applica-
tion is undermined.

This relationship, between details of system design and
details of use, suggests that we should take a new approach

to toolkit design, and this paper will discuss a new techniq
developed in Prospero, a prototype CSCW toolkits. Fir
though, we will consider two examples of studies whic
highlight the problem.

1.1 The Relationship between Design and Use
Dourish and Bellotti [1992] describe experimental studies
a collaborative text editor, supporting groups of three auth
in brainstorming and design tasks. The editor, ShrE
[McGuffin and Olson, 1992], gives each author a separ
edit point in a synchronously-shared text workspace. Ea
can move around the document and work independen
although mechanisms are provided for synchronising view
tracking others and so forth. An implicit region-lockin
mechanism helps maintain consistency and avoid conflic
Working in a shared data space, authors can see the ef
of each other’s work as it is performed.

Dourish and Bellotti’s analysis highlights the collaborator
continual use of the visualisations of each other’s work
maintain an ongoing awareness of the work of the gro
This allows them to continually relate their own work to th
of others and of the group as a whole, and so achieve t
informal “division of labour”. Unlike systems using explici
roles or information exchange to manage group behavi
and provide a sense of ongoing activity, ShrEdit’s shar
feedback approach is more open and flexible and lead
much more fluid transitions between forms of working, b
providing a continual sense of both the character and con
of other people’s work. Similar mechanisms have be
shown to operate in real-world collaborations in physical s
tings [e.g. Heath and Luff, 1992].

Greenberg and Marwood [1994] discuss a range of dist
uted systems techniques used in CSCW systems to ma
collaborative access to distributed data. CSCW systems m
maintain representations of users’ work which may need
to be visible or accessible to different users at the same ti
and techniques for managing this are frequently embedde
CSCW toolkits. Greenberg and Marwood show th
common mechanisms, such as locking and serialisati
introduce temporal dependencies which restrict the patte
of collaboration in which groups can engage. For instan
the overhead of “locking” data representations can interf
with free-wheeling interaction (such as brainstorming); a
the use of “rollback” techniques can actually cause data
change under the users’ feet.
1



ro-
lkit

ge-
ata
ene

tion
in-
ne
 one
’s
ata
rent

the
ual

tic-
re

is

fre-
ro-
an
ent
o-

a-
n-
l
ut
ort

por-
d
]),
of
al

cy

tion
s
t
he
-

b] 
The fundamental point which Greenberg and Marwood point
out is that the “distributed system” elements of collaborative
applications, which are often embodied in toolkit compo-
nents, cannot be considered independently of the
interactional ones. They are mutually influential.

1.2 Toolkit Structures and Application Needs
The studies outlined above illustrate that the activities and
interactions of collaborating individuals are organised not
only around the work that they’re doing, but also around the
details of the tools they have for doing that work—the col-
laborative technologies which support them.

This observation undermines the “independence assump-
tion” at the heart of toolkit design. The independence
assumption is that the collaborative components which are
embodied in a toolkit are independent of the applications in
which they will be used. Toolkit designers are concerned
with the reusability of their components in a wide range of
applications and circumstances. If they provide shared data
objects, then they want application programmers to be able
to use those in any situation where shared data objects are
needed. Unfortunately, we’ve seen that the details of how
objects are shared has an impact on the kinds of sharing and
collaborative behaviour that takes place. Toolkit designers
have to provide sharing mechanisms to make their shared
data objects work; but these mechanisms cannot be com-
pletely independent of the application’s requirements
concerning patterns of interaction.

Prospero is a prototype CSCW toolkit which addresses these
sorts of problems. Most toolkit designs try to exploit the gen-
eral applicability of components to a range of situations,
leaving application programmers to map application needs
onto the general facilities which the toolkit provides. Pros-
pero’s approach is different. Using a recent software
abstraction technique called Open Implementation [Kicza-
les, 1996], Prospero allows application programmers to
tailor the toolkit, and match toolkit facilities onto the needs
of the application, rather than the other way around.

This approach is used to give application programmers con-
trol over a number of different areas of toolkit functionality.
This paper describes a mechanism called consistency guar-
antees which Prospero uses to give applications control over
the consistency management mechanisms in the toolkit.
Consistency mechanisms are the parts of the toolkit which
ensure that data representations remain consistent even
though users may attempt to make simultaneous, conflicting
changes (such as when one user changes an object’s colour
to blue, and another changes it to red). The goal is to allow
the programmer to express aspects of the application
domain, so that the toolkit can manage consistency in a way
which is responsive to the needs of the particular
applications.

The next section outlines some background, and briefly sum-
marises how Prospero deals with the distributed data over
which consistency mechanisms operate. The section which
follows introduces promises and guarantees, the fundamen-
tal mechanisms in the new consistency technique. I will then
discuss Prospero’s mechanisms in comparison with some

other techniques, before providing examples of how p
grammers can use these techniques to make the too
responsive to application requirements.

2 Divergence in Prospero
Although this paper concentrates on consistency mana
ment, rather than data distribution, a brief sketch of the d
management mechanism is necessary here to set the sc1.

Prospero’s data distribution strategy is based on divergence
[Dourish, 1995b]. Some approaches (such as centralisa
or floor control) control data flow and management by ma
taining a model of one-at-a-time action; that is, only o
person can operate over the data at once, and so only
copy of any data item is “active” at a time. In Prospero
model, on the other hand, multiple users can act over d
items at once. These separate actions can cause diffe
users to have different views of the data; this is divergence.
The complementary operation is the synchronisation of
these divergent views to re-establish a common view of 
data. So data management takes the form of the contin
divergence and synchronisation of views of the data. Par
ular threads of activity which diverge from each other a
called streams.

Dourish [1995b] discusses three primary benefits of th
strategy in a CSCW toolkit.

1. It can be applied across a range of synchronisation 
quencies. Frequent synchronisation results in “synch
nous”-style interaction, where group members c
observe each other’s work as it progresses; infrequ
synchronisation is more akin to traditional “asynchr
nous” application styles.

2. Since it incorporates a notion of resolvable, simult
neous work, it provides support for parallel, disco
nected activity—“multi-synchronous” work. Paralle
simultaneous activity is a common style of working, b
traditionally CSCW systems have provided poor supp
for it. 

3. For the same reason, it also supports the sorts of op
tunistic activity in collaborative work which are reveale
by observational studies (e.g. [Beck and Bellotti, 1993
in which pre-arranged plans of activity and divisions 
labour—where they even exist—are subject to loc
reorganisation and rearrangement.

With that background, we can now focus on consisten
management in particular.

3 Constraining Divergence
In database terms, Prospero’s divergence/synchronisa
strategy is an optimistic one. It presumes that simultaneou
actions will probably not result in conflict, but that if conflic
does occur, things can be sorted out later. Locking, on t
other hand, is a pessimistic strategy; it presumes that simul

1. The reader is referred to [Dourish, 1995a] and [Dourish, 1995
for more information and background on the techniques used.
2



tent

he

n
r-
cy

an-
his
pe-
ce
ots
.

ng
 is
s.
r
 cli-
ls
gu-
 of
ing
ks
-
lso

ss
ys-
ve

d file
 of
ca-
al

ant
an
m-
 as
can
e.
on
av-

ng
how
hed,
 of
sic
 the
g
that
g

re,
taneous operations are likely to lead to conflict, and so
should be prevented.

Pessimistic strategies guarantee the maintenance of consis-
tency, since they prevent the simultaneous action which
would lead to inconsistency on the first place. On the other
hand, optimistic strategies support more open styles of work-
ing. Prospero uses an optimistic strategy because the
freedom and flexibility it provides is better suited to the
needs of collaborative work. The price of this freedom is that
the toolkit must provide explicit means to maintain
consistency.

The problem is that the divergence model per se makes no
commitment to the nature or extent of the divergence. The
longer two streams of activity remain active but unsynchro-
nised, the greater their potential divergence, and so the more
complex it becomes to resolve conflicts at synchronisation-
time. Indeed, there’s nothing to say that the system will ever
be able to resolve two arbitrary streams into a single, coher-
ent view of the data store. Essentially, unconstrained
divergence leads to arbitrarily complex synchronisation; and
that can be a practical inconvenience, to say the least.

3.1 Variable Consistency
The first approach used in Prospero is to distinguish between
syntactic and semantic consistency.

By “semantic” consistency, I mean that the data store con-
tains no inconsistencies from the perspective of the
application domain. The data is fit for its intended purpose.
This is the conventional, intuitive form of consistency in col-
laborative and distributed systems. Appeal to “syntactic”
consistency, on the other hand, allows for semantic inconsis-
tencies, but ensures that the data store is structurally sound,
so that some kind of activity can continue.

As an example, consider a multi-user text editor which
attempts to resolve a conflict—the same paragraph has been
completely rewritten, separately, by two different authors. If
the system were to throw away (say) the earlier of the two
paragraphs, then it would be preserving semantic consis-
tency (although the reader should note that consistency does
not imply “correctness”). However, this “lossy” approach is
not necessarily the best suited to the needs of collaborating
authors, even though the synchronisation procedure is
straight-forward. An alternative mechanism would be to
retain both the paragraphs within a structure which flags this
as a conflict which the system cannot resolve—essentially
preserving the text for the authors to sort out later. This
approach preserves syntactic (structural) consistency. By
only preserving syntactic consistency in some cases, rather
than semantic consistency, a divergence-based system can
achieve synchronisation more often, and continue operation
in the face of potential problems. Consistency from the
users’ perspective is often not the same as consistency from
the system’s.

3.2 Using Application Semantics
The key observation which lies behind the variable consis-
tency approach above is that the toolkit components,
themselves, are not the final arbiters of “consistency”.

Instead, the toolkit can focus on making the data consis
for the purposes at hand. In other words, it is taking advan-
tage of details about the application domain and t
circumstances in which the toolkit is being used.

However, while using application-specific synchronisatio
might postpone some of the problems of unbounded dive
gence, the basic problem of unbounded inconsisten
remains with us. The same basic technique—taking adv
tage of application semantics—can be applied to t
problem. Prospero introduces the notion of application-s
cific consistency guarantees to control for the divergen
process using details of particular circumstances. The ro
of this mechanism lie in the strategies of existing systems

3.3 Constraining Divergence with Locks
The most obvious traditional mechanism for constraini
divergence (or, more accurately, for avoiding it altogether)
locking. Locking is widely used in current CSCW system
Implicitly or explicitly, a user obtains a “lock” for some o
all of the data store. Since update access is restricted to
ents holding a current lock, the availability of locks contro
the emergence of divergence; and since, in typical confi
rations, only one client can hold a lock on a given piece
data at any time, divergence is avoided. This sort of lock
behaviour can also be exhibited by systems in which loc
don’t appear explicitly in the interface; floor-control algo
rithms and other forms of asynchronous access are a
particular cases of the general locking approach.

As outlined earlier, Greenberg and Marwood [1994] discu
some issues surrounding concurrency control in CSCW s
tems. Most strategies for managing distributed data ha
arisen in arenas such as distributed databases, distribute
systems, etc. Greenberg and Marwood point to a range
ways in which these approaches have interactional impli
tions. Collaborative systems differ from many tradition
distributed systems in that in CSCW, not only the applica-
tion, but also the interface, is distributed. The choice of
concurrency management strategy can have a signific
impact on the styles of interaction which an application c
support. One obvious example is the way in which the te
poral properties of concurrency control strategies, such
relative execution times of actions over shared data, 
interfere with interactional requirements in the interfac
Similarly, approaches which apply a post-hoc serialisati
on user actions may introduce unexpected interface beh
iours (such as undo-ing actions).

Locking is a very general approach. A wide range of locki
strategies have been used in CSCW systems, varying in 
the locks are requested, obtained, granted and relinquis
what kinds of operations require locks, and the granularity
data units controlled by a single lock. However, the ba
pattern (lock-act-release) remains the same, and so do
basic problems of locking for CSCW applications. Lockin
is a pessimistic concurrency strategy; on the assumption 
any conflict could be damaging, it prevents conflict arisin
in the first place. Locking restricts activity on the data sto
and hence restricts the activity of users.
3



so-
 a
m-
 of
 the

ty
re
be
nt

cks
r-
s

re
g. 

jor
ce
ted
l
al
h
e

we

ee
nt
e

ing
held
can

an-
or
k,
le;
sed

ser
ity
d
an

e it
ting
re
. In
 the
 an
ar-
se

es a
ce;
ide
ate-
 of
In many applications, it’s quite appropriate to use locks, and
to avoid quite strictly the danger of conflict and potential
inconsistency. For applications in which data integrity is
critical, and intra-group interactivity low—such as collabo-
rative software development—locking strategies (such as the
check-out model) can be valuable, appropriate and effective.
In other applications, though, strict locking mechanisms can
interfere with group interaction. Some systems, such as
ShrEdit, use implicit locks, which are silently obtained and
released in the course of editing activity, to reduce the level
of interference and overhead. However, the locking strategy
is still visible to the group through the effect it has on the
interface, even in cases where working activity would not
result in conflict or inconsistency [Dourish and Bellotti,
1992]. In the case of even less structured, free-form data col-
laboration such as a shared whiteboard, even the
interactional overhead of implicit locking becomes
unwieldy, and explicit locks are almost unusable.

Prospero is a toolkit for creating collaborative applications,
and so it must embody more flexible mechanisms which can
be adapted or appropriated for a range of application needs
and interactional styles. Clearly, something more flexible
than locking—even when supported by a range of strate-
gies—is needed.

3.4 Promises and Guarantees
In an attempt to find a more flexible approach than the strict
locking mechanism, and one more attuned to the needs of a
CSCW toolkit, our starting point is with a generalisation of
the traditional locking process. Locking is essentially a
means by which a client2 receives some guarantee of future
consistency (“no other user can make changes, so consis-
tency will be maintained”) in exchange for a prediction of
the client’s future activity (“changes will only be applied to
the locked region”). So we state this as the first principle:
locks are guarantees of achievable consistency.

Immediately, this view has a number of interesting implica-
tions. First, there’s clearly a wide range of such guarantees
which could be made. Normally, locks are all-or-nothing
guarantees. When we think in terms of guarantees of consis-
tency, then we can consider distinguishing between different
degrees of consistency, and the fact that a guarantee may
only hold for limited consistency (in the worst case, perhaps,
just syntactic consistency). Determining the achievable level
of consistency is the responsibility of the server, based on
currently-issued promises and the information about future
activity which the client provides. The nature of these client
“promises” will be discussed in more detail later; for now,
though, it’s enough to say that they are characterisations of
expected behaviour, such as whether the client will simply
read data, write new data but not delete anything current,
delete or modify existing data, and so forth. So, second, these
promises could vary in specificity and detail, just as the guar-
antees can vary. Third, and perhaps most importantly, when
we think of this exchange as being less absolute than the

strict locking exchange (an absolute guarantee for an ab
lute promise), then it becomes obvious that this is
negotiation; a client may make increasingly restrictive pro
ises in exchange for increasingly strong guarantees
consistency. The promise/guarantee cycle is the basis of
consistency guarantees approach.

This sort of mechanism allows better interleaving of activi
than full locks. From the server side, more details of futu
activity allow better decisions about what actions can 
simultaneously performed by multiple users. From the clie
side, the ability to accept weaker guarantees than lo
would provide may allow activity to proceed where othe
wise it would be blocked. This flexible interleaving retain
the important predictive element of locking—that is, the
client still makes “up-front” promises of future activity
which give the server a better picture of the extent of futu
divergence and so enable more informed decision-makin

However, this generalisation still suffers one of the ma
problems with the locking approach applied to CSCW. Sin
divergence is still preceded by a description of expec
activities, the possibility of opportunistic activity is stil
restricted. This was raised earlier as a criticism of tradition
locking mechanisms, which interfere with the way in whic
collaborative work proceeds naturalistically. Obviously w
would like to address this problem in our redesign. So 
introduce the second principle: a client can break a promise,
in which case the server is no longer held to its guarant.
So the characterisation of future activity which a clie
makes—its promise—may not be binding; when the tim
comes, the client (or the user) may actually do someth
else. However, in this case, the server can no longer be 
to the guarantee it made of the level of consistency which 
be achieved.

With this second principle in place, the consistency guar
tee mechanism provides more direct support f
opportunistic working styles. Just as in naturalistic wor
stepping outside previously-agreed lines is not impossib
but the mechanism provides stronger guarantees when u
cooperatively by both client and server. Of course, the u
need not (often, should not) be exposed to this complex
and unpredictability. In a toolkit, these facilities are provide
so that they can be appropriately deployed (or not) by 
application developer. A developer might choose not to
exploit the second principle in a given application, where
application requirements or usage patterns would mak
inappropriate. These might include cases where the resul
conflicts may be too difficult to synchronise later, or whe
loss of integrity in the data-store would be unacceptable
other cases, an application developer might want to warn
user when such a situation was likely to occur, so that
informed decision could be made as appropriate to the p
ticular circumstances. The framework supports the
behaviours, but doesn’t require them.

So, adding consistency guarantees to Prospero provid
way to overcome the problem of unbounded divergen
they act as a curb to Prospero’s optimism. They prov
some of the predictable consistency which pessmistic str
gies support, but in a way which is sensitive to patterns

2. Although I’ll use the terms client and server, these mechanisms 
also apply to peer-to-peer structures. In fact, Prospero uses a peer-
to-peer model.
4



ed in
oes

sn’t
t is

xe-
ta.

nd
ce
 to

r of
an-
ce

to
ined
pe
ch
tial
szu
k-
ion
av-
is

that

se
en-

 this
ch-
de a
pli-
h
ion
 in
 full
ion

vant
ppli-
er
tem
is-
tion
med

dis-

ns
ate
-
rite

ide
e,
collaborative work (rather than simply distributed systems).
The examples in section six will show how these potential
benefits are realised in actual applications.

4 Related Approaches in Database 
Research

The variable consistency approach outlined in section 3.1
used knowledge of application semantics to specialise and
improve the synchronisation process. Essentially, the consis-
tency guarantee mechanism introduced in section 3.4 uses
knowledge of application semantics—and the semantics of
particular operations—to increase the opportunities for con-
currency and parallel activity.

Perhaps unsurprisingly, similar approaches have been
explored in database design, since database management
systems also involve multi-user activity over shared and per-
haps replicated data. Barghouti and Kaiser [1991] provide a
comprehensive survey of advanced concurrency control
techniques. However, since databases tend to hide the activ-
ities of multiple parties from each other (preserving the
illusion of sole access to a system), the primary (although not
exclusive) focus of the database community has been on
using concurrency to improve performance rather than to
open up data models for collaboration. Two aspects of data-
base research are particularly related to the consistency
guarantees approach: semantics-based concurrency and
application-specific conflict resolution.

4.1 Semantics-Based Concurrency
Database systems use a transaction model to partition the
instruction stream. Transactions provide serialisation
(ordered execution) and atomicity (all-or-nothing execu-
tion). However, if the system can detect that there is no
conflict between two transactions, then it might execute
them in parallel or interleaved, without interfering with
transactional properties. The interaction-time and response
characteristics of database systems are generally such that
delays introduced while calculating appropriate serialisation
orders for transaction streams will not have a significant
impact on interactive performance. However, shared data
stores supporting interactive collaborative systems require
crisp performance, and so it’s useful to look at how database
research has investigated the opportunities to increase con-
currency in transaction execution.

Traditional database systems detect two principal forms of
conflict. A write/write conflict occurs when two transactions
write to the same location in the database. An ordering has to
be established for these transactions to retain the model of
atomic, serialised execution. A read/write conflict occurs
when one transaction writes, and the other reads, the same
data. Inconsistency can result if the read falls before the write
during simultaneous execution. If conflicting transactions
are executed concurrently, then the transaction model’s seri-
alisation properties may be lost; so conflicting transactions
must be executed serially.

However, this is a very expensive way to maintain the trans-
action model, since the analysis of conflict is very coarse-
grained. In the absence of transaction conflicts, the system

can guarantee that the transactions can safely be execut
parallel. On the other hand, the presence of a conflict d
not imply that inconsistency will  result. For example, con-
sider a transaction which issues a read request but doe
use that result as part of a later computation (or does, bu
robust to particular changes). It could, quite safely, be e
cuted in parallel with another which writes that same da
However, that would signal a read/write conflict and the
potential concurrency would be lost. More generally (a
more practically), transaction concurrency (and hen
throughput) could be improved with more detailed access
transaction semantics, or to application semantics.

Approaches of this sort have been explored by a numbe
researchers. For instance, Herlihy [1990] exploits the sem
tics of operations over abstract data types to produ
validation criteria, which are applied before commit-time 
validate transaction schedules. His approach uses predef
sets of conflicting operations, derived from the data ty
specifications. Looking at the data type operations whi
transactions execute allows a finer-grained view of poten
conflicts, and increases concurrency. Farrag and O
[1989] exploit operation semantics by introducing a brea
point mechanism into transactions, producing transact
schedules in which semantically-safe transaction interle
ings are allowed. Again, the potential for concurrency 
increased without disrupting transactional properties.

One potential problem with each of these approaches is 
they require pre-computation of conflicts, compatibilities
and safe partial break-points. The implication is that the
mechanisms could not be seamlessly integrated into a g
eral-purpose database management system. However,
doesn’t pose a problem for using semantically-based te
niques in Prospero, since Prospero doesn’t need to provi
complete general-purpose service independent of any ap
cation. Instead, it provides a framework within whic
application-specific semantics can be added by applicat
programmers (rather than being known to the system
advance). Particular behaviours are coded in Prospero in
knowledge of the relevant semantic structure of applicat
operations.

4.2 Application-Specific Conflict Resolution
A second approach from database research which is rele
to the consistency guarantees mechanism is the use of a
cation-specific conflict resolution. The Bayou system, und
development at Xerox PARC, is a replicated database sys
for mobile computers, which are frequently active but d
connected from their peers. In most systems, disconnec
is an unusual state, and the systems can normally be assu
to be connected to each other; but in mobile applications, 
connection is the rule, rather than the exception.

Bayou provides a mechanism by which client applicatio
can become involved in the resolution of database upd
conflict which can occur with replicated, partially-discon
nected databases [Demers et al., 1994]. Bayou w
operations can include mergeprocs—segments of code
which are interpreted within the database system and prov
application-specific management of conflicts. For instanc
5



ype
ods
inte-

l-
vel
o-
ify
ate
the
pre-
ise
s),

ly

w
his
ees
sed.

the
on
nd

cy
ns

n a
ra-

se

e
ge

og-

a

ing
re
on
s to
and
ging

s is
n
me-
as
ny
ys-
s a
nd
it
s.

ful
ing
in a meeting scheduling application, a write (carrying a
record of a scheduled meeting) might be accompanied with
code which would shift the meeting to alternative times if the
desired meeting slot is already booked. Mergeprocs provide
a means for application specifics to be exploited within the
general database framework. Bayou also provides “session
guarantees” [Terry et al, 1994] which give applications con-
trol over the degree of consistency they require for effective
operation in specific circumstances. Clients can trade data
consistency for the ability to keep operating in disconnected
conditions. Both of these techniques are based on an
approach similar to that exploited in Prospero—allowing cli-
ents to become involved in how infrastructure support is
configured to their particular needs.

More generally, one focus of research, particularly in data-
bases supporting software development or CAD/CAM, has
been on variants of the transaction model supporting long-
duration and group transactions (e.g. [Kaiser, 1994]). These
are variants which exploit a general style of interaction,
rather than the specifics of particular applications; however,
they do begin to address the needs of inherent collaborative
applications.

5 Encoding Promises and Guarantees
The use of activity descriptions and consistency guarantees,
as outlined above, provides a framework in which the
semantics of applications and their operations can be used to
improve concurrency management for collaborative work.
Before we can go on to look at some examples of these tech-
niques in use, however, we need to tackle the issue of
representation. What does a programmer see when program-
ming with Prospero? How can we represent and encode the
semantic properties on which consistency guarantees are
based?

5.1 The Programming Interface
Prospero is written in Common Lisp. Applications built with
Prospero are Lisp programs; Prospero is available as a
library of routines which programmers can incorporate into
their code.

Drawing on the Open Implementation structure, Prospero
offers two interfaces to application programmers. The first—
called the base interface—is a traditional library interface. It
consists of a set of classes representing the basic structures
of the toolkit, such as streams and guarantees, and provides
methods on those classes which encode toolkit functionality.
Application programmers make instances of these classes,
and call the Prospero functions to manipulate them (e.g. to
add an action to a stream, to synchronise two streams, or to
perform an application action).

The second interface is called the meta interface. This is the
interface which the programmer uses to express application
details, and to tailor the toolkit structures to application
needs. This second interface is implemented using a metaob-
ject protocol [Kiczales et al., 1991]. Normally, tailoring is
done by specialising Prospero structures and then providing
new, tailored methods for the specialised classes. For
instance, to change the synchronisation strategy for streams

in a particular case, the programmer would create a new t
of stream and then associate with it just those meth
needed to express the new behaviour. Prospero then 
grates these new mechanisms into its own operation.

Unlike the traditional split between “mechanism” and “po
icy”, this approach keeps the encoding of policy at the le
of the toolkit, rather than the application. However, it pr
vides the means for programmers to override or mod
elements of the policies which the toolkit uses, and to cre
new ones. Multiple policies can co-exist in Prospero at 
same time. For instance, different types of streams are 
defined, such as streams which automatically synchron
after some number of operations (called bounded stream
and streams which only synchronise when explicit
requested to by the user (called explicit-synch streams).

The examples provided in the next section will show ho
these ideas work in practice. First, though, the rest of t
section will outline how Prospero represents the guarant
and promises on which the consistency mechanism is ba

5.2 Semantics-Free Semantics
The primary role of the semantic descriptions which are 
basis of this mechanism is to provide a point of coordinati
between the pre-divergence point (the “promise” phase) a
the post-divergence point (“synchronisation”). The effica
of the approach is dependent on this coordination—actio
being described and later recognised—rather than o
detailed, structured semantic account of user-level ope
tions. So while the properties which we would like to ba
our descriptions on are semantic properties, the descriptions
themselves do not have to have semantics. We need to creat
a way of referring to semantic properties, but not a langua
of semantics. It’s enough to be able to distinguish and rec
nise semantic property foo , without having to give an
account of what foo  means.

This simplifies the problem immensely, by turning it from 
description problem into a naming problem. Since the partic-
ular semantic properties which are of value in manag
concurrency are entirely application-specific, they a
named—for the purpose of coordination—by the applicati
developer. What’s required of Prospero, then, is the mean
name them, to associate them with particular operations, 
subsequently to recognise them in the process of mana
promises and synchronising streams.

5.3 Class-based Encoding
The mechanism that Prospero uses to accomplish thi
class-based encoding. That is, the semantic properties for a
application are named as classes in an object-oriented fra
work. Particular operations are represented explicitly 
command objects [Berlage, 1994]; that is, invocations of a
operation are represented explicitly as objects within the s
tem. Each instance of a command object represent
particular invocation, along with relevant parameters a
contextual information. Command objects multiply inher
from the classes which represent their semantic propertie

The use of explicit command objects is, in itself, a use
mechanism for representing sequences of action and arriv
6



a-
s
on-

tes
ks
ow-
hat
an
ta-
that
lise

lass

g).
ase
na-
be

ck-
ion
n
urs

 as
ons

 the
ar-
on,
es,
t a

al 

(let ((guarantee (request (my-stream) *bibliodb* <read> <safe-write>)))
;; ... editing actions ... 
(synchronise (my-stream) (remote-stream) guarantee)) 

(defmethod grant-guarantee (stream object (operation <safe-write>))
;; ... ok... 
(let ((guarantee (construct-guarantee <auto-consistent> stream object))) 

(record guarantee *guarantee-table*))) 

(defmethod grant-guarantee (stream object (operation <write>))
;; ... restricted .... 
(if (granted-entry? <auto-consistent> <write> *guarantee-table*)

(construct-guarantee <refused-guarantee>)
(record (construct-guarantee <auto-consistent> stream object)

*guarantee-table*))) 

(defmethod grant-guarantee (stream object (operation <read>))
;; ... ok ... 
(record (construct-guarantee <consistent> stream object)

*guarantee-table*)) 

Figure 1: Methods defining access to the shared bibliographical database in Prospero.
at appropriate mechanisms for resolving conflicts which
might arise; but encoding semantic properties in the inherit-
ance structure of the command objects yields two particular
benefits for the problems which Prospero needs to address.
First, the mechanism is inherently extensible; the application
developer can create new semantic properties from existing
ones within the same mechanism as she uses to create appli-
cation structures and objects (i.e. subclassing and
specialisation). Second, class-based encoding allows seman-
tically-related behaviours to be defined in a declarative style.
In the application, behaviours related to different semantic
properties (or combinations of them) are written separately
as methods specialised on the relevant classes, rather than in
a complex, monolithic synchronisation handler. This relies
on the object system’s dynamic dispatch mechanism to
match semantic properties (classes) to associated behaviours
(methods) for particular command objects.

6 Using Consistency Guarantees
To provide a more detailed illustration of the use of consis-
tency guarantees in collaborative applications, this section
presents two more extended examples, along with the frame-
work Common Lisp code which implements them. Since our
concern here is with the use of the meta interface to encode
application semantics and specialise the toolkit, the code
examples focus on the use of Prospero rather than the design
of the applications themselves. The examples show how
application-specific semantic properties can be used within a
toolkit framework to manage concurrency. Clearly, semanti-
cally-informed concurrency control could be hand-coded
into applications, on a case-by-case basis; the issue here is
the way in which these application-specific features can be
exploited within a generalised toolkit.

6.1 A Shared Bibliographical Database
A simple example of an application whose collaborative per-
formance can be enhanced by exploiting semantic

information is a shared database for bibliographical inform
tion. The key property which we want to exploit in thi
example is that updates to the database are normally n
destructive. In a conventional locking approach, all upda
would be seen as equally likely to conflict, and so loc
would be used to prevent any simultaneous updates. H
ever, one of the features of this particular application is t
most updating is in adding new information, rather th
removing or changing information already present. Simul
neous appends are much less likely to cause conflicts 
simultaneous revisions, and this can be used to specia
conflict management in this particular application.

We can take advantage of this feature by introducing a c
of actions which correspond to non-destructive writes (those
which add new information, rather than changing anythin
A standard access mode for the collaborative datab
during disconnected operation, then, would be the combi
tion of reads and non-destructive writes, and could 
encoded in Prospero as shown in figure 1.

So, in the initial code fragment, the editing actions are bra
eted by a request/synchronisation pair. The generic funct
request  requests3 a guarantee for the local data stream o
the whole database, specifying that the expected behavio
will be of types <read>  and <safe-write>  (non-destruc-
tive writes). The guarantee that it receives is later used
part of the synchronisation process, once the edit acti
have taken place.

The rest of the code in figure 1 handles the other side of
transaction—evaluating the promise and granting the gu
antee. Taking advantage of the specifics of this applicati
the code can adopt the policy that, like read capabiliti
safe-write capabilities can be granted to multiple clients a
time.

3. In this example, error conditions—and in particular, the refus
of a guarantee—have been omitted for clarity.
7



om-
ve

ant
o-

ric

the
ing
rac-
ir
th
the
ust

lly
an

wo
te
m.
ncy

tic,
licts
ther
hat
 to

es-
ncy
 at
sion
kit
ault
d
lar

(defmethod synchronise (stream action-list guarantee)
(let ((promise (guarantee-promise (find-guarantee guarantee))))

(if (valid? action-list (promise-properties promise))
(simple-synchronise stream action-list)

(salvage-synchronise stream action-list))))

(defmethod simple-synchronise ((stream <stream>) action-list)
(dolist (action action-list)

(synchronise-action stream action *stream*)))

(defmethod salvage-synchronise-action ((stream <stream>) (action <editor-action>))
(if (action-conflict? action (stream-history *stream* :relative-to stream))

;; ... definite conflict ... 
(syntactic-local-apply-action action)

(if (guarantee-conflict? action *guarantee-table*)
;; ... potential conflict ... 
(tentative-local-apply-action action)

(local-apply-action action))))

Figure 2: Methods for synchronisation of the collaborative writing example in Prospero.
Here, we grant guarantees for read operations and for safe-
write operations (although they receive different levels of
consistency, which are also class-encoded). However, for
general write operations, a guarantee is only issued in the
case that no other guarantee has been granted to another writ-
ing client. Guarantees are recorded so that they may be used
as the basis of later decision-making, as well as for synchro-
nisation purposes later.

The use of guarantees as part of the coordination strategy is
part of the framework which Prospero provides. What the
programmer has done, in this case, is to specialise the tool-
kit’s structures to take account of semantics of the
application being supported.

6.2 Collaborative Text Editing
The previous example showed the selective granting of con-
sistency guarantees based on characterisations of expected
behaviour—the semantics of activity during the period of
divergence. This second example illustrates the use of
semantic properties in synchronisation.

Consider a collaborative text editing system in which multi-
ple authors work on a single document, obtaining guarantees
at the level of paragraphs or sections. As in the previous
example, the guarantees obtained before divergence are
passed along at synchronisation-time. At this point, the guar-
antee must be examined to verify that only promised actions
were performed.

So there are two cases (distinguished in figure 2 by the pred-
icate valid? ). In the first case, the predicate indicates that
the actions performed by the client are indeed those which
were given in the promise. The promise has been upheld. In
this case, synchronisation should be straightforward since
the server was in a position to know what actions were
expected beforehand. At this point, then, the type of the
stream can be used to determine the appropriate synchroni-
sation method (discussed in more detail elsewhere [Dourish,
1995b]).

In the second case, however, the client has broken its pr
ise. There are various ways in which this situation could ha
arisen; and, critically, since a number of them are import
features of naturalistic work practice, we would like to pr
vide as much support for them as possible.

To handle this situation, the programmer calls the gene
function salvage-synchronise  to provide fall-back syn-
chronisation. In this case, this involves stepping through 
actions attempting to apply them one-by-one. By compar
the classes of the operations (that is, their semantic cha
terisation) with the activities of other streams, the
compatibility can be determined. Actions compatible wi
activities performed (and guarantees granted) since 
divergence point can be applied directly; other actions m
be processed specially.

Here there are three different means of applying potentia
conflicting actions locally. In the case of no conflicts we c
use local-apply-action  which incorporates the remote
actions into the local data store. However, there are t
forms of potential conflict. The first is where the remo
operation conflicts with an action arising in another strea
In this case, the application reverts to syntactic consiste
by calling syntactic-local-apply-action , which
applies the action preserving syntactic, rather than seman
consistency. In the second case, the remote action conf
with a guarantee which has since been made to some o
stream. In this case, there are clearly various things t
could be done; the application developer here chooses
apply the operation tentatively, although it may be nec
sary, later, to undo this and move to syntactic consiste
instead. Note that this decision—to maintain consistency
the expense of actions under broken promises—is a deci
which the application developer, rather than the tool
developer, can make in particular circumstances. The def
structures of the toolkit may provide frameworks aroun
such decisions, but they can be revised to suit particu
application needs.
8



cific
ile

ata
ar-
ns
n-
o, a
el
nd
ar
en-
he
is

the
ar-
s of
le
of
par-
ts
ot

and
en
m-
s.

c-
he
-
n
is

n
ld
em-
. The
nce
les

e
l”
ally

up
e-

nly
mpt
the

d
ent

ail
7 Mechanism and Policy in Open 
Implementations

The systems community recognises the problems arising
from the commitments which implementations make to par-
ticular forms of application. One way to avoid these
problems is to “split mechanism and policy”. Mechanism is
that part of the system which provides basic functional ele-
ments; policy is that part which deals with how they will be
put together and used.

Some CSCW systems have adopted the mechanism/policy
split. Examples include COLA [Trevor et al., 1995] and the
“open protocols” approach in GroupKit. How does Pros-
pero’s approach compare with these?

A full discussion of the relationship between Open Imple-
mentations and split mechanism and policy is beyond the
scope of this paper (but see Kiczales et al., 1991; Kiczales,
1996). However, there are two basic differences.

1. In the Open Implementation approach, policy remains in
the implementation. Control is available from the appli-
cation level, but it is exerted over policy in the imple-
mentation. In the mechanism/policy split, on the other
hand, policy decisions migrate from the lower-level
implementation to the application.

This allows clients to reuse aspects of policy control, 
changing them to their own needs without having to 
rebuild them from scratch.

2. Analogously, since the policy control is retained in the
implementation, the level of abstraction used to manipu-
late it is higher (closer to the application’s level). The
system does not have to reveal its basic components, for
programmers to put applications together; instead, it can
interpret a higher-level modification interface, and map
it onto whatever implementation lies below. This also
make the modification interface itself portable across
implementations.

8 Summary and Conclusions
One of the principal distinctions between CSCW systems
and purely distributed systems is the interactional compo-
nent. The need to distribute the interface as well as data and
application must be taken into account when considering
common distributed system issues such as concurrency con-
trol. Traditional algorithms typically maintain consistency
by restricting concurrency; however, this approach is unsat-
isfactory in general, as it often interferes with the flexible
management of group activity.

The problem is that the mechanisms which are encoded in
the software make premature commitments to particular
styles of working. This problem compounded in designing
toolkits for CSCW, since the (toolkit) mechanisms and the
application are designed in isolation. This is not simply a
case of a poorly-designed toolkit. The problem is inevitable,
because providing working software means that decisions of
this sort have to be made, one way or another, in the course
of implementation.

What we have observed here is that the semantics of spe
applications can be exploited to increase concurrency wh
maintaining adequate consistency in a collaborative d
store. By looking in detail at the semantic properties of p
ticular actions in a CSCW system, we can find operatio
which can be performed in parallel without leading to inco
sistency. This approach has been exploited in Prosper
toolkit for collaborative applications which uses metalev
techniques to allow application developers to reach in a
tailor toolkit structures and behaviours to the particul
needs of applications. The use of explicit semantic repres
tations to tie toolkit-level consistency management to t
specifics of application functionality is one aspect of th
use.

This paper has introduced the notion of consistency guaran-
tees as a technique to increase the effectiveness of 
explicit semantics approach. Essentially, consistency gu
antees generalise locks, regarding them as guarantee
some level of achievable consistency. This more flexib
interpretation allows applications to balance freedom 
action against eventual consistency as appropriate to the 
ticular circumstances of use. In addition, by allowing clien
to break their promises of future activity (and hence n
holding the server to its guarantee of later consistency), 
by falling back to a model of syntactic consistency wh
necessary, we can support opportunistic work without co
pletely abandoning the synchronisation of parallel activitie

Prospero provides a framework in which application fun
tionality and semantics can be integrated directly into t
toolkit. The result is a level of flexibility beyond that obtain
able with traditional toolkits, in which application details ca
play no part in the operation of toolkit mechanisms. Th
flexibility takes two forms. The first is that the toolkit ca
efficiently support a wider range of applications than wou
otherwise be the case, since the toolkit structures can th
selves be specialised and adapted to new circumstances
second is that applications can be used more flexibly si
they more directly accommodate a range of working sty
and interactional requirements.

In developing collaborative applications it’s critical that w
understand the interactions between notionally “low-leve
issues such as distributed data management and notion
“high-level” issues such as individual interaction and gro
activity. Such understandings must, in turn, lead to fram
works in which they can be applied broadly, rather than o
in specific, hand-coded applications. Prospero is an atte
to tackle just these issues and create a framework for 
holistic design of collaborative applications.

Acknowledgments

Dik Bentley, Jon Crowcroft, John Lamping, Ellen Siegel an
Doug Terry made valuable contributions to the developm
of these ideas and their presentation here.

References

[Barghouti and Kaiser, 1991] Naser Barghouti and G
Kaiser, “Concurrency Control in Advanced Database
9



,

),

lity

y

nd

e

aul

l
er

aul

n
h,

ted
nd
er

nd

24,
Applications”, ACM Computing Surveys, 23(3), pp. 269–
317, September 1991. 

[Beck and Bellotti, 1993] Eevi Beck and Victoria Bellotti,
“Informed Opportunism as Strategy: Supporting
Coordination in Distributed Collaborative Writing”, Proc.
Third European Conference on Computer-Supported
Cooperative Work ECSCW’93, Milano, Italy, September
13–17, 1993. 

[Berlage, 1994] Thomas Berlage, “A Selective Undo
Mechanism for Graphical User Interfaces Based on
Command Objects”, ACM Transactions on Computer-
Human Interaction, 1(3), pp. 269–294, September 1994. 

[Demers et al, 1994] Alan Demers, Karin Petersen, Mike
Spreitzer, Doug Terry, Marvin Theimer and Brent Welch,
“The Bayou Architecture: Support for Data Sharing among
Mobile Users”, Proc. First IEEE Workshop on Mobile
Computing Systems and Applications, Santa Cruz,
California, Dec 8–9, 1994. 

[Dewan and Choudhary, 1992] Prasun Dewan and Rajiv
Choudhary, “A High-Level and Flexible Framework for
Implementing Multiuser User Interfaces”, ACM
Transactions on Information Systems, 10(4), pp. 345–380,
October 1992.

[Dourish, 1995a] Paul Dourish, “Developing a Reflective
Model of Collaborative Systems”, ACM Transactions on
Computer-Human Interaction, 2(1), pp. 40–63, March 1995. 

[Dourish, 1995b] Paul Dourish, “The Parting of the Ways:
Divergence, Data Management and Collaborative Work”,
Proc. European Conference on Computer-Supported
Cooperative Work ECSCW’95, Stockholm, Sweden,
September 1995. 

[Dourish and Bellotti, 1992] Paul Dourish and Victoria
Bellotti, “Awareness and Coordination in a Shared
Workspace”, Proc. ACM Conference on Computer-
Supported Cooperative Work CSCW’92, Toronto, Canada,
November 1992. 

[Farrag and Ozsu, 1989] Abdel Aziz Farrag and M. Tamer
Ozsu, “Using Semantic Knowledge of Transactions to
Increase Concurrency”, ACM Transactions on Database
Systems, 14(4), pp. 503–525, December 1989. 

[Greenberg and Marwood, 1994] Saul Greenberg and David
Marwood, “Real-Time Groupware as a Distributed System:
Concurrency Control and its Effect on the Interface”, Proc.
ACM Conference on Computer-Supported Cooperative
Work CSCW’94, Chapel Hill, North Carolina, October
1994. 

[Heath and Luff, 1992] Christian Heath and Paul Luff,
‘‘Collaboration and Control: Crisis Management and
Multimedia Technology in London Underground Line
Control Rooms’’, Computer Supported Cooperative Work,
1(1–2), pp. 69–95, 1992

[Herlihy, 1990] Maurice Herlihy, “Apologizing Versus
Asking Permission: Optimistic Concurrency Control for

Abstract Data Types”, ACM Transactions on Database
Systems, 15(1), pp. 96–124, March 1990. 

[Hill et al., 1994] Ralph Hill, Tom Brinck, Steve Rohall
John Patterson and Wayne Wilner, “The Rendezvous
Architecture and Language for Multi-User Applications”,
ACM Transactions on Computer-Human Interaction, 1(2
pp. 81–125, June 1994.

[Kaiser, 1994] Gail Kaiser, “Cooperative Transactions for
Multi-User Environments”, in Won Kim (ed.), “Modern
Database Management: The Object Model, Interoperabi
and Beyond”, ACM Press, New York, 1994. 

[Kiczales, 1996] Gregor Kiczales, “Beyond the Black Box:
Open Implementation”, IEEE Software, pp. 6–11, Januar
1996.

[Kizcales et al., 1991] Gregor Kiczales, Jim des Rivières a
Daniel Bobrow, “The Art of the Metaobject Protocol”, MIT
Press, Cambridge, Mass., 1991.

[McGuffin and Olson, 1992] Lola McGuffin and Gary
Olson, “ShrEdit: A Shared Electronic Workspace”, CSMIL
Technical Report, Cognitive Science and Machin
Intelligence Laboratory, University of Michigan, 1992.

[Roseman and Greenberg, 1993] Mark Roseman and S
Greenberg, “Building Flexible Groupware Through Open
Protocols”, in Proc. ACM Conference on Organisationa
Computing Systems COOCS’93, Milpetas, Ca., Novemb
1–4, 1993.

[Roseman and Greenberg, 1996] Mark Roseman and S
Greenberg, “Building Real-Time Groupware with GroupKit,
a Groupware Toolkit”, ACM Transactions on Computer-
Human Interaction, 3(1), March 1996.

[Terry et al, 1994] Doug Terry, Alan Demers, Kari
Petersen, Mike Spreitzer, Marvin Theimer and Brent Welc
“Session Guarantees for Weakly Consistent Replica
Data” , Proc. International Conference on Parallel a
Distributed Information Systems, Austin, Texas, Septemb
1994. 

[Trevor et al., 1995] Jonathan Trevor, Tom Rodden a
Gordon Blair, “COLA: A Lightweight Platform for CSCW”,
Computer Supported Cooperative Work, 3, pp. 197–2
1995.
10


	Abstract
	1 Introduction
	1.1 The Relationship between Design and Use
	1.2 Toolkit Structures and Application Needs

	2 Divergence in Prospero
	1. It can be applied across a range of synchronisation frequencies. Frequent synchronisation resu...
	2. Since it incorporates a notion of resolvable, simultaneous work, it provides support for paral...
	3. For the same reason, it also supports the sorts of opportunistic activity in collaborative wor...

	3 Constraining Divergence
	3.1 Variable Consistency
	3.2 Using Application Semantics
	3.3 Constraining Divergence with Locks
	3.4 Promises and Guarantees

	4 Related Approaches in Database Research
	4.1 Semantics-Based Concurrency
	4.2 Application-Specific Conflict Resolution

	5 Encoding Promises and Guarantees
	5.1 The Programming Interface
	5.2 Semantics-Free Semantics
	5.3 Class-based Encoding

	6 Using Consistency Guarantees
	6.1 A Shared Bibliographical Database
	6.2 Collaborative Text Editing

	7 Mechanism and Policy in Open Implementations
	1. In the Open Implementation approach, policy remains in the implementation. Control is availabl...
	2. Analogously, since the policy control is retained in the implementation, the level of abstract...

	8 Summary and Conclusions
	Acknowledgments
	References

	Consistency Guarantees: Exploiting Application Semantics for Consistency Management in a Collabor...
	Paul Dourish
	Rank Xerox Research Centre, Cambridge Laboratory (EuroPARC) and Department of Computer Science, U...
	dourish@europarc.xerox.com


