

ABSTRACT

In order to understand some problems associated with work-
flow, we set out an analysis of workflow systems,
identifying a number of basic issues in the underlying tech-
nology. This points to the conflation of temporal and
dependency information as the source of a number of these
problems.

We describe Freeflow, a prototype which addresses these
problems using a variety of technical innovations, including
a rich constraint-based process modelling formalism, and the
use of declarative dependency relationships. Its focus is on

mediation

 between process and action, rather than the

enact-
ment

 of a process. We outline the system and its design
principles, and illustrate the features of our approach with
examples from ongoing work.

Keywords

: workflow, process support, process description,
constraints, dependencies, temporal organisation.

INTR ODUCTION

Workflow systems, in one form or another, have been with
us for over ten years. Workflow systems embody representa-
tions of working processes, as a basis for supporting those
processes, potentially distributed in time and across multiple
people. Workflow systems offer to “relieve users of the
burden of coordination”, by managing task coordination
within the system, so that users can focus on the constituent
work activities.

The development and introduction of workflow systems has
not been unproblematic, to say the least. Early experiences
led to considerable problems with user communities, and
terms such as “naziware” are testament to some of these
troubles. Studies of work have increasingly observed that the
“coordination” of work

is, itself, work

; but this coordination
is taken as unproblematic in workflow process representa-
tions, so that control over coordination can be passed from

users to systems. Similarly, studies of people following both
paper-based and technologically-represented processes have
highlighted the flexibility with which they interpret the pro-
cesses in order to get their work done [2, 8]. Observations
such as these have led to the identification of various issues
to be addressed in future workflow systems [1].

Recently, and most obviously, a debate between Lucy Such-
man and Terry Winograd in the pages of the CSCW Journal
[9, 11] and subsequently a host of responses and commentar-
ies from other researchers in the area [3] have again brought
some of these issues to the fore, concentrating not only on
the appropriateness of particular formulations of multi-
person behaviour, but also on wider political issues in cate-
gorisation and the formalisation of work. None the less, as
these debates continue in the research community, workflow
technologies are increasingly becoming part of everyday life
for many people, going hand-in-hand with the popularity of
Business Process Re-engineering.

What should be concluded from these debates? Should we,
perhaps, decide that the undeniable popularity of workflow
technologies as business tools adequately demonstrates their
validity, and that their opponents are arguing abstract, theo-
retical points, too distant from practice to be of relevance? Or
should we work to halt the seemingly inexorable progress of
technologies which seem to deny and defeat the very work-
ing practices by which organisational life and work
proceeds?

The Freeflow project has been in progress since late 1994,
and is ongoing. In this paper, we will present some prelimi-
nary results of work conducted at RXRC over the past
eighteen months

1

. Our starting point is not to reject the
potential value of process representations in collaborative
work. Instead, drawing on a variety of approaches including
ongoing ethnographic investigations of the use of process
technologies, we concentrate primarily on the

mediation

between working activity and process representations.

1. We focus here on the technical developments, and the motiva-
tion behind them. Field investigations are reported elsewhere [7].

Copyright © ACM 1996. This paper appears in Proceedings
of the ACM Conference on Computer Supported Coopera-
tive Work CSCW’96 (Boston, Nov. 1996) and is distributed
by permission of the ACM.

Freeflow: Mediating Between Representation and Action in
Workfl ow Systems

Paul Dourish

1

, Jim Holmes

2

, Allan MacLean

2

, Pernille Marqvardsen

3

 and Alex Zbyslaw

2

1

Apple Research Laboratories
Apple Computer, Inc.

1 Infinite Loop MS:301-4UE
Cupertino

CA 95014 USA
jpd@research.apple.com

2

Rank Xerox Research Centre
Cambridge Lab (EuroPARC)

61 Regent Street
Cambridge CB2 1AB

United Kingdom
surname@europarc.xerox.com

3

Dept. of Information Science
Aarhus University
Neils Juelgade 84
8200 Aarhus N

Denmark
pernille@imv.aau.dk

In the next section, we will set out a conceptual framework
for the various sorts of transformations which we might
introduce into traditional process management technolo-
gies—the dimensions of workflow. Of these, we will
highlight one particular area on which we have been concen-
trating, and describe how it is approached. We will describe
two particular technical developments which have supported
this work: first, an enriched process model which allows us
to separate information about the

dependencies

 between task
activities from information about the

temporal sequence

 of
their performance; and second, a declarative model of typed
inter-activity dependencies which addresses a number of
problems in handling complex activity sequences.

Based on these, we will move on to set out the architecture
we have developed in our prototypes. Finally, we will dis-
cuss user interface features and a third technical design
principle (delegation); and then illustrate the principles we
have developed with examples from some preliminary
experiments.

DIMENSIONS OF WORKFLO W

Our starting point, then, is a conceptual framework sur-
rounding workflow technologies—how they are derived and
how they are used. The basic principles are illustrated in
figure 1.

As outlined earlier, process description is at the heart of
workflow technology. In the traditional view, a process mod-
eller

2

 will build a description of a working process, which is
then embedded in a process management system. The pro-
cess model describes (in general) the sequences of actions
corresponding to the correct execution of the process. Subse-
quently the system will drive the sequences of user actions
required to execute the process, according to the sequence of
tasks described by the process model.

2. Here, “process modeller” denotes a role that someone plays,
rather than a professional category.

There are three particular relationships between stages or
components of this model highlighted in figure 1 by the italic
letters

(a)

,

(b

) and

(c)

. As indicated by the arrows, the tradi-
tional model casts each of these relationships as being one-
way or “directional”. However, each can be thought of as
running in either direction, with systems varying between
each extreme. So part of the design space for workflow sys-
tems is set up by these three dimensions.

The Definition Dimension

The first of these is the “definition” dimension, focussing on
the relationship marked by

(a)

 in figure 1. The traditional
approach puts the definition of the model before its use, that
is, before the work. The creation of the model occurs prior to
the use of the model in the system.

A critical feature of this is that it places the description of
work

outside

 its enactment. Although the eventual users
might be involved in the definition process, the roles of pro-
cess modeler and process participant are often separate; but
certainly, “theorising” about the model and “doing the work”
are different, separate steps. We can’t do the modelling by
doing the work.

However, this approach to model definition can be reversed.
We can turn this into a dimension of the design space, rather
than always focussing on one particular point. Moving along
this dimension would begin to allow users to engage in the
task of creating and modifying their own process descrip-
tions, in or alongside the execution of their work. Coming
from users in the enactment of working activities, such
descriptions might serve various purposes; not only the tra-
ditional purposes of process descriptions in workflow
systems, but also for individual and group reflection on pro-
cess, for documentation or organisational learning purposes,
and so forth.

The Sequence Dimension

The second dimension, at the point labelled

(b)

 in figure 1,
concerns the way in which the sequential structure of the
process representation is exploited.

Traditionally, workflow systems are used to guide and struc-
ture activity, and in particular activity which might involve
coordination or communication as part of the process. It
ensures a flow of activity across an organisation, from the
starting state to the goal states, to achieve some specific end,
produce or transform an artifact, and so forth. So the rela-
tionship between the component tasks of a process is not
simply one of dependency, but one of sequential execution;
and the system steps through the model from beginning to
end, ensuring that each point on the path is completed.

What would it mean for this not to be true? What would it
mean to work this in the other direction? The result would be
similar to the notions of forward-chaining and backward-
chaining in AI and planning systems. Rather than always
starting at the current state and determining what steps are
allowable at this point (“forward-chaining”), it would start at
the goal state and work backwards, to determine which
sequences of operations, or paths of activation, would suc-
cessfully lead to the completion of the task. This approach

process execution

(c)

(a)

process modelling

(b)

process description

Figure 1: Teasing out the dimensions of workflow.

might be used for fault-finding, or for investigating alterna-
tive strategies for accomplishing activity.

The Activity Dimension

The activity dimension, labelled

(c)

 in figure 1, covers the
relationship between the process description embodied in the
workflow system, and the user activities involved in execut-
ing this process. The traditional approach is to drive user
action from the process description. Typically, user actions
are informed or constrained by the valid “moves” from the
current state defined by the process model. In this way, the
system ensures that the sequential structure of user activity
accords to the process definition’s model of legal transitions
and correct execution of the process.

The inverse of this relationship would be to move in the other
direction, from action to process description. This opens up
a new potential role for process descriptions. Rather than
driving user action, they can be used to present, organise or
explain the activities in which users might engage. So
sequences of activity in the world could be rationalised or
presented in terms of the process description; and so the pro-
cess system is concerned with relating user action to a
process description, rather than driving action from it.

Exploring the Dimensions

Since we can use these dimensions to characterise the
approaches of various workflow systems, we can also see
earlier research on novel workflow developments as explo-
rations of this space. Fujitsu’s Regatta system [10] provides
support for the collaborative development of process models
in the course of doing the work; it opens up what we have
called the “definition” dimension. The goal-based approach
to workflow explored by Ellis and Wainer [6] introduces
higher-level goals as well as lower-level activities into pro-
cess descriptions, and can use these goals to represent
otherwise unstructured activity; this addresses aspects of the
“activity” dimension. Colleagues at our sister laboratory at
Grenoble have also been investigating the first dimension
with process formalisms which can be used to flexibly
manage the process description as the work progresses [5].

The focus of our attention has primarily been on the second
and third dimensions. We are especially concerned with the
relationship between user action and the process description
(“activity”), which then leads us to exploring how process
models embody commitments to particular sequences of
action (“sequence”).

As well as looking at how process-based work is conducted
in a range of settings, we have also been looking at new tech-
nological approaches to workflow which can be used to
support this more flexible approach. The next few sections
will outline the approach we have adopted, and opportunities
it presents.

CONSTRAINT-BASED WORKFLO W

Our concern is with how process representations can be
exploited, for the purposes of structuring, describing, coordi-
nating and explaining activity, without introducing the
stringent restrictions on that activity which have traditionally
been associated with workflow technologies. In mid-1994,

we developed an early prototype, called Contraflow, to
explore the use of

constraints

 to address this problem.

Constraints in Programming Languages

Constraints are a mechanism available in some program-
ming languages, which set up persistent relationships
between objects over time. Imagine that a traditional pro-
gramming language executes the statements:

a := 10;
b := a* 2;
a := 6;

Their effect is, first, to assign the value 10 to the variable

a

;
second, to assign twice the value of

a

 (i.e., 20) to the variable

b

; and then to reset the value of variable

a

 to 6. The result is
that

a

 holds the value 6 and

b

 holds the value 20. Now imag-
ine a similar (but not identical) set of operations in a
programming language with constraints:

a := 10;
b <- a * 2;
a := 6;

The second statement is not an assignment; instead, it sets up
a constraint which states that the value of variable

b

 is con-
strained to be twice the value of variable

a

 at any subsequent
point in the program (or until the constraint is changed). At
this point, the variable b will hold the value 20, as before.
However, when the third statement is executed and the value
of variable

a

 changes,

so will the value of variable

b

. The
constraint still holds;

b

 should always be twice

a

; and so
when the value of variable

a

 becomes 6, the value of variable

b

 changes to 12. Furthermore, variable

b

 will continue to
track changes to the value of variable

a

 through the execu-
tion of the program.

Constraints in Contraflow

In Contraflow, the relationships between the individual tasks
which make up a process description are modelled using
constraints which operate in much the same way. That is,
instead of describing the

instantaneous transitions

 between
task states, they describe the

continuous relationships

between those states. For example, “format the document
once the text has been approved” states an instantaneous
transition, moving activity from one task to another in the
course of process execution. In contrast, “document format-
ting should not be performed unless the text has been
approved” describes an ongoing, continuous relationship.

This reconstruction of the process model has a number of
consequences. First, it separates two relationships between
tasks which are typically conflated into a single relationship
in a traditional workflow system—a

temporal

 relationship
concerning the ordering of activities, and a

dependency

 rela-
tionship between work activities. Constraint-based process
models in Contraflow declaratively describe the dependency
relationships between tasks, rather than procedurally
describing sequences of action. Second, and consequently, it
frees users to engage in the component tasks of a process as
appropriate to their circumstances at any given moment,
rather than sequentially as defined by particular, absolute
paths through the process model. Third, constraint mainte-
nance is an active, ongoing process which continuously
relates the overall state of the process instance to the user

activities which are going on, rather than having to restrict
the scope of potential action in order to achieve a coordina-
tion between activity and the model.

As a result, then, users of Contraflow can engage in tasks
opportunistically, relying on the constraint mechanism to
coordinate activity across tasks and maintain the overall pro-
cess state. Contraflow actively maintains the correspondence
between ongoing user activity and the dependencies in the
process description, allowing the sequential organisation of
action to be created by the users in the course of their work.

This theme—the active mediation of the relationship
between process description and process execution—has
been a key principle in our subsequent work. Contraflow was
designed as a proof-of-concept, and as an exploration of the
use of constraints and related mechanisms in process man-
agement systems. More recently, these ideas have been
expanded in our Freeflow prototype. Before describing the
architecture we have developed, we will discuss two partic-
ular aspects of Freeflow’s design which follow on from the
Contraflow work. The first is Freeflow’s

extended process
model

, building on the separation of task dependency and
execution sequence; and the second is the use of

generic
activity relationships

, rather than raw constraints, to simplify
process modelling.

FREEFLOW’S EXPANDED TASK MODEL

The Contraflow prototype introduced the idea of separating
the temporal and dependency relationships between the tasks
which make up a process description. It did this through the
use of constraints, which were used to relate task

states

—
that is, the various states through which any task progressed.
Contraflow embodied an extended task state model (not dis-
cussed here) to support this constraint mechanism. In our
subsequent work, we have developed and refined this
extended model into that embodied in Freeflow.

In a typical workflow system, activation flows through the
process description, usually from beginning to end, with dif-
ferent tasks active at any given time. Each individual task,
then, proceeds through three different states:

inactive

, before
it has become the active component of the process;

active

,
when it is being worked on; and

done

, when the work asso-
ciated with that task is complete and activation has moved
onto the next stage of the process.

Freeflow employs a richer six-state model (see figure 2).
This model is based on a separation between the representa-
tion of user and system states. The separation between user
and system states is a reflection of the separation between
temporal and dependency relationships. The three positions
on the left-hand side correspond to the three “user states”. An
activity is “inactive” before any work has been done on it;
when a user begins work on the activity, it becomes “active”,
and once the work is complete, it becomes “ready”. So these
user states reflect potential user action.

The three right-hand states reflect the relationship of this
activity to other activities within the process—the pattern of
enablements and constraints between the individual activi-
ties, or causal dependencies. So, an activity is “disabled”
when an activity on which it depends has not yet been com-
pleted. It moves to the “enabled” state when these
preconditions are met; that is, there are now no dependencies
to prevent this activity from beginning. The final state,
“pending”, is for tasks which are prevented from

completing

by some external dependencies (in contrast with the disabled
state, when a dependency prevents a task from beginning).

The various activities which make up a process are related to
each other by constraints between the states of those activi-
ties. So, for instance, the statement that “activity B cannot
start until activity A has been started” is represented at this
level with two constraints, which tie the “enabled” state of
activity B to the “enabled” and “active” states of activity A.
By placing these constraints between the activities, the mod-
eler states that activity B cannot enter the “enabled” state
until activity A is both “enabled” (ready to run) and “active”
(currently receiving user attention).

The right-hand (system) states reflect activity dependency
information. They capture the information which is typically
represented in traditional process modelling systems; that is,
the patterns of enablement between activities. However, they
do not imply temporal ordering. Since we no longer rely on
the same three states to record both dependency information
and activation information, we can allow users to engage in
activities opportunistically, and to organise their own work
around the particular circumstances in which they find
themselves.

The work of Freeflow, then, is not only to provide a richer
process language and to model tasks in those terms, but also
to maintain the correspondence between the two sets of
states, system and user.

GENERIC ACTI VITY RELATIONSHIPS

Any number of the system states of one activity may be
linked by constraints to any number of states in any number
of other activities. Clearly, then, there is a huge number of
possible permutations of constraints. However, we rapidly
found a number of regularly-occurring patterns of con-
straints. They represent particular, idiomatic patterns of
relationship between two activities which occur commonly
in process descriptions.

Freeflow makes these commonly-occurring patterns avail-
able directly as activity dependencies. A number occur in our

Figure 2: Freeflow’s extended six-state task model.

Disabled

Enabled

Pending

Inactive

Active

Ready

SystemUser

prototype. For instance, the “after” dependency states that
one activity should be performed after another has been com-
pleted, while the “concurrent” dependency states that two
activities are performed concurrently (that is, one can start as
soon as the other has started).

These dependencies are not new forms of relationship which
we introduce into the model. Instead, they are a higher-level
shorthand for particular sets of activity-state constraints. At
this higher level, the dependencies are of particular “types”
(e.g. after, concurrent), unlike the simply, untyped con-
straints which underlie them. These generic typed
dependencies are more convenient than the collections of
constraints for describing common activity relationships in
the process definition language.

Since the dependencies are implemented in terms of activity-
state constraints, they share with those constraints a declara-
tive, rather than procedural, status. They say, “such-and-
such a relationship exists between these two activities”,
rather than saying, “when this happens, do that”. One advan-
tage of this declarative style is that it greatly simplifies more
complex patterns of activity sequencing, such as looping,
branching, and iteration. The “validation” dependency illus-
trates this particularly clearly.

Control Flow: the Validation Dependency

Validation is a common process idiom. It refers to the case
where the work performed in one activity must be validated
or approved before the process progresses. Common cases
might be a form which has to be approved by a manager, or
a report which must be checked, corrected and authorised.
Validation introduces a loop into the process description,
since approval might be denied, in which case the activity
which had to be validated (filling in the form, or writing the
report) must be restarted; and once it has completed the
second time, the validation activity will begin again.

A number of existing process description languages model
simple information flows and have no support for loops in
process descriptions at all. Others may support looping, but
must encode it procedurally (perform the base activity, then
perform validation, then either proceed or perform the base
activity again). In these cases, depending on the richness of
the language, it may be hard to encode the conditions under
which the loop will terminate, and depending on the process,
it might even be inappropriate to formulate such conditions.
At the same time, it can also be difficult to specify properties
which are variable but hold constant across the validation
loop (for example, the case where one of a number of people
can approve the form, but if it’s not approved, the same
person should be called upon to re-examine it after further
work).

In Freeflow’s modelling approach, validation is not
expressed as a procedural description of activity progression,
but rather as a

relationship

 between two activities. Freeflow
uses a validation relationship to express that activity A
ensures that the work performed in activity B is acceptable.
With this approach, the process modeler does not have to
detail precisely how the validation activities will proceed.
The system is then free to interpret that as appropriate in dif-

ferent circumstances, and manage the activation of these two
activities in context. Again, remember that high-level activ-
ity dependency relationships such as validation are simply
shorthands for an underlying pattern of activity-state con-
straints, which are themselves both declarative and open to
interpretation in differing circumstances. So using this
approach to these dependencies overcomes a number of
these problems with sequence management in process
description languages.

THE FREEFLOW ARCHITECTUR E

The previous sections have introduced the main ideas which
motivate and underpin the design of our Freeflow prototype.
In this section, we will introduce the conceptual architecture
(see figure 3) against which this prototype has been
designed, to illustrate how it takes advantage of the open
approach to activity management which Freeflow embodies.

We will discuss three principal components of the architec-
ture here: the process manager, interactors and events.

Process Manager

The Freeflow process model itself is embodied in a

process
engine

, which provides the semantics for the constraint lan-
guage. It is responsible for progressing activities from one
state to another, and managing the dependencies between
states. The process engine is embodied in a

process manager

which uses the engine to control a series of

process
instances.

 Each process instance represents a single running
instance of a business process; the representations of these
processes are stored in a process database. So, there may be
many process instances with the same process description
running at any one time, corresponding to multiple concur-
rent instances of the same process. For example, in a
financial services system, there might be a process descrip-
tion for the mortgage application process. The description of
this process is stored once in the process database; but there
will be a separate process instance for each mortgage appli-
cation which is currently in progress.

Interactors

The process manager acts like a database system, managing
the records of current process instances and performing pro-

Figure 3: The structure of Freeflow’s conceptual architecture.

Process database

Process manager
Interest
manager

Process
instances

Interactors

cess-specific manipulations. It is not responsible for user
interaction or the presentation of process descriptions or pro-
cess instances to users. These are managed by

interactors

.

An interactor is any component of the system which deals
with interaction and process representation issues. There are
two sorts of interactors—

specialised

 and

appropriated

. A
specialised interactor is one which has been designed specif-
ically to operate as part of the Freeflow environment (in
much the same way as other workflow systems provide user
interfaces for task management, process descriptions, activ-
ity lists and so on). Using an event mechanism (described
below), we also have the opportunity to create appropriated
interactors, which are existing applications in our users’
environments which can be “Freeflow-enabled”. For exam-
ple, we can place a wrapper around a word processor or text
editor so that, when a file is edited, this activity will be reg-
istered with Freeflow so that it can relate it to current process
activations which are associated with that file.

Events

The glue which links these components together is a genera-
lised event mechanism. Rather than directly define the
patterns of communication between system components—
the process engine, interactors and so forth—we use an event
mechanism for coordination. This means that we can add
new interactors and new relationships between components
much more easily.

Activities within the system generate events. For instance,
creating a new instance or moving an activity from one state
will generate an event. System components can register their
interest in particular events with the interest manager. This
interest manager is responsible for distributing notifications
of events to those system components which have expressed
an interest. So patterns of communication are specified indi-
rectly, in terms of the processes themselves. So, for instance,
an interactor which is being used to control a particular pro-
cess instance might register interest in any event associated
with that instance; meanwhile, another interactor which pro-
vides an overview of particular activities throughout the
system might register an interest in all events related to pro-
cesses of a particular type. The event mechanism helps
“decouple” interactors from the process manager, and so
interactors can be started and stopped at any time. This
decoupling also leads to another important aspect of Free-
flow’s approach—delegation—which will be illustrated in
our example.

AN EXTENDED EXAMPLE

We have been developing and experimenting with our proto-
type implementation of Freeflow since early 1995. To
demonstrate the principles which we have introduced in the
previous sections, we will now look at an application which
we have been using in-house as an early example.

To aid cross-platform development, we have been using the
World Wide Web to provide interfaces. We have developed
specialised interactors which are accessed through CGI
scripts (essentially, active Web pages), organised into sets of

activities which correspond to the various roles in our exam-
ple process.

The process itself is the management of public technical
reports. One reason for selecting this example is that it is rel-
atively well-understood within the research community, and
therefore serves as an effective comparison with other sys-
tems. This is a well-established process in our laboratory,
which involves five or six different people in different roles,
and provides us with an excellent opportunity to compare the
process as supported by Freeflow with the process as it was
previously managed. Before the introduction of the Freeflow
prototype, the technical report process was entirely paper-
based (that is, there was no automated process support). We
have been working with the various parties in this process to
develop a support system using our Freeflow prototype.

The Technical Report Process

Since the “publication review” is a relatively well-under-
stood process, we will not devote too much time to detailing
it, but simply summarise how it is instantiated for our own
technical reports. The process, loosely, runs as follows. Indi-
vidual authors submit papers to be admitted to the technical
report series, which is managed by two editors. Either or
both editors might be involved in the processing of any par-
ticular technical report. The editors have 4 primary
responsibilities:

1. ensuring that the report has been cleared for publication.
Authors are required to submit their clearance form,
which the editors will check.

2. ensuring that publication as a technical report would not
violate any copyright regulations. Authors are required
to submit any copyright assignment which they have
made for published papers.

3. ensuring that the report is of adequate quality for publi-
cation (both in form and content). The editors will copy-
edit the paper to check the form. In the case of papers
published externally, there is no further check on the
content; for unpublished papers, two peer reviewers are
assigned.

4. ensuring that the electronic copy of the report is print-
able. The editors check the document prints satisfacto-
rily on various printers.

When these checks have been made, the report can be
assigned a number, entered into the official lists, and made
available electronically inside and outside the laboratory (via
the World Wide Web).

Performing the Process

Let’s look at an example of part of this process being per-
formed using our prototype. First, the author of a paper or
report submits the document for inclusion in the technical
report series by filling out a form on a WWW page. The form
describes the document, its authors and status, etc. When this
is submitted, Freeflow creates a new process instance for the
technical report process.

The technical report series editors, who are responsible for
the administration of this process, have an “overview” page
shown in figure 4 (a). This shows two documents currently

being processed, including the example document we will
follow here, a paper by Jim Holmes and Alex Zbyslaw. The
labels associated with this document in the editor overview
table show the current state of the various activities in this
process instance. They are also WWW links to the pages
which control the execution of those activities.

The formal process states that a corporate clearance must be
obtained before the process goes any further. However, in

our example scenario, imagine that the managers authorised
to clear the paper for publication are unavailable. The activ-
ities which follow the clearance task, such as copy-editing
and peer review, are time-consuming, and can sensibly pro-
ceed without the clearance for the moment, even though this
is a deviation from the official process. In this case, the edi-
tors can begin the peer review process anyway. When they
select the select the activity label for “Check Peer Review”,
the dialogue shown in figure 5 appears. This dialogue warns
the editor that the action which they have just taken breaks a
constraint; in particular, the constraint which specifies that
clearance should be obtained before reviewing begins. In
this case, believing that the clearance will be granted, the
editor chooses to note this and proceed.

The peer review process involves assigning two reviewers
from inside the lab who will review the paper informally.
Reviewing is a validation activity, and so the review process
may involve a loop of review and correction. However, at
some point the reviewers and editors are satisfied and
approve the paper for publication.

At this point, the “check peer review” activity should move
to “Finished”, indicating that the activities have been per-
formed. However, the broken constraint prevents this.
Instead, this activity is marked as “Not Finished”, which
indicates that the work has been done, but a previously
broken constraint is still outstanding (figure 4 (b)). In this
case, it is the constraint relating this to the clearance activity;

Figure 5: Dialogues inform users when constraints are broken.

Figure 4: The “editor overview” provides editors with a view of current process instances.

(a)

(b)

(c)

the report has still to be cleared for publication. In our exam-
ple, now, an appropriate manager is available, and the paper
is cleared for publication. When this activity is performed,
the “check peer review” activity can be marked as finally fin-
ished (figure 4(c)).

User Interface Delegation

This short example illustrated one other design principle
which has been implied by what has come before, but
deserves explicit mention—

user interface delegation

.

There are a number of points where decisions about action
can be made. Particularly when we introduce the separation
of user and system states, and the opportunity to break con-
straints, then the number of such points is greatly increased.
In traditional systems, decisions about activity sequencing—
what task to perform next—are made within the workflow
system itself. By contrast, in Freeflow, these decisions are

delegated

 to the user, and appear at the user interface. The
dialogue in the example above, where the editor decides to
proceed with the peer reviewing despite the lack of a clear-
ance, is an example of this sort. At such a point, the user can
bring to bear contextual information (such as, for instance,
that this report deals with material previously cleared for
publication in other forms, and therefore is likely to be
approved for publication) to the resolution of the decision
about progress. Clearly, of course, this could happen in other
systems simply by stepping outside the bounds of the sys-
tem; this is exactly the sort of strategy which Bowers et al [2]
report in the context of a workflow system for print shop
operation. In these cases, where the system rigorously
enforces some internal notion of task sequence, users simply
step outside the system to perform the actions which they
know are appropriate in particular circumstances. However,
the traditional approach renders those activities invisible to
the system; and so, if the system is also used for monitoring
and accounting purposes, then there is time and effort unac-
counted for. The need to step outside the system forces a
breakdown in the process model; once an activity has moved
outside the process system, there is little incentive to bring it
back in again.

Freeflow’s flexible approach allows users to control the way
in which sequencing operations are carried out. This allows
these “hidden” activities not only to proceed, but also to be
recognised within the system. Freeflow flexibly maintains
the correspondence between user action and process repre-
sentation. This active maintenance, mediating between
working activity and the process representation, gives users
control over the way in which their work is organised, but
retains many essential benefits of process-based approaches,
including the use of the process to guide action, and the ratio-
nalisation and explanation of activity with respect to a
process model.

CONCLUSIONS

The procedure of deciding, before the actual occasion of
choice, the conditions under which one among a set of possi-
ble alternative courses of action will be elected, is one defini-
tion of a rational strategy. It is worth noting that this rational

property of the decision-making process in managing every-
day affairs is conspicuous by its absence.
—Harold Garfinkel [4].

While the development of workflow systems since their
emergence in the early 1980s has yielded considerable
improvements in the richness of their models and their
usability, some fundamental problems remain. Not least
among these is a problem frequently cited by critics of the
workflow approach—that the process models which work-
flow systems embody are descriptive accounts of working
activity, reused as prescriptive regimentations of that activ-
ity. Once the work has been described by a process model,
and this model has been embodied in a system, the computer
takes over the process. The result is first, that users lose con-
trol over their work; and second, that the work loses the
benefit of the insights which users bring to bear on how their
work should be organised for the particular circumstances in
which any instance of the work is carried out.

Our approach attempts to address this problem by effecting
a separation between the description of the working process
and the actualities of working activity. The emphasis of this
work, then, is not on how to build richer, more descriptive
languages for process definition, or how to arrange for work-
ing activity to follow these descriptions. Rather, we

actively
mediate

 between abstract process descriptions and the con-
crete activities in particular circumstances. The work is in
how this correspondence can be maintained.

We have described a prototype system which demonstrates
and develops some of these ideas. The roots of Freeflow are
in an activity model which separates “system” information
(recording dependencies between activities) from “user”
information (recording work over those activities). This, in
turn, allows us to separate the constraints of process structure
from the sequential organisation of working activity. Free-
flow further embodies a number of principles which aid this
separation—the use of declarative, typed activity dependen-
cies, and the delegation of conflict handling to the user
interface.

In this paper, we have drawn on examples based around our
work with a separate user community within our own organ-
isation. Ongoing work is looking into the use of these same
principles in a large financial services company in the UK
[7]. The development and use of these design principles pro-
vides us with a means to retain some of the organisational
benefits of process support systems, while acknowledging
and supporting the inherent openness of work practice—a
new development for workflow.

ACKNO WLEDGMENTS

The work reported here was carried out while Paul Dourish
and Pernille Marqvardsen were working at the Rank Xerox
Research Centre. We would like to thank a number of col-
leagues for their contributions to the development of this
work, especially at the early stages. In particular, we thank
Bob Anderson, John Bowers, Graham Button and Remo
Pareschi for their insights.

REFERENCES

1. Ken Abbott and Sunil Sarin,

“Experiences with Work-
flow Management: Issues for the Next Generation”

,
Proc. ACM Conference on Computer-Supported Coop-
erative Work CSCW’94, Chapel Hill, North Carolina,
October 1994.

2. John Bowers, Graham Button and Wes Sharrock,

“Workflow from Within and Without”

, Proc. European
Conference on Computer-Supported Cooperative Work
ECSCW’95, Stockholm, Sweden, September 1995.

3. Special Issues of

Computer Supported Cooperative
Work

, 3(1), 1995.

4. Harold Garfinkel, “Studies in Ethnomethodology”,
Prentice-Hall, New York, 1967.

5. Natalie Glance, Daniele Pagani and Remo Pareschi,

“Generalised Process Structure Grammars (GPSG) for
Flexible Representations of Work”

, Proc. ACM Confer-
ence on Computer-Supported Cooperative Work
CSCW’96, Boston, Mass., November 1996.

6. Clarence Ellis and Jacques Wainer,

“Goal-based Mod-
els of Collaboration”

, Collaborative Computing, 1(1),
pp. 61–86, 1994.

7. Allan MacLean and Pernille Marqvardsen,

“Cr ossing
the Border: Document Coordination and the Integration
of Processes in a Distributed Organisation”

, submitted
to International Working Conference on Integration of
Enterprise Information and Processes IPIC’96.

8. Julian Orr,

“Talking about Machines: An Ethnography
of a Modern Job”

, Technical Report SSL-91-07, Xerox
PARC, Palo Alto, California, 1991.

9. Lucy Suchman,

“Do Categories have Politics? The lan-
guage/action perspective reconsidered”

, Computer-
Supported Cooperative Work, 2(3), pp. 177–190, 1994.

10. Keith Swenson, Robin Maxwell, Toshikazu Matsumoto,
Bahram Saghari and Kent Irwin,

“A Business Process
Environment Supporting Collaborative Planning”

, Col-
laborative Computing, 1(1), pp. 15–34, 1994.

11. Terry Winograd,

“Categories, Disciplines and Social
Coordination”

, Computer-Supported Cooperative
Work, 2(3), pp. 191–198, 1994.

