
ter

as
ce
rs’

re
t is
eri-
the
re
ch
con-
ce
al
ese

 the
ti-
 a
e

ci-

and
tive

e
 of

 of
es
y’s

ich
he
iour

Organising User Interfaces Around Reflective Accounts

Paul Dourish*, Annette Adler† and Brian Cantwell Smith‡

*Rank Xerox Research Centre, Cambridge Lab (EuroPARC)
†Systems Architecture Group, Xerox Corporation

‡Xerox Palo Alto Research Center

dourish@cambridge.rxrc.xerox.com, adler@parc.xerox.com, bcsmith@parc.xerox.com
Abstract

Over recent years, studies of human-computer interaction
(HCI) from sociological and anthropological perspectives
have offered radical new perspectives on how we use com-
puter systems. These have given rise to new models of
designing and studying interactive systems.

In this paper, we present a new proposal which looks not at
the way in which we design systems, but at the nature of the
systems we design. It presents the notion of an “account”—
a reflective representation that an interactive system can
offer of its own activity—and shows how it can be exploited
within a framework oriented around sociologically-informed
models of the contingent, improvised organisation of work.
This work not only introduces a new model of interactive
systems design, but also illustrates the use of reflective tech-
niques and models to create theoretical bridges between the
disciplines of system design and ethnomethodology.

1 Introduction

A spectre is haunting HCI; the spectre of ethnomethodology.

The past ten years have seen a significant change in the dis-
ciplinary constitution of Human-Computer Interaction and
studies of interactional behaviour. What was once the
domain of human factors and ergonomics specialists, and
then became the domain of cognitive psychologists, has
increasingly been colonised by sociologists and anthropolo-
gists. These disciplines have brought with them radically

new perspectives on the way in which human-compu
interaction is conducted.

One highly visible response to this shift in perspective h
been the emergence of new ways of conducting interfa
design, and an increasing sensitivity to the details of use
everyday working practices. However, we will argue he
that current work does not go far enough. Instead, wha
required—if we are to take these new perspectives as s
ously as they deserve—is a radical change, not only in
ways in which we build interactive systems, but in the natu
of the systems thereby built. We will outline a new approa
we have been developing based on the use of causally-
nected reflective models of system and user interfa
behaviour. Reflection is, so far, the only computation
model we have encountered with the power to address th
issues. In this paper, we detail this new approach, and
elements of sociological analysis which underpin and mo
vate it; and we argue that this represents not only
significant new move in HCI, but also a critical area for th
development of reflective principles in everyday systems.

1.1 Ethnomethodology and HCI

In this paper, we will draw upon a particular branch of so
ology called ethnomethodology [Garfinkel, 1967]. A
growing number of researchers have been using this
allied approaches in the analysis and design of interac
systems.

Ethnomethodology’s roots lie in a respecification of th
issues of sociology. In particular, it reacts against a view
human behaviour that places social action within the frame
of social groupings and relationships which is the domain
traditional sociological theory and discourse—categori
and their attendant social functions. Ethnomethodolog
primary claim is that individuals do not, in their day to day
behaviour, act according to the rules and relationships wh
sociological theorising lays down. Quite the opposite. T
structures, regularities and patterns of action and behav
which sociology identifies emerge out of the ordinary, every-

Dourish’s current address: Xerox Palo Alto Research Center, 3333
Coyote Hill Road, Palo Alto, CA 94304. dourish@parc.xerox.com.

Adler’s current address: Architecture and Document Services Tech-
nology Center, Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA
94304. adler@parc.xerox.com

Smith’s current address: Department of Computer Science, Lindley
Hall, Indiana University, Bloomington, IN 47405.
bcsmith@cs.indiana.edu

ed
 way
e
n
ot

on.
d,

ses,
ed

ss’
e
er.
 in
o,
 to
ese

ch
ed,
e of
 to
al
ci-
rk,
on
t
nd
hat

k,

ork,
ed

e?

e the
e,

u-
ing
 a
at
r’s
ally

ing
day action of individuals, working according to their own
common-sense understandings of the way the social world
works. These common-sense understandings are every bit as
valid as those of learned professors of traditional sociology.

From this basic observation, a new picture of social action
has arisen. It would neither be possible nor fruitful to detail
it here, but some simple characterisations are critical. The
ethnomethodological view emphasises the way in which
social action is not achieved through the execution of pre-
conceived plans or models of behaviour, but instead is
improvised moment-to-moment, according to the particulars
of the situation. The sequential structure of behaviour is
locally organised, and is situated in the context of particular
settings and times.

Ethnomethodology’s concern, since its beginning, has been
the organisation of human action and interaction. In 1987,
Suchman published “Plans and Situated Actions,” which
applied the same techniques and perspectives to the organi-
sation of interaction between humans and technology. In
doing so, she opened up significant new areas of investiga-
tion both for HCI researchers and ethnomethodologists. The
same techniques have now been applied to a wide range of
settings within HCI research, and most particularly have
become a significant component in research on Computer-
Supported Cooperative Work (CSCW). This perspective has
lent weight to the analyses and critiques of interactive tech-
nology, lending weight to the emergent Participatory Design
movement, and similar approaches encouraging new models
of HCI design practice.

Our focus, though, is at a more fundamental level. We want
to explore the implications of this new sociological view not
just for the ways in which we build the artifacts of HCI, but
for the nature of the artifacts themselves; and, from there, we
want to understand what new artifacts would look like that
take the ethnomethodological perspective seriously.

1.2 Traditional Process HCI

The traditional view of interface work is strongly process-
based. From this perspective, the function of the interface is
to guide the user through the regularised, well-understood
sequence of actions by which some goal is reached. The pro-
cess is uncovered (or made visible) by requirements analysis,
and subsequently encoded (or made invisible) in design.

This traditional, process-oriented view structures the way in
which interfaces are designed, evaluated and studied.
Indeed, the regularisation it embodies extends to interface
design methodologies and formalisms, and can be seen, for
example, in the use of formal “automata” structures in the
description of interface activity, from interface transition
diagrams to workflow graphs and business process models.

The alternative view, which arises from sociological investi-
gations such as those cited above, is at odds with this process

orientation. Instead, it focuses on work as the improvis
management of local contingencies, and emphasises the
in which regularisations in the conduct of activity at th
interface arise out of individual moment-to-moment actio
(rather than the other way around). In this view, work is n
so much “performed” as achieved through improvisation and
local decision-making.

It is on this tension that we have been focussing attenti
Since computational design is inherently prescriptive, an
of necessity, involves abstractions of action and proces
how can it be made responsive to this view of the improvis
and unfolding organisation of user behaviour?

1.3 Improvisation and Resources

One starting point might be to ask, “how does the ‘proce
of improvisation proceed?” Unfortunately, this would be th
wrong question, and one that is almost impossible to answ
Ethnographers spend years detailing the particular ways
which particular activities are organised. What we can d
though, is step back from the detailed descriptions and try
draw out some general issues from the broad sweep of th
investigations.

Our starting point, then, is the view that the actions whi
constitute work at the interface are locally organised; inde
the work process as a whole emerges from this sequenc
locally improvised actions. So the question which is going
concern us is, what kind of information goes into this loc
organising process? How are the improvisational “de
sions” made? If our goal is to support this character of wo
then a critical focus of design must be to provide informati
or resources which support and inform the local, expedien
decision-making process, rather than to formalise a
encode the process itself. And once we have some idea w
the information might be, we’re then in a position to as
“how can it be applied?”

2 Operation and State

When humans use computer systems to perform some w
it is clear that an important resource in the improvis
accomplishment of their activity is their belief about the state
of the system. What is it doing? How much has it don
What will it do next? Why did it do that?

These questions are based on system state, and shap
sequential organisation of action. It’s important to realis
though, that it’s not the state information itself that’s val
able. After all, a user is generally engaged in accomplish
some other work with the system, rather than performing
detailed study of its behaviour. The information about wh
the system is doing is only useful when it helps the use
task proceed (or helps the user to progress). So what’s re
important to the user is the relationship between the state of
the system and the state of the work which the user is try

d
d-
ical
nly
’s

ges-
ral
the
tion
he
ta-

 to
the
n
ich
 be

ting
ive
he
in
e

to accomplish. When such a relationship can be established,
then information about the state of the system can be used to
understand and organise on-going working activity.

Relevant state information is readily apparent in most
devices we deal with day to day. Wheels turn, bits of paper
come in and out, and curious noises (and sometimes smells)
emerge. Visual access, operating noises and observable
behaviour all provide information about the system’s state
from moment to moment; we can see and hear information
about the state of devices and mechanisms which we might
want to use. In saying that, though, it’s important to recogn-
ise the distinction between what we see and hear, and what
we understand about device state. On their own, the various
resources accessible to the user aren’t of much use; some
greater context is needed before they become meaningful.

In particular, a user’s view of the relationship between the
state of the system and the state of their work is rooted in
some belief—however incomplete, inaccurate or naive—
about how the system works. This is true for almost anything.
For instance, the variety of resources which support the
activity of driving a car—such as the sound of the engine and
the feel of the clutch—only make sense within the context of
some (possibly incorrect) model of how a car works in the
course of getting someone from A to B. This lets us interpret
not only the information, but also its consequences for our
activity. Similarly, activity (particularly “situated” activity)
is organised around, and depends upon, these sorts of under-
standings; they allow us to ask questions like, “what is the
system doing?”, “what do I want to do next?”, and “how
should I go about it?”.

The next question is, where do these understandings come
from? Clearly, there are many sources. One of the most
important is our own everyday experiences, and the pictures
of structure and causation which we build up as a result of
daily interactions with all sorts of devices. Other sources
include the experiences of others, in stories, advice and anec-
dotes; others include formal instruction—courses, manuals,
and so forth. One other important source is essentially cul-
tural—the everyday understandings of devices which we
gain as a result of living in a world of Euclidean space, New-
tonian mechanics and the internal combustion engine.

Clearly, however, one of the most important components of
this understanding is the story the system tells about itself—
how it presents its own operation and state (and the relation-
ship between the two). Some of this is explicit, being part of
the way in which we might interact with a device; some may
be more implicit, such as the noises which devices make in
operation. Explicit or implicit, though, it all contributes to
the story.

Mechanical (or partly mechanical) devices are physically
embodied, and right there in the world with us, giving us this
information. Indeed, when a photocopier needs a paper jam
cleared out, we might get more information than we bar-

gained for. Gibson’s [1979] notion of the affordances for
action which a situation offers to appropriately-equippe
individuals begins to relate activity to this notion of embo
iedness. Software systems have no observable phys
embodiment, though, and so the user interface is the o
place where the user can get a view into the system
machinery.

Aspects of the interface and the way it behaves are sug
tive of the system’s capabilities, and of the sorts of tempo
or causal constraints acting on it. These contribute to
understanding the user builds up of the system’s opera
and the relationship of its components and activity to t
work the user is attempting to perform. Again, this presen
tion has both explicit aspects (e.g. the iconic representations
in direct manipulation interfaces) and implicit ones (e.g. the
dynamic or temporal properties of interactions).

So if we want to support improvised action, then we have
focus on two things—on the resources, presented in
interface, that support the improvisation; and, critically, o
the model the system presents of its own behaviour, wh
contributes to the context in which these resources can
interpreted and hence supports improvisation.

There’s clearly meta-ness here; the system is represen
itself, and so there’s clearly a leaning towards a reflect
solution. But before going further, we must consider how t
type of information we’re considering here is dealt with
existing systems; and that will turn out to be familiar to th
reflection community, too.

improvised action

available resources

understandings of
system operation

system’s story culturalexperience
understandings

................

FIGURE 1: The resources that underpin improvised action
are interpreted in a context which is formed, in part, by the
story the system tells about its own behaviour.

unfolding sequential organisation of

................

es
yn-
 the
er-
but
is
cy
.

o-
 as

-
is,
ce
ces,

per
ted
le-

er

m-
, or
ct,
r.
ce,
t

tate
m-
r’s

s,
lso

r-
ine
y,
ent
e’s

the
, we
n,

sed
ce
or
s it
il-
3 Connection and Disconnection

Given the importance of this “self-revealing” aspect of the
interface, we must ask what the relationship is between the
presentation that the interface offers and the actual operation
of the system. How is this relationship structured, and how is
it maintained? These are important questions, and they lead
us to identify a problem in maintaining this relationship—a
problem of connection.

Before worrying about how information about system activ-
ity should be presented to the user, we need to understand
how the interface component can find out what’s going on in
the first place. There are essentially two ways that an inter-
face can discover information about the activity of
underlying system components. The first is that it may be
constructed with a built-in “understanding” of the way in
which the underlying components operate. Since the inter-
face software is constructed with information about the
semantics and structure of the other system components to
which it provides a user interface, it can accurately present a
view of their operation. In view of the strong connection
between the application and interface, we’ll call this the con-
nected strategy. The second, disconnected strategy is
perhaps more common in modern, “open” systems. In this
approach, the interface component has little understanding
of the workings of other system components, which may
actually have been created later than the interface itself, and
so it must infer aspects of application behaviour from lower-
level information (network and disk activity, memory usage,
etc.). Essentially, it interprets this information according to
some set of conventions about application structure and
behaviour; perhaps the conventions that support a particular
interface metaphor.

However, there are serious problems with both of these
approaches. The connected approach is the more accurate,
since it gives interfaces direct access to the structure of
underlying components and applications. However, this
accuracy is bought at the expense of cleanliness and modu-
larity. This is clearly bad practice; but perhaps, if it were the
only problem, it would just be the price we have to pay for
effective interface design. Unfortunately, it’s not the only
problem. Perhaps more critically, extensibility is also bro-
ken. Because of the complex relationship between interface
and application, a new application cannot be added later
once the interface structure is in place. The interface and
application cannot be designed in isolation, and so a new
application cannot be added without changing the internals
of the interface software. The result is that this solution is
inappropriate for generic interfaces, toolboxes and libraries,
which provide standard interface functionality to a range of
applications.

So what of the disconnected approach? The problem here is
that, while it leads to modular and extensible designs, it is not
reliably accurate. The relationship between the low-level

information it uses and the higher-level inferences it mak
is complex and imprecise. Also, there are problems of s
chronisation. Because the representations of activity that
disconnected approach manipulates are implicit, its inf
ences can be consistent with the available information
out-of-step with the actual behaviour of the system. Th
approach, then, is largely heuristic; and so its accura
cannot be relied upon, particularly for detailed information

Essentially, the connected approach is too connected, and the
disconnected approach is too disconnected.

3.1 Example: Duplex Copying

As a way of grounding this problem, imagine a digital ph
tocopier. It offers various familiar system services—such
copying, scanning, printing, faxing—as well as other com
putationally-based functions, such as image analys
storage/retrieval and so forth. A generic user interfa
system provides the means to control these various servi
perhaps remotely over a network.

Somebody wishes to use the copying service to copy a pa
document. The paper document is 20 pages long, prin
double-sided (i.e. 10 sheets), and the user requests 6 doub
sided (“duplex”) copies. Half way through the job, the copi
runs out of paper and halts.

What state is the machine in? How many copies has it co
pleted? Has it made 3 complete copies of the document
has it made 6 half-copies? The answer isn’t clear; in fa
since copiers work in different ways, it could well be eithe
However, the critical question here concerns the interfa
not the copier per se. How does the interface componen
react to this situation? What does it tell the user is the s
of the device? And, given that this is a generic interface co
ponent which was constructed separately from the copie
other services, how does the interface component even know
what to tell the user, or how to find out the state?

This situation doesn’t simply arise from “exceptional” case
such as empty paper trays, paper jams and the like. It a
occurs at any point at which the user has to make an informed
judgement about what to do next, such as whether to inte
rupt the job to allow someone else to use the mach
urgently, whether it’s worth stopping to adjust copy qualit
and so forth. Even the decision to go and use a differ
copier requires an assessment of the current machin
behaviour. What these situations have in common with
exception case of an empty paper tray is that, as users
must rely on the interface to support and inform our actio
even when we find ourselves stepping outside the routini
“process” which the interface embodies. When the interfa
presents system activity purely in terms of the routine—
when its connection to the underlying system service give
no more information than that—then we encounter the fam

er
 its
n
t
 of
an
ing
ich
 of

ot
ut
ing
user
s it
il.

s
he
it
 in

ed
out
nts
es

 At
tics
ce
y).

hey
e,

 a
the
ned
h:

ter-
e

ally
s a
me
ns
se-

in
eal

-
ts a
ing
iar tension between technological rigidity and human
flexibility.

4 Accounting for System Action

The elements of the story we have presented so far resonate
strongly with ideas which the reflection community has
explored since the early 1980’s. The problems of self-repre-
sentation and disclosure in section 2 are essentially the same
as those tackled by 3-Lisp [Smith, 1982]; and the problems
of connection and abstraction barriers in section 3 are essen-
tially those of Open Implementation [Kiczales, 1992; 1996].
It seems natural, then, that we should look towards the prin-
ciples and techniques of computational reflection for
solutions to the problems we have set out, and for the foun-
dation of a new form of interactive system design.

Just as open implementations address problems of connec-
tion between system components, we can use the same
approach to address the “interface connection” problems of
section 3. So consider an alternative view of an open imple-
mentation’s reflective self-representation. Consider it as an
“account” that a system component presents of its own activ-
ity. Being a self-representation, it is generated from within
the component, rather than being imposed or inferred from
outside; being reflective, it not only reliably describes the
state of the system at any given point, but is also a means to
affect that state and control the system’s behaviour.

Such an account has a number of important properties. It is
an explicit representation—that is, computationally extant
and manipulable within the system. It is, crucially, part of the
system, rather than simply being a story we might tell about
the system from outside, or a view we might impose on its
actions. It is a behavioural model, rather than simply a struc-
tural one; that is, it tells us how the system acts, dealing with
issues of causality, connection and temporal relationships,
rather than just how the system’s elements are statically
related to each other. However, the account itself has struc-
ture, based on defined patterns of (behavioural) relationships
between the components of the account (perhaps relation-
ships such as precedes, controls, invokes, and so forth).

Most importantly, we place this requirement on the
account—that it “accounts for” the externally-observable
states of the system which presents it. That is, it is a means
by which to make a system’s behaviour accountable. The
behavioural description which the system provides should be
able to explain how an externally-observable state came
about. This critical feature has various implications, which
will be discussed shortly. First, however, let’s return to the
duplex photocopying example.

4.1 Accounting for Duplex Copying

If we adopt this notion of “accounts,” then the copy service
(which provides copying functionality in the copier, and

which lies below the interface component alongside oth
system services) provides not only a set of entry points to
functionality—the traditional abstraction interface, ofte
called an “Application Programming Interface” or API—bu
also a meta-interface or account, a structured description
its own behaviour. The API describes “what the service c
do”; the account describes “how the service goes about do
it”. It describes, at some level, the sequence of actions wh
the service will perform—or, more accurately, a sequence
actions which accounts for the externally-observable states
of the system. So, if the interface has access to details n
only of the functionality offered by the copying service, b
also an account of how it operates in terms of page copy
sequences and paper movement, then it can provide a
with appropriate information on the state of the service a
acts, and continuation or recovery procedures should it fa

So, this notion of reflective self-representations a
“accounts” provides a solution to the problems raised in t
duplex copying example. More importantly, in doing so,
also provides a solution to the connection problem raised
section 3. The interface module does not have to infer activ-
ity information (as was necessary with the disconnect
interface strategy). Instead, it can present information ab
the system accurately because the information it prese
comes directly from the underlying components themselv
(where it is causally connected to their actual behaviour).
the same time, information about the structure and seman
of those components is not tacitly encoded in the interfa
module (as it was in the connected interface strateg
Instead, this information is explicitly made available from
the components themselves. It is manifested in accounts t
offer of their actions which the interface module can us
preserving the modularity and extensibility properties of
disconnected implementation. This balance between
connected and disconnected approaches is maintai
through the two critical aspects of the reflective approac
explicit representations and causal connection.

To understand the ways in which accounts can support in
face activity, we first have to look in more detail at th
properties of accounts themselves.

5 Exploring Accounts

Accounts and reflective self-representations are essenti
the same thing; our use of the term “accounts” connote
particular perspective on their value and use. By the sa
token, the familiar properties of reflective representatio
also apply to accounts; but they may have particular con
quences for a use-oriented view.

One important issue, which derives from our grounding
research on Open Implementations, is that accounts rev
aspects of inherent structure rather than the details of spe
cific implementations. In other words, the account presen
rationalised model of the behaviour of the system, reveal

le

nt
ues

 of a

ir-
 itself

 and
o

nts
are
ir-
eds
 is
 is
e
lly

 the
ds

or
at

 to
ke
in

m

d
but
some details and hiding others, as required by the purposes
to which its designer intends it to be put. It both enables and
constrains. The account stands in a two-way semantic rela-
tionship to the implementation itself; this much is guaranteed
by the causal connection. But that relationship is not a direct
one-to-one mapping between the elements of the implemen-
tation and the elements of the account. We can perhaps think
of an account as being a particular registration of the imple-
mentation; a view of the implementation which reveals
certain aspects, hides others, and highlights and emphasises
particular relationships for some specific purpose.

So the account need not be “true” in an absolute sense; it is
accurate or precise for the purposes of some specific use, in
context. The system may well have to go to some lengths to
maintain the validity of the account in particular circum-
stances. Imagine, for instance, that the “copying” account of
section 4.1 presented, for simplification, a model in which
only one page was being processed at any moment. How-
ever, even fairly simple copiers typically process multiple
sheets concurrently, to increase throughput. This would be
perfectly valid as long as for any observable intermediate
state—that is, any point where a user (or user interface)
might intervene in the process, either through choice or
necessity—the system can put itself into a state which is
accounted for purely in terms of the model offered.

Naturally, this begs the question: what states are observable?
There is no absolute answer to this question; like any other
reflective representation, not only does it depend to some
extent on the structure of implementations, but it also
depends on the needs of the user in some particular situation.
This reflects a tension in the account between accuracy and
precision. The account must, at all times, be accurate; that is,
in its own terms, it must correctly represent the state and
behaviour of the system. However, this accuracy may be
achieved by relaxing its precision, the level of detail which
the account provides. Relaxing precision allows the system
more flexibility in the way it operates.

The invariant property, though, is that of accountability; that
the system be able to account for its actions in terms of the
account, or that it should be able to offer an account which is
not incompatible with previously offered accounts. In these
terms, accountability is essentially a form of constructed
consistency. This aspect of the account draws further on the
relationship between account-oriented improvisation of
activity and the ethnomethodological perspective presented
earlier. Accounts and representations in social interaction are
given their authority and validity by the pattern of social
relationships which back them up, and by which one is, to a
greater or lesser extent, held accountable to one’s words and
actions. So, the utility of an interface account depends on the
backing that the system offers—in this case, the guarantees
sustained by the causal connection. It is this notion of
accountability, based in the direct relationship between
action and representation, which is at the heart of this pro-

posal, and which distinguishes accounts from simp
simulations.

However, accountability is by no means the only significa
property deserving discussion here. Another cluster of iss
revolve around accounts being inherently partial. An
account selectively presents and hides particular aspects
system and its implementation. It is crafted for specific pur-
poses and uses. By implication, then, it is also variable; the
level of detail and structure is dependent on particular c
cumstances and needs, as well as the state of the system
at the time.

This is another area where the balance between accuracy
precision becomes significant. This variability must als
depend on the recipient of the account, which is directed
towards specific other entities, be they system compone
or users. The whole range of ways in which accounts
only partially complete and are designed for particular c
cumstances (in a way that reflects the balance of ne
between the producer and receiver of the account)
reflected in the use of the term “account”. Included in this
the principle that variability is dynamic; the account is th
means by which structure and information can be gradua
revealed, according to circumstances. To draw again on
ethnomethodological metaphor this variablility correspon
to the idea of recipient design in conversation analysis; the
crafting of specific utterances for a particular recipient
audience. This level of specificity also emphasises th
accounts are available for exploration, rather than being the
primary interface to a system component. We don’t have
deal in terms of the account at all times, but we can ma
appeal to it in order to understand, rationalise or expla
other behaviour.

One final property is important here. Again as derived fro
reflective self-representations, an account is causally con-
nected to the behaviour it describes. It is not simply “offere
up” as a disconnected “story” about the system’s action,

accuracy precision

partiality

directednessvariability

accountability

system action

representation

causal connection

FIGURE 2: The account lives in a balance between accuracy
and precision. When precision is loosened, through partiality,
etc, the causal connection sustains its accountability.

ce
n.
s)

me
le;
I)

om-
he
ut

ant
 a
py
he
’s
et

he

e.

you
ote

n

he
ion
ity
d
ce
ut
ar-
 to

he
ri-
les,
tails
n-
t is

Name Name

FIGURE 3: A structural model of the file copying example in terms of data buckets and the connections between
them. Connections between elements of this model are the points at which strategies and policies can be identified.

flow strategy
strategy

name mapping
stands in a more or less connected causal relationship to it.
Changes in the system are reflected in changes in the repre-
sentation, and vice versa. The critical consequence of this is
that the account be computationally effective—an account
provides the means not only to describe behaviour, but also
to control it. The link between the account and the activity is
bidirectional. The account is a means to make modifications
to the way in which the system works—it provides the terms
and the structure in which such modifications are described.
Indeed, the structure of the account clearly constrains the
sorts of modifications that are allowed, whether these are
changes to the action of the system itself, or—more com-
monly, perhaps— manipulations of the internal processing
of specific jobs in progress.

6 Accounts and Users

Previous sections used an example of a duplex copying task
as an illustration of the value of an account-based approach
to system architecture. The copying example illustrates one
way of using these representations. The use of accounts in
that example is derived fairly directly from explorations over
the past few years of the use of reflective representations and
metalevel architectures in system design. At the system
level, reflective representations or accounts can provide a
critical channel of communication between system compo-
nents or modules, and in particular offer a solution to the
problem of connection in generic interfaces.

However, it is interesting to examine a more radical use of
accounts—their use at the user level. The goal here is to
address more directly the disparity that was highlighted in
the introduction, between the improvised, resource-based
nature of actual work and the process-driven model assured
in classical interface design. The accounts model is an
attempt to address this by thinking of computational repre-
sentations as resources for action. On the one hand, the
account mechanism builds directly on the importance of the
“stories systems tell” about their activity; and on the other,
the causal connection and principle of accountability (or
constructed consistency) supports the variability of use.
Accounts provide a computational basis for artful action.

6.1 Example: File Copying

Let’s consider a second example—a real-world interfa
problem with its origins in a breakdown of abstractio
Imagine copying a file between two volumes (say, two disk
under a graphical file system interface. You specify the na
of the file to be copied and the name of the destination fi
after you start the copy, a “percentage done” indicator (PD
appears to show you how much of the copy has been c
pleted. This generally works pretty well, especially when t
two volumes are both connected to your own machine. B
consider another case, which isn’t so uncommon. You w
to copy a file from a local volume to a remote volume on
nearby fileserver over a network. This time, when you co
the file, the PDI appears and fills up to 40% before t
system fails, saying “remote volume unavailable”. What
happened? Was 40% of the file copied? Did all of the file g
40% there? Most likely, none of the file ever reached t
remote volume; instead, 40% of it was read on the local disk
before the machine ever tried to reach the remote volum
What’s more, there’s no way to tell how the remote volume
is unavailable; on some systems, this might even mean
don’t have your network cable plugged in (and so the rem
volume was never available). Finally, a failure like this
makes you wonder... just what’s the PDI telling you whe
things are working?

In general, there’s simply no way to see at which point in t
copy failure occurred, since the interface presents no not
of the structure or breakdown of behaviour and functional
that’s involved. In fact, the notion of a partially-complete
copy makes little sense when offered in the interface, sin
the interface doesn’t even offer terms in which to think abo
what’s going on. What does it mean when the copy is p
tially completed, and when the PDI indicates there’s more
do?

We can begin to address this problem by looking for t
inherent structure of the example. Start by reifying the va
ous areas where data might reside at any moment; fi
buffers, caches, the network, interface cards, etc. The de
are not important; they’re specific elements of an impleme
tation, rather than inherent features. The essential poin
7

f
ly,

hich
 the
urn

the
hip
er
om

ot
er
n-

y

and
unt
m
al
al
re-
ion;
m,
ular
ete

ut
an
eak
t is
ut
ent

ted
ur-
e
as
ion

or-
ns
hat
ay

new
. In
 at

ys-

simply that there are some number of these “data buckets”;
that some are files and some are not; and that the process of
copying a file involves connecting a series of them together
to get data from one place to another. So we end up with a
structure rather like that in figure 3.

In this figure, we see a set of data buckets connected
together, indicating the flow of data between two points.
Some of these buckets (the end points) are files; they exist
independently of the particular copy operation, and are dis-
tinguished with names1. The other data buckets are
temporary intermediate ones. The flow of data through the
system is determined by the strategies used at the connection
points between the data buckets. A wide range of mecha-
nisms could be used: flushing a buffer on overflow or an
explicit flush, transferring data between buffers in different
units, etc. The point isn’t which mechanism is used in any
given case. Rather, it is that the account gives the interface—
and the user—a structure and vocabulary for describing the
situation. In terms of this vocabulary, aspects of system
behaviour can be explicated and controlled.

So when the particular configuration in some given situation
is available for exploration, we can begin to answer ques-
tions about the interface and system behaviour. Just as the set
of flow strategies characterises the flow of data through the
system as a whole, so the flow can be controlled through the
selection of strategies; and the behaviour of the percentage-
done indictor is connected to (characterised and controlled
by) the point in this sequence where it is “attached”. Should
it be attached towards the left-hand side, for instance, then it
will tend to reflect only the local processing of data—not its
transmission across the network, which is often of greater
importance to the user, and which caused the failure in the
case we were considering2. However, without any terms of
reference, it isn’t possible to talk about “where” the indicator
is attached—far less to move it around. When needed, then,
the account provides these terms of reference; an explicit
structure within which specific actions can be explained, and
their consequences explored. This structure—one within
which exploration and improvisation can be supported—is
not supported by traditional interactive software structures
which make details inaccessible behind abstraction barriers.

This account is aimed at solving interface problems arriving
from the traditional file system abstraction, which arise
because file system operations are characterised purely in

terms of read and write operations. This takes no account o
whether the operations are performed locally or remote
and the consequences of such features for the way in w
the interface should behave. The abstraction has hidden
details from higher levels of the system, but those details t
out to be crucial to our interactions3.

This example illustrates a number of general points on
nature and use of accounts. First, consider the relations
between the model and the system itself. Unlike oth
approaches to interface visualisation, the model arises fr
the structure of the system and is embodied in the system. It
is not imposed from outside. It is general, in that it does n
reflect the details of a particular implementation, but rath
reflects the inherent structure of all (or a range of) impleme
tations. It is a gloss for the implementation, explicitl
revealing and hiding certain features deemed “relevant”.

Second, consider the relationship between the account
the activity. The causal relationship renders the acco
“true” for external observation; because it is of the syste
itself, rather than simply of an interface or other extern
component, it is reliable in its relationship to the actu
behaviour represented. However, the level of detail it p
sents reflects the balance between accuracy and precis
while it accurately accounts for the behaviour of the syste
it only reveals as much as is necessary for some partic
purpose—in this case, explaining the curious “40% compl
then 100% failure” behaviour.

Third, it allows us to talk not only about structure, but abo
“strategies”; that is, it is a behavioural model, not simply
architectural one. This means that the system can br
down and “reason about” policy and strategy. An accoun
not simply a name for a way of doing something, b
describes the pattern of relationship between its constitu
activities; and this is critical to the way it’s used.

7 Perspectives and Conclusions

There is a tension between the traditional process-orien
view of user interfaces and interaction—interfaces as c
rently designed—and the view of interface work as th
locally-improvised management of contingencies that h
been emerging over the past ten years or so. This tens
becomes particularly troublesome when we attempt to inc
porate some of the insights of sociological investigatio
into system design. In this paper, we have argued t
addressing this problem not only means rethinking the w
in which we go about systems design, but also leads to a
approach to the nature of the systems which we design
focusing on the resources that support improvised work

1. In fact, naming is a separate issue in the account which a system
provides; in this example, its relevance is that the source point
named is a file, whereas the end point is given a name before a file
exists there. However, the issue of naming is not discussed in this
example.

2. Note a second extremely confusing—and potentially danger-
ous—failure which can result here. The PDI can indicate 100%
copied, before the remote volume complains that it’s full after
writing only 40% of the file. Which report should be trusted?

3. In fact, problems of this sort can be seen in a wide range of s
tems where network filestores have been grafted on within the
abstractions designed for local filestores, because “you needn’t
worry if the file is local or remote”.

s,

”

the interface, we have been concerned here with how users
understand system activity, and in particular with the way
that systems and devices find and present such information.
This reveals a problem in the structure of interactive sys-
tems—a problem of connection between system
components.

Accounts are causally-connected representations of system
action that systems can offer as explications of their own
activity. They are inherently partial and variable, selectively
highlighting and hiding aspects of the inherent structure of
the systems they represent, but, being views of the system
from within rather than without, they are reliable representa-
tions of ongoing activity. A system is held accountable to its
account; that is, the account must adequately “explain” the
observable states of the system that offered it.

This work is part of an ongoing investigation of the relation-
ship between sociological and ethnomethodological
perspectives on work and interaction and the practice of sys-
tems architecture and design. A number of groups,
particularly investigating the use of collaborative technolo-
gies, have attempted to integrate ethnomethodology into
their design methods. The approach we have been exploring,
however, addresses this integration as a theoretical, as well
as a practical, concern [Button and Dourish, 1996]. In our
work over the last two years, we have focussed on the use of
reflection and metalevel implementation techniques to
address problems in system architecture and use. The expli-
cation and reification of semantic structures in the reflective
approach, making them amenable to examination and
manipulation, has provided an opportunity to focus not on
how usage issues can be encoded within systems, but rather,
at how the flexibility inherent in everyday activity can be,
itself, the subject of computation. Rather than attempting to
“lift the system to the user’s level” (for instance, through the
use of AI techniques), or “lower the user to the system’s
level” (by forcing users to address their work in system
terms), we have been exploring, instead, how the mediation
between these two levels can be flexibly and fruitfully
accomplished.

Acknowledgments

Many colleagues have contributed to these ideas and to this
presentation of them. We are indebted to Bob Anderson,
Graham Button, Beki Grinter, Austin Henderson, Gregor
Kiczales, David Levy, Gene McDaniel, Bob Printis and
Randy Trigg for comments, inspiration and support in the
development of this work.

References

[Button and Dourish, 1996] Graham Button and Paul Dour-
ish, “Technomethodology: Paradoxes and Possibilities”,
Proc. ACM Conference on Human Factors in Computing
Systems CHI’96, Vancouver, Canada, May 1996.

[Garfinkel, 1967] Harold Garfinkel, “Studies in Eth-
nomethodology”, Prentice-Hall, New York, 1967.

[Gibson, 1979] J. J. Gibson, “The Ecological Approach to
Visual Perception”, Houghton Mifflin, New York, 1979.

[Kizcales, 1992] Gregor Kiczales, “Towards a New Model of
Abstraction in the Engineering of Software”, Proc. IMSA
Workshop on Reflection and Metalevel Architecture
Tokyo, Japan, November 1992.

[Kiczales, 1996] Gregor Kiczales, “Open Implementations”,
IEEE Software, pp. 6—11, January 1996.

[Smith, 1982] Brian Smith, “Reflection and Semantics in a
Procedural Language”, MIT Laboratory for Computer Sci-
ence Report MIT-TR-272, 1982.

[Suchman, 1987] Lucy Suchman, “Plans and Situated
Actions: The problem of human-machine communication,
Cambridge University Press, Cambridge, UK, 1987.

	Organising User Interfaces Around Reflective Accounts
	Paul Dourish*, Annette Adler† and Brian Cantwell Smith‡
	*Rank Xerox Research Centre, Cambridge Lab (EuroPARC) †Systems Architecture Group, Xerox Corporat...
	dourish@cambridge.rxrc.xerox.com, adler@parc.xerox.com, bcsmith@parc.xerox.com
	1 Introduction
	1.1 Ethnomethodology and HCI
	1.2 Traditional Process HCI
	1.3 Improvisation and Resources

	2 Operation and State
	3 Connection and Disconnection
	3.1 Example: Duplex Copying

	4 Accounting for System Action
	4.1 Accounting for Duplex Copying

	5 Exploring Accounts
	6 Accounts and Users
	6.1 Example: File Copying

	7 Perspectives and Conclusions

