This paper appearsin ACM Transactions on Computer-Human Interaction, 5(2), 109-155.

Using Metalevel Techniques in a Flexible
Toolkit for CSCW Applications

Paul Dourish

Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto

CA 94304 USA
dourish@parc.xerox.com

Abstract. ldeally, software toolkits for collaborative applications should provide generic, reusable
components, applicable in awide range of circumstances, which software devel opers can assemble
to produce new applications. However, the nature of CSCW applications and the mechanics of
group interaction present a problem. Group interactions are significantly constrained by the struc-
ture of the underlying infrastructure, below the level at which toolkits typically offer contral.

This article describes the design features of Prospero, a prototype CSCW toolkit designed to be

much more flexible than traditional toolkit techniques allow. Prospero uses ametaleve architecture

so that application programmers can have control over not only how toolkit components are com-

bined and used, but also over aspects of how they are internally structured and defined. This
approach allows programmers to gaiccess to “internal” aspects of ttaolkit's operation that
affecthow interaction and collaboration proceed. This article explains the metalevel approach and
its application to CSCW, introduces two particular metalevel techniques for distributed data man-
agement and consistency control, shows how they are realised in Prospero, and illustrates how
Prospero can be used to create a range of collaborative applications.

Categories and Subject Descriptors: Categories and Subject DescriptorsQorapufer-Com-
munication Networks]: Distributed Systems-distributed applications; distributed databases;
D.2.2 [Software Engineering] Tools and Techniquesuser interfaces; H.1.2 M odels and Prin-
ciples] User/Machine Systemshuman factors; H.5.3 [nformation Interfaces and
Presentation]: Group and Organization Intieices—theory and models.

General terms: Design, Human Factors, Languages.

Additional key words and phrases: metalevel programming, open implementation, data distribution,
divergence, consistency control, consistency guarantees, software architecture.

1 INTRODUCTION

In the early days of collaborative system design, the software components for multi-user interaction
and collaboration were crafted by hand for each application. Object replication and sharing infra-
structures, consistency management mechanisms and multi-usdadatwidgets were \tten

from scratch to produce experimental systems for investigating the use of computer tools supporting
collaborative work.

In this regard, CSCW development is no different from any other area of experimental system
design. Being a pioneer means expl oring an areawhere no-one else has been, and so thereisnothing
left over from previous trips to be reused. Nor is CSCW different from any other area in terms of
subsequent development patterns when the needs of a novel application area are better developed.
Common features of system design emerge, and devel opers begin to identify the core system ele-
ments and requirements which the application domain defines. As these become better understood,
toolkits of reusable, widely applicable components emerge.

A cursory look at the historical development of CSCW applications and systems shows this trend.
Most systems described at the first CSCW conference in 1986 (such as those of Greif and Sarin
[1986]), or inthe earlier workshop in 1984, were designed from scratch; however, by thethird ACM
conference in 1990, toolkits such as MMConf [Crowley et al., 1990] and Rendezvous [Hill et al.,
1994] had emerged offering programmers components which had been found to be generally appli-
cable in arange of situations.

This issue of genera applicability is the crux of the design of any toolkit, and will be the primary
focus of this article. In particular, we will be concerned with the fact that toolkit designer must fur-
nish the application designer with a set of features regular enough to apply in a range of
circumstances, but flexible enough to support the needs of different applications. The problem that
motivates the research described in this article tackles is, what technology can be brought to bear
on the resolution of this tension?

I will argue that this design issue, common across al toolkits, is particularly problematic in the
CSCW domain. | will present the particular techniques used in the design of Prospero, aradically
flexible CSCW toolkit, to address these problems. Prospero embodies three particular techniques
which will be addressed here. The first, Open Implementation, is a general architectural technique
which has recently emerged as a solution to the engineering requirement for flexible abstractionsin
arange of domains, providing metalevel control over implementations. The potential applicability
of Open Implementation to CSCW design was originally introduced in a previous article [Dourish,
1995]; this article focuses on how the approach has been realised and applied in the design of Pros-
pero. The second and third techniques, divergence/synchronisation and consistency guarantees, are
particular metalevel techniques developed in Prospero for CSCW applications. These techniques
are designed to work well within an Open Implementation framework, but can be applied
independently.

The structure of the rest of this article is as follows. Section 2 will outline some issues in CSCW
toolkit flexibility. It will present evidence for the particular need for flexibility in CSCW, using
studies of collaborative activity to point to the interdependence of usage patterns and system infra-

structure. Traditionally, these concerns, the “high level” and the “low level”, are regarded as being

relatively independent, and have been approached from this perspective; however, | will argue that
the interdependence forces us to take a different approach. Section 3 will introduce the Open Imple-
mentation approach which Prospero embodies, and outline the general structure of Prospero’s
solution to the problems raised in Section 2. Subsequently, Sections 4 and 5 will discuss divergence/
synchronisation and consistency guarantees, the two CSCW-specific techniques used in Prospero.

Sections 6 and 7 will show how Prospero is used to construct collaborative applications.

2 FLUID USE AND STATIC INFRASTRUCTURE

The goal of any toolkit design is to provide generic, reusable components that are applicable to a
wide range of applications. The value of thetoolkit liesin the range of applications that can be sup-
ported. However, every application has different requirements. The design tension, then, liesin the
creation of components that can be general enough to apply widely, but which can also support the
rich set of specific needs of those applications.

Along with other system components such as operating systems and network services, toolkits pro-

vide elements of application infrastructure—elements that will be deployed by an application in
various ways, but which are independent of the specifics of the application domain. So, for example,
a user interface toolkit might offer widgets such as pull-down menus and scroll-bars; and a program-
ming language will provide data structures and control structures which can be combined to provide
an infinite range of specific configurations. This depends upon a separation between the “low level”
features of infrastructure and the “high level” features of an application.

One important feature of CSCW toolkits and applications, however, is that significaraciiins

emerge between these low and high levels. As will be argued in Section 3, similar interactions can
be found in other areas, but the goal of this section is to show that these issues are particularly prob-
lematic in collaborative settings, because the static elements of infrastructure frequently interfere
with the essentially dynamic elements of what is to be supported—collaborative working.

| will begin, in Section 2.1, by outlining some of the elements of CSO¥stmucture, the funda-
mental computational elements on which CSCW applications depend. In Section 2.2, | will discuss
a number of studies of group working that illustrate how the progress of group work can be system-
atically undermined by the issue of infrastructure configuration. Section 2.4 will outline how these
problems have been addressed in other work.

2.1 Elements of CSCW Infrastructure

There are a number of common elememwiigch arise in the design of CSCW applications, and are
therefore areas in which CSCMblkits can provide support for application developers. In this arti-
cle, we will focus particularly on data distribution and consistency control.

Data distribution concerns the way in which application data in a collaborative application is dis-
tributedacross the network nodes participating in that session. Centralised and replicated strategies
vary in the number of copies of any data item which are available within the system at any given
moment. Replicating data items lowers latency but introduces problems of synchronisation. Static
and dynamic strategies vary in their approach to the movement of data items within a network.
Moving data around may allow it to be located close to the site of current activity, but introduces
problems of finding data items when they are needed.

When multiple copies of a single data item are available at multiple points in a network, then issues
of consistency management arise. A variety of strategies can be adopted to ensure that data copies
are maintained in synchronisation with each other. These might invokmadtdn mechanisms

that ensure that only a single activity can leefgrmed over a data item at agiven moment,
sequencing mechanisms that ensure consistent execution orders for different actions, or resolution
mechanisms that combine potentially simultaneous actions into a unified sequence of logical
actions over the data store.

Although this paper will deal largely with these two areas of concern, there are, of course, other
areas of CSCW infrastructure which arise in the design of CSCW software toolkits. Examples
include user interface management, user interface linkage, interface creation, session management,
access control and awareness provision. In each of these areas, the same general concerns arise with
the balance between control and flexibility and the wide range of possihilities for the provision of
basic functionality.

These areas of concern are presented here as elements of CSCW infrastructure, the underlying tech-

nology on which applications rest. What are the consequences of this? Primadiiastticture”

here carrieswo implications. First, it implies that these concerns become invisible to the applica-
tion programmer, since they are carried out below the level of abstraction at which he or she
operates. Applicationare developed by mégulating abstract entities such as “shared objects”
which encapsulate strategies for distribution, replication, synchronisation and awareness. Second,
and relatedly, it implies that the application programmer can have no control over these strategies
and mechanisms, since he or she is denied even the terms in which to talk about them. Conse-
quently, then, the particulars of the application domain can play no part in the selection of
appropriate design decisions in the infrastructure.

These aspects of infrastructure development are well-known and derive directly from the way in
which software systems are developed and deployed. This paper is concerned with particular con-
sequences of this approach for the development of collaborative systems, and in turn with new
opportunities for the design of collaboration toolkits which follow from them.

2.2 Flexibility in Cooperative Work

The presentation of different dim&ons of flexibility in CSCW design has been driven, so far, by
technical demands and technical criteria. However, one reason that these issues are particularly
salient in the design of collaborative systems is the flexible working styles observed in collaborative
work settings. The issue here is not simply that people engage in collaborative work in widely dif-
fering ways; it is that these different working stylesrg with them very different iplications for

the configuration of infrastructure and so, in turn, the variability in working methods calls into ques-
tion the “encapsulation” of infrastructure design decisions. This section discusses some particular
studies to illustrate this point.

Dourish and Bellotti [1992] present findings from a set of laboratory investigations of the use of
ShrEdit, a synchronous collaborative text editor. Groups of three collaborators used the system to
support their collaboration on an experimental design task. One significant aspect of Dourish and
Bellotti’s description is the wide variety of ways in which the groups organised their activity. In the
absence of any direction about how best to use the tool to support their collaboration and interaction,
the groups adopted different working styles to supporexfft forms of collaborative work. For
example, some participants divided up the activity between them and then created separate docu-
ments representing these different streams of activity. Some used private documents for individual
work and shared windows only for group-sanctioned material; and others used a single large shared
document as a general collaborative workspace.

Dourish and Bellotti also report on the ways in which individuals would use specific features of the
interface tasupport the fluid coordination of their activities. The system provided interactive shared
feedback, showing each user’'s activity within the document to all users synchronously. This

allowed the collaborators to monitor each other’s activities, observe other’s progress, gauge their
own progress in relation to the progress of the group, opportunistically get involved in the activities

of others, and so on. The shared feedback approach was critical not simply to the sort of fine-
grained, focussed collaborative activity for which it had been designed, but also for awareness-
based coordination in general.

Beck and Bellotti [1993] studied collaborative text processing in a quierelit domain, the col-
laborative authoring of research papers. In the case study that forms the core of their paper, two
research collaborators working at different sites separated by thousands of miles work together on
a conference paper reporting on joint a@sf, sing traditional tools (single-user document editing
systems, data networks and telephones) to coordinate their work. One point that Beck and Bellotti
stress from this and other studies is the opportunistic way in which individual work is often carried
out in these settings. They observe that, even in cases where a division of responsibility for different
sections of an emerging document has been decided in advance by the collaborators, this is subject
to continual, ongoing anihdividual reconsideration at any given moment. So, one collaborator
might well make changes to a part of the document for which she does not have responsibility, per-
haps because it is relevant to her own sections, or because she notices an error, or for any of a
number of other possible reasons. The significant para snot simply that these opportunistic
activities take place, but that they take plaoproblematically in the course of the collaboration.

They do not, typically, interfere with the organisation of the work or cause the work to be inter-
rupted (indeed, they are often carried out so as to ensure the smooth flow of work). Beck and Bellotti
relate their observations to the design of systems which embody and enforce the informal division
of labour through access control or process management mechanisms.

In a study of the use of Sofare Configuration Management (SCMpts in a production software
engineering environment, Grinter [1996] describes how software developers use and abuse the
mechanisms provided by the SCM system in the coordination of their own activity. The focus of
design attention in the SCM system is primarily the software that it manages, but the focus of the
software engineers is their own work. They mediate, then, between a level of description cast in
terms of the (software) dependencies between different code modules, and the (social and practical)
dependencies between their individual and collectfi@rts. Grinter details practicagich emerge

in different settings around the use of one particular SCM tool, and show how the software devel-
opers use the tool’s visualisation of the dependency structure of the software system as a resource
in organising their own activity.

These studies, althoughrtied out in different domains and organisezbad different sorts of sys-

tems, carry some general implications for technological design. They show how individuals and
groups creatively deploy the resources at their disposal to accomplish their work in different set-
tings. As groups, settings and circumstances change, so do the ways in which work is conducted
and, by implication, so do the ways in which people make use of the technology. The consequence
for system design is that we must avoid premature commitments to particular styles of work or to
particular processes by which work may be conducted, since these are subject to instantaneous revi-
sion and variation. The reason that this is problematic, however, is that any particular technological
approach embodies just these sorts of commitments and constraints. Building implementations
inherently involves making commitments to styles of work. In other words, the concern is not

simply with the specific techniques which have been chosen in any instance, but with the very ques-
tion of choosing one technique and encoding it in the system.

To an extent, we are used to dealing with this problem—managing the appropriate technological
choices for working styles—in the user interface domain. However, this problem of commitment
applies not only to the traditionally “high-level” issues of ifdaee dsign and working activity, but

also to the traditionally “low-level” issues offiastructure support.

A study by Greenberg and Marwood [1994] illustrates just this issue, exploring it in the context of
consistency management algorithms for collaborative applications. Consistency management is tra-
ditionally provided as infrastructure as described earlier, outside the control of the application
programmer. However, Greenberg and Marwood demonstrate a range of significant interface
design implications for fflerent mnsistency designs. For example, not only may locking strategies
introduce delays which interfere with the fluid management of parallel tasks, but it can also prevent
group members from using text selection as a gestural mechanism accompanying discussion of the
document. Consistency management, however, is normally taken to be an infrastructure issue,
invisible at the level of the interface and subject primarily to technical rather than usage criteria.

In other words, we must be concerned, in CSCW design, not only with the design of infrastructure
and the practices of work at the interface, but withitier actions between the two. The require-

ments for flexibility at each level are inter-dependent. Typical system development practice
concentrates on computational techniques or on supporting particular styles of work, but not on the
relationship between these two concerns; and that is the topic which is addressed here.

2.3 Varieties of Technical Flexibility

What we see when we look at these sorts of studies, then, is the wide variety of ways in which people
coordinate their collaborative behaviour around the resources which systems provide for individual
and collective activity. These observations result in a reorientation of our view of the goals of
system design. Instead of thinking of systems as embodyéoiganisms of coordination and col-
laborative activity, we see them insteadraslia for the performance of collective action [Bentley

and Dourish, 1995]. Ware concernedot simply with the functionality of collaborative applica-
tions, but also with the flexibility they provide, allowing users to adapt them to local needs and
circumstances and to different ways in which to engage in work.

When we consider the issues of flexibility and malleability in particular collaborative applications,
we find that there are a number dffeient levels atvhich they can be addressed and, significantly,

they are strongly inter-related. The most straight-forward approach is the provision of renstime
tomisation; opportunities for users to adjust parametric controls over the application’s behaviour,
such as interface coupling modes, access control checks, and so forth. Another technical approach
would be to exploit run-timadaptation in which the system can re-configure its behaviour accord-

ing to immediate patterns of use. So, for example, if a particular group of users organises their
behaviour in such a way that each deals only with a subset of the shared objects at their disposal,
then the system might organise the distribution of those objects so that their access patterns support
this division of labour #ectively. These forms of flekility provides users with the opportunity to
engage in differing working styles as appropriate to the specific task and circumstances in which
they find themselves.

In contrast with this focus on applications, this article is concerned with the problem of flexibility
in CSCW toolkits. Flexibility in a toolkit used to create collaborative applications can be an even
more serious problem than in the design of the toolkits themselves, since the designer of the toolkit
is not in control of the applications which will be developed, and so is even further removed from
how collaborative work will actually be performed. However, just aswe saw before, the implemen-
tation decisions that the toolkit programmer makes (such as the replication strategies for shared
objects, for example) impose two levels of constraints: first, they impose constraints on application
developers, in terms of the sorts of applicationsthat can be developed using the toolkit; and second,
they impose constraints on users, in terms of how those applications can be used.

The approach that | will explore here exploits a meta-level run-time architecture in order to allow
programmers and program code to become involved in the implementation of the abstractions that

the toolkit provides. The primary areato be addressed isthe scope of the toolkit—the range of appli-
cations that can be developed with it. However, the same run-time architecture is also a basis for
other forms of flexibility discussed here—for run-time adaptation to the emergent patterns of col-
laborative work, and for user involvement in how computational structures are exploited to support
collaborative action.

2.4 Flexibility in CSCW Toolkits

The first generation of CSCW toolkits, such as MMConf and Rendezvous, focussed particularly on
encapsulating common behaviours from a range of collaborative applications in order to make the
development of new applications faster and easier. While they clearly aimed at generality across a
number of potential applications, they restricted themselves to designs supporting, €.g. synchronous
work (both), centralised data (Rendezvous), etc.

The provision of flexibility has been an important concern in the design of a second generation of
CSCW toolkits. Systems developed in recent years have provided open structures for the program-
mer to create a variety of behaurs within the one infrastructure framework. Some examples are
given here.

Suite [Dewan and Choudhary, 1992] provides a variety of levels of flexibility, giving the program-
mer control over a number of design dimensions. Suite adopts an editor-based approach to
collaborative activity in a shared workspace, conceptualising clients as editors for structured data.
An access control framework [Shen and Dewan, 1992] is used to provide variable control over
updates to the shared workspace, and a rich coupling model allows the peer interface clients to be
connected in a variety of ways.

GroupKit [Roseman and Greenberg, 1996] provides flexibility throufgtitity known asOpen
Protocols to allow for the flexible performance of structured interaction between different compo-
nents of the system [Roseman ande&hberg, 1993]. Open protocols allow developers to
encapsulate aspects of the system’s behaviour as server state, which can be controlled by policy-
free protocols. Clients can then eody different policies so that different behaviours can be exhib-
ited, making the system more flexible and adaptable. For examfiégedt clients could ebody

policies dealing with floor control management. The server can then be reusé@imntclients,

since it is free of commitments to particular policies or behaviour strategies.

Intermezzo [Edwards, 1996] is a collaborative toolkit providing radical support for flexibility
through two mechanisms. The first is that applications can download code into the toolkit, written
in asimple interpreted language, which will affect how the toolkit operatas.1 The downloaded code
is executed by the toolkit at run-time, and its activation can be controlled by a variety of parameters
which the programmer can set so that the system as a whole will respond to particular changesin
the world or in the collaborative activity. The second support mechanism isthe use of dynamic roles
as a context-setting mechanism. Roles are defined by membership predicates rather than by explicit
membership listings, and the roles can be used as the basis of a dynamic, secure access control
mechanism. The result isthat views of the data store are dependent on the dynamic state of the col-
laboration, allowing for highly flexible and fluid responses to the progress of collaboration.

2.5 Summary

Toolkit flexibility is a serious concern in any domain, because of the degree of separation between

toolkit developer and application end-user. The toolkit developer’'s decisions constrain, first, the
design of applications that the toolkit developer cannot know in advance and, second, the interac-
tions of end-users whose collaboration is founded on the run-time infrastructure provided through
toolkit features. In collaborative work, given the fluid and flexible nature of group activity, it is a
particularly problematic area. We have seen some of the dimensions of this problem, and briefly
pointed to some existing solutions embodied in collaborative systems and toolkits. The different
approaches that they embodfeo different sets of ddgn choices to application programmers, and

so open up different regions of the design space.

I am concerned here with tiseope of a toolkit, or the range of system designs it encompasses, and
the work reported here has been directed towards opportunities for radical flexibility in a CSCW
toolkit. Earlier systems such as MMConf or Rendezvous were designed to support a range of appli-
cation domains, but generally focussed on a fixed style of collaboration (synchronous or
asynchronous, baton-passing i@d-form, etc.) In contrast, and irsponse to the observed require-
ments for fluid working style outlined above, Prospero is a prototype collaborative toolkit organised
around an explicit architectural model for flexibility. Prospero lies in the second generation of col-
laborative toolkits. In contrast to other second-generation toolkits, it explores the use of a metalevel
architecture in attempting to take a principled approach to the provision of flexibility for program-
mers and users. The metalevel architecture provides a framework for exploring how application
developers can customise the toolkit to support the requirements of specific applications and set-
tings. The next section will introduce the architectural principles behind Prospero’s designs, before
subsequent sections explore the CSCW-specific solutions that it embodies.

3 OPEN IMPLEMENTATION

The approach adopted in Prospero and explored in this paper draws from ongoing work in software
architecture and other areas of system desigrighatsome of the samegflems as those outlined
above. In particular, Prospero adopts the Open Implementation approach [Kiczales, 1996]. The use
of this approach, and the principle of Computational Reflection [Smith, 1984] on which it is based,
has been explored elsewhere [Dourish, 1995], and so | will restrict myself to a relatively brief precis
here.

1. This approach has much in common with the Open Implementation approach which will be introduced later, although
it abandons the abstract metaevel interface of the Ol approach in favour of direct accessto internals.

Developmentsin avariety of systems domains point to the emergence of aparticular class of prob-

lem, in which the traditional “upper layers” of a system have access to detailed information that
should be used to configure the behaviour of the lower layers. The problem here lies in the fact that
our traditional model of abstraction does not allow for this downward flow of information. Different
strategies have emerged as these problems have arisen in different domains. For example, the use
of Application Layer Framing and let-Layer Processing in networkgbocol implementation

[Clark and Tennenhouse, 1990; Braun and Diot, 1995] or the composable microprotocobs of the
kernel [O’'Malley and Peterson, 1992] or Horus [van Reneese et al., 1996] are responses to just this
problem. In Operating System design, mechanisms for user-level control over page replacement
policy [Harty and Cheriton, 1992] or filesystem cache management [Cao et al., 1994] are solutions
that have arisen in response to the same class of problems.

3.1 Open Implementation Analysis
The Open Implementation approach provides a general analysis of this class of problems, and a
technical solution. The Open Implementation analysis is as follows.

The traditional model of abstraction separates client from implementation by encapsulating the
implementation in a black box. Access to this implementation is provided through an abstraction
barrier, which povides a view onto implementation functionality in terms of a higher-level
abstraction.

In the course of constructing an implementation, the implementor must make a vaneppofy
decisions—decisions about how aspects of the high-level representation and functionality should
be mapped onto the lower-level fitdes available. Issues of representation and algorithmic encap-
sulation are instances of mapping decisions of this sort. In choosing between different ways of
making these mapping decisions, the implementor must anticipate the needs of future clients of the
implementation. The mapping decisicapport the abstraction offered at the abstraction barrier,

but they are not part of it, since it would be the same abstraction even if the decisions had been made
in other ways. Since they anet part of the abstraction, the set of mapping decisions made by an
implementor are invisible to the client.

However, any useful implementation (or any useful abstraction) will have more than one client.
Each client will perform different activities, making use of the same abstraction. However, since
clients have different needs of the implementation, they may have different requirements for the
way in which the mapping decisions have been made. For instance, consider an implementation of
a simple records processing system. A client that primarily adds and removes large humbers of
records would wish that the implementation be optimised for addition and deletion; and so the pro-
grammer might hope that the implementor mapped the records onto a linked list rather than a sorted
array.However, the programmer of another client, say one that retrieves records, might hope just
the opposite, since a sorted array will be considerably faster to search than an unsorted linked list.

These problems inevitably arise whatever actual implementation decisions are maderdh tien
more clients make use of an implementation, the more likely it is that there will be this sort of con-
flict between the needs of one client and the needs of another.

3.2 Reflection and the Ol Solution

The Open Implementation solution is based on the principle of Computational Reflection [Smith,

1984]. Reflective systems contain representations of their own activity that are “causally con-
nected” to the activity they describe. Self-representation means that systems can examine their own
state, structure and configuration by examining the representation; the “causal connection” means
that manipulations of the representation will be reflected in changes in the system’s béhaviour
programming languages, where this approach was first fully explored, reflection provided a means
to make the execution environment part of the language, and to do so coherently at a high level. As
a result, reflective languages allow programmers to write portable debuggers and other tools that
become involved with the execution behaviour; and extensions to the language syntax and seman-
tics are also possible from within the language itself. The Common Lisp Object System (CLOS)
[Gabriel et al., 1991] embodies this sort of mechanism througheitgbject protocol [Kiczales et

al., 1991], an object-oriented encapsulation of the reflective representation that allows CLOS pro-
grams to become involved in the implementation of the language.

Reflection gives us a way to address the problems outlined above in the Open Implementation anal-
ysis. The Ol solution is to provide, within the implementation, a representation of its own structure
and behaviour, along the same lines as the reflective self-representations. In addition to using the
functionality of the implementation through the abstraction barrier, clients can also examine and
control the implementation by means of this model. This structure sets up two interfaces to the
implementation. Théase interface is the traditional interface, the abstraction barrier of the black
box; while themetalevel interface allows programs to look inside the black box and make changes.
Changes made through the metalevel interface affect how base level programs will execute. In this
way, the programmer has the meansperialise the implementation to the specific circumstances

of each client.

Key features of the metalevel approach, then, idebat of description and thesubject matter of

the two sorts of code—base code (written to the base io&réamd meta code (written to the met-

alevel interface). A simple way to conceptualise the distinction is as a separation between specifying
what is to happen (base code) and specifyiog it is to happen (meta code). By encoding this sep-
aration in an object-oriented framework, metaobject protocols support the isolation of multiple
metalevel strategies, reuse of metalevel code and a separation of base and metalevel descriptions
[Kiczales, 1992]. The question of subject matter and level of representation is also key to the dis-
tinction between “metalevel extensibility” and “hacking thersel or the use of object-oriented
frameworks. In the Ol approach, metaleveidification is donan terms of a specific metalevel

interface. That is, it is performed thugh an appropriatgbstraction over the implementation. That
abstraction may be presented in terms of a set of classes and methods (an object-oriented encoding),
but these do not, in themselves, constitute the implementation. (Kiczales and Rodriguez [1990]
present an account of an implementation of CLOS that apply demonstrates the distinction.) The
metalevel interface is designed artifact, not simply an epiphenomenon of some particular
implementation.

Computational reflection was originally developed in the domain of Al systems and Al program-
ming languages; the first fully reflective system was Smith’s 3-Lisp [des Rivieres and Smith, 1984].

2. In other words, the representation “causes” the behaviour as well as describing it.

10

Further explorations largely in the domain of programming languages led to the CLOS metaobject
protocol and the development of the Open I mplementation approach. Subsequently, the approach
has been applied to a range of other application domains, such as window systems [Rao, 1991],
operating systems [Maeda, 1996], distributed systems [Stroud and Wu, 1995] and databases [Barga
and Pu, 1996].

3.3 An Open Implementation Strategy for CSCW

Asoutlined above, the Open Implementation approach has been applied in awide range of settings
to provide a solution to flexibility problems of the kind described in section 2. It is an inherently
flexible technique providing an approach to the architecture of infrastructure components that sup-
ports their subsequent specialisation to the needs of particular settings. The research described in
thisarticleisan exploration of the use of thistechnique as away of mediating between the needs of
toolkit devel opers and application devel opers in the creation of CSCW applications. Other systems
(as described in section 2.4) have explored this tension; Open Implementation provides us with a
new way to partition the problem.

Prospero adopts the Open Implementation approach for CSCW toolkit design. As a CSCW toolkKit,
it provides aset of objects, mechanisms and behaviours that can be combined to create collaborative
applications. As an Open Implementation, it provides application programs with the opportunity to
become involved in the implementation of the infrastructure that supports them. It sets up a separa-
tion between base level programs and metalevel programs by which the toolkit structures can be
used and specialised. By doing this, it allows a wider range of applications to be developed, since
the commitments (mapping decisions) to particular expected patterns of use, which are madein the
course of infrastructure implementation, are now subject to reconsideration and revision.

The starting point for such adesign is a generic, specialisable model of CSCW application behav-
iour. By generic, | mean that this model describes, in general terms, a range of strategies that can
be or have been adopted in avariety of systems. By specialisable, | mean that any particular exam-
ple can be operationally described as a refinement of the general model. The model, then, is not
simply atool for the analytic description of CSCW architectures and implementations; it can also
be used to generate new ones, as the basis of areflective implementation.

By adopting the Open I mplementation approach, we aim to achieve anumber of improvementsover
other approachesto CSCW flexibility. First, we aim to provide application developers with awide
range of potential behaviours, rather than arestricted set of predefined options. Second, we aim to
provide alevel of control that allows specialisation to the details of individual applications, rather
than the reuse of generic components. Third, we aim to make this specialisation available through
high-level abstractions at the metalevel interface.

The sectionsthat follow will introduce models of this sort for the areas of data distribution and con-
sistency management. These have been implemented in Prospero, a prototype reflective CSCW
toolkit. Prospero isimplemented in CLOS. Although CLOS isitself areflective programming lan-
guage, reflection in CLOS is not used to support reflection in Prospero. In addition, Prospero itself
does not deal with interface management and window systems; the existing application interfaces
have been developed using the Garnet user interface toolkit [Myers et al., 1990].

11

Section 4 will deal with the divergence mechanism for managing distributed or replicated data, and
Section 5 will deal with the consistency guarantees mechanism for consistency management. Sec-
tions 6 and 7 will describe and illustrate how Prospero is used in developing CSCW applications.

4 DIVERGENCE AND SYNCHRONISATION

Some of the issues and design options in managing distributed data were raised earlier, in the dis-
cussion of CSCW infrastructure. Different systems have taken different approaches to the problem.
For example, ShrEdit centralises its data, MM Conf replicates it, while Rendezvous and GroupKit
adopt hybrid approaches.

As was outlined above, one reason for this variation in approach is that the choice of management
strategies has strong implications for the interface and for the nature of collaborative interaction in
a CSCW system. Collaborative systems differ crucially from other distributed systems in that not
only the application, but also the interface, is distributed. The trade-offs between availability, trans-
parency, consistency and responsiveness must be made with this in mind, and so design must be
constantly mindful of theway in which application distribution and interface distribution are mutu-
aly influential.

A CSCW toolkit, of course, is one step removed again from real applications and real use. The goal
is to provide a generic framework in which a range of application behaviours can be realised. In
adopting the Open Implementation approach, we want to develop this framework so that it can be
made widely applicable through metalevel specialisation. In Prospero, data distribution manage-
ment is achieved through the divergence/synchronisation model.

4.1 Inconsistency Avoidance and Streams of Activity

The approach to the divergence model begins with a simple but crucial observation; that most
approaches to data management in CSCW deal with inconsistency avoidance rather than consis-
tency management. Rather than working to make data consistent, they set up barriers to prevent
inconsistency arising in the first place. While this approach might work for managing the activity
of distributed system components, it is less useful when trying to manage the activity of distributed
users, since it sets up barriers to particular styles of working.

The simplest approach to avoiding inconsistency is to avoid simultaneous action over individual
dataitems. This approach attempts to define single, global stream of activity over the data space.
Various common CSCW idioms embody this model of a single stream of activity. For example,
asynchronous access to the workspace uses the distribution of work in time to share the stream
between multiple participants. In synchronous tools, floor control policies have the same effect.
L ocking mechanisms also operate this way, although they divide activity spatially as well as tem-
porally; locks ensure that each dataitem is subject to a single thread of control, currently available
to whomever holds the lock.

Prospero abandons this attempt to construct or create a single stream of activity out of multi-user

activity. Instead, it employs a model of multiple, simultaneous streams of activity over user data,

and then looks to manage the divergence between these streams. Divergence occurs when two

streams have different views of the system’s state or of the data. This could arise through simulta-
neous execution of conflicting operations; or through a lag in the propagation of compatible
operations.

12

Since this general view does not imply any particular number of paralel streams of activity, it
encompasses the traditional views outlined earlier; they correspond to the special case of just one
stream. A model based on divergence and multiple streams of activity isthe more general case; it
subsumes attempts to maintain a single thread of control.

4.2 Divergence and Synchronisation

The divergence model operates as follows. First, we view activity in a collaborative system as the
progress of multiple, simultaneous streams of activity. Second, we view the emergence of inconsis-

tency as divergence between these streams’ views of user data. In these terms, the problems of
distributed data management focus onriizeynchronisation of divergent streams of tigity. As

the collaboration progresses, the streams @figctontinually split and merge, diverge and syn-
chronise. At points of synchronisation, they re-establish a common view of the data store; further
individual activity will cause them to diverge again, necessitating further synchronisation further
down the line.

The divergence/synchronisation model captures aspects of a number of other CSCW approaches.
Some particular cases are discussed here.

4.2.1 Divergence and Versioning

Versioning systems maintain a historical record of the versions of some object that have existed
over time. They typically allow multiple versions of an object to exist at once, and in some, multiple
versions can be simultaneously active. GMD’s CoVer [Haake and Haake, 1993] uses a version
system to manage the carptive work. CoVer, however, emphasises the creation and management
of parallel versions rather than the subsequent integratiofffefedit versbns (divergent streams).
Munson and Dewan [1994] go further in providing a framework explicitly organised around version
merging, but, like Haake and Haake, they primarily emphasise versioning and merging within a
context of “asynchronous” work, rather than as a more general approach to distributed data man-
agement. So, while a versioning approach can be supported in the divergence model, by diverging
at the level of entire documents (or other coarse-grain objects) and synchronising only occasionally,
| want to consider the wider use of divergence as a general strategy than simply a versioning model
would support.

4.2.2 Divergence and Operational Transformation

Operational transformation is an alternative technique employed in various collaborative systems
[Ellis and Gibbs, 1989; Beaudouin-Lafon and Karsenty, 1992; Nichols et al., 1995]. Operational
transformation employs a model of multiple streams, and uses a transformation mearigftom

records of remote operations before applying them locally, using information about the different
contexts in which the operations arose. So, for example, a remote delete operation might be trans-
formed into a null operation locally if the object was simultaneously deleted by the local user; or an
insertion might be moved to take account of local activity.

Operational transformation, particularly with its basis in multipleashs, is clearly more similar to

the divergence approach than versioning. An operational transformation approach can be exploited
within the divergence framework by recording actions, synchronising frequently and performing
the transformation as part of the synchronisation process. Howeswer,aifgtwo principal dffer-

ences between divergence and operational transformation. First, just as versioning approaches have
typically emphasisedsynchronous activity, operational transformation has typically emphasised

13

synchronous; as will be discussed, Prospero’s model seeks to encompass both. Second, operational
transformation relies upon the transformation matrix to resolve conflicts (easier in the tightly-cou-
pled, synchronous domain); whereas Prospero employs a more genera notion of synchronisation
that potentially offers a much wider scale of applicability (including user intervention).

4.2.3 Divergence and Replicated Databases

One area of research in which divergence has been considered is replicated database management.
In areplicated database, multiple copies of al or part of the database are maintained in paralld, in
order to increase availability. Since such a model could also be used as the basis of a collaborative
system, the relationship of database techniques to Prospero’s approach naturally arises.

The primary difference between the two is that Prospero relies on database-external management of
consistency, while database approaches typically attempt to maintain consistency internally to the
database. What this means is that, while databases might, for instance, seek to find execution orders
for transactions that increase the opportunities for parallel execution, they do this within a model
which still attempts to maintain the consistency of the transaction model itself. Prospero allows
inconsistency in the data store, on the basis that the degree to which inconsistency is allowed and
the means by which it can be resolved are application issues. Traditional database techniques might
allow parallelism below the level of the transaction model, but generally still attempt to maintain
transaction-level consistency. So while they attempt to deal with the problems that divergence
raises, they are not able to directly exploit it to support multi-user activity.

The relationship between Prospero’s approach and replicated databases is discussed in considerably
more detail later, in the context of the use of consistency guarantees to control divergence (Section
5).

4.3 Capitalising on Divergence

Divergence-based data management in CSCW offers three particular advantages over other tech-
niques. First, it is highly scalable, supportingemapplicaion communication from periods of
milliseconds to periods of weeks or more. Second, it opens up direct CSCW support for an area of
application use—one | termulti-synchronous—which is supported poorly or not-at-all by existing
approaches. Third, it tictly supports common patterns of working activity based on observational
studies that are at odds with the models embodied in most systems today.

4.3.1 Scalability

Scalability refers to graceful operatiaoross some dimension of system design. In particular, the
dimension we are interested in here isghee of interaction [Dix, 1992]; or, more technically, its
relationship to the period of synchronisation.

The period of synchronisation is the regularity with which two streaesy/nchronised, and hence

the length of time that tworgtams will remain divergent. When the iperis very small, then syn-
chronisation happens frequently, andrdiere the degree of divergence ypitally very small

before the streams asgnchronised and achieve a consistent view of the data store. When individ-
uals use a collaborative system with a very small period of synchronisation, their view of the shared
workspace is highly consistent, since synchronisation takes place often relative to their actions. This
essentially characterises “real-time” synchronous groupave, inwhich users work “simulta-
neously” in some shared space that communicates the effects of each user's actions to all
participants “as they happen”. The synchronous element arises from precisely the way in which the

14

delay between divergence (an action taking place) and synchronisation (the action being propagated
to other participants) is small. This is one end of the “pace of interaction” dimension.

At the other end, synchronisation takes place mucHregsently in comparison to the actions of

the users. There is considerably more divergence, arising from different sorts of activities that take
place between synchronisation points. When the period of synchronisation is measured in hours,
days or weeks, we approach what is traditionally thought of as “asynchronous” interaction. A (well-
worn) example might be the collaborative authoring of an academic paper, in which authors take
turns revising drafts of individual sections or of the entire paper over a long period, passing the
emerging document between them.

Within the CSCW community, these sorts of asynchronous interactions have generally been seen
and presented as being quite different fread-time orsynchronous interactions; “synchronams
asynchronous” has been a distinction made in both design and analysis. However, by looking at
them in terms o$ynchronisation rather tharsynchrony, We can see them as two aspects of the same
form of activity, with differenperiods of synchronisation. Being highly scalable across this dimen-
sion, the divergence approach provides the basis of a toolkit that generalises across this distinction.

4.3.2 Multi-Synchronous Applications
In fact, we can exploit a divergence-based view of distributed data management to go further than
standard “synchronous” and “asynchronous” views of collaboration.

Standard techniques attempt to maintain the illusion of a single stream of activity within the collab-
orative workspace. We know, however, that groups don’t work that way; it's much more common
to have a whole range of simultaneous activities, possibly on different levels. Consider the collab-
oratively-authored paper again. In the absence of restrictions introduced by particular technologies
or applications, individuals do not rigorously partition their activity in time, with all activity con-
centrated in one place at a time; that is, they do not work in the strongly asynchronous style, one at
a time, that many collaborative systems embody. A more familiar scenario would see the authors
each take a copy of the current draft on paper (or on their portable computers), and work on them
in parallel—at home, in the office, on the plane or wherever. Here we have simultaneous work by
a number of individuals and subsequintégration of those separate activities; neither synchro-
nous, nor asynchronous, buatlti-synchronous work. This sort of working cannot be supported by
traditional asynchronous “baton-passing” approaches, in which there is essentially a single stream
of activity that passes back and forth between authors. Multi-synchronous applications extend asyn-
chronous ones by providing synchronisation for parallel streams in disconnected work.

The divergence model, and in particular the notion of multiple, parallel streams of activity, is a nat-
ural approach to supporting this familiar pattern of collaborative work. Working activities proceed

in parallel (multiple streams of activity), during which time the participants are “disconnected”

(divergence occurs); and periodically their individual efforts will be integrated (synchronisation) in

order to achieve a consistent state and progress the activity of the group.

Here, we are concerned with thature of synchronisation; this is what allows for flexibility, and

will be discussed in more detail subsequently. At this stage, the details of synchronisation in a vari-
ety of cases are not of prime importance; examples will be considered in more depth later on. For
the moment, however, what's important is to recognise the support for multi-synchronous working
within this model of distributed data management.

15

4.3.3 Supporting Opportunistic Work

However, the use of divergence-based data management techniquesisnot simply a route to support-
ing a different style of working; it's also a meansriare naturally support the other working styles
to which CSCW has traditionally addressed itself.

Consider again the style of working described by Beck and Bellotti [1993]. One of their observa-

tions was the way in which collaborative authors would opportunistically step outside the pre-

agreed bounds of their own activity and engage in unexpected activity. Suchman [1987] has, of
course, made similar telling observations about the improvised, opportunistic emergence of
sequences of activity.

However, the notions of a single stream of activity and inconsistency avoidance stand directly in
the way of these sorts of behaviours, since they require an early commitment to particular patterns
of working activity, and then a rigorous adherence to those patterns in the cowsgiofout the

work. To support the sort of opportunistic working described by Beck and Bellotti, then, our tech-
nology must relax rules about exclusion and partitioning; exactly the rules that have been employed
to maintain the fiction of the single stream of activity. So the same sorts of mechanisms that were
described earlier as supporting multi-synchronous collaboration have, in fact, a wider range of
applicability; they support a more naturalistic meanswaling asynchronous collaboration work.
Divergence is a directonsequence of these ways of working; and so a model of distributed data
management based on a pattern of repeated divergence and synchronisation fits well with support
for a wide range of working styles.

Of course, significant consistency issues arise when the system potentially allows users to engage
in arbitrary activity in this way. The discussion of consistency guarantees in Section 5 will be moti-
vated by the need to maintain control under these circumstances.

4.4 Divergence and Synchronisation in Prospero
Section 6 will deal with the embodiment of these mechanisms in Prospero and how they can be used
to create CSCW applications. A brief sketch is provided here to ground this discussion.

The primary focus of this model is on streams of activity; and so these are reified in the implemen-
tation. Applications create and name streams for therdift threads of activity running through an
application (such as for clients, virtual servers, recorders and so forérat@ps on streams allow
them to be associated with sessions, to find each other, and so forth.

Individual actions are also reified as command objects [Berlage, 1994], and are added to particular
streams. When a user engages in some activity, that aotiates a command object which is then
added to the stream associated with that user at that moment. When atiadsled to specific
streams, divergence occurs since the other streamsibayet seen that action.

Streams contain their own mechanisms for synchronisation. Multiple stream types are provided that
will synchronise in different ways and underfeient circumstances. A metaject protocol is used

to control the synchronisation process, as well as to modify the conditions under wdaohssivill

be synchronised or the means by which that might be accomplished.

16

4.5 Divergence and Synchronisation: Summary

Prospero models activity over distributed datain terms of an ongoing cycle of divergence and syn-
chronisation between parallel streams of activity. The divergence cycle is scalable across time;

rapid synchronisation yields applications which behave like traditional synchronous systems, while

slow synchronisation resembles traditional asynchronous system. At the same time, this pattern of
divergence, by allowing inconsistency to arise and then resolving it later, opens up the opportunity

for applications supporting “multi-synchronous” (parallel but disconnected) work. This model is
general enough to capture a wide range of CSCW application mechanisms, as well as rich enough
to act as a language in which to specify new ones. The elements of the divergence model, such as
streams, actions and synchronisation conditions, provide the elements of a metaobject protocol by
which application programmers can tailor the behaviour of the underlying infrastructure to suit the
purposes of particular application scenarios.

Examples of programming with the divergence model will be provided in subsequent sections.
First, however, | will introduce the second, complementary mechanism provided in Prospero—con-
sistency guarantees.

5 CONSTRAINING DIVERGENCE: CONSISTENCY GUARANTEES

Prospero’s divergence/synchronisation strategy gpéimistic one. It presumes that simultaneous
actions will probably not result in conflict, but that if confliittes occur, it can be sorted out later.
Data locking, on the other hand, ipessimistic strategy; it presumes that simultaneous operations
are likely to lead to conflict, and so should be prevented.

Pessimistic strategies grantee that consistency will be maintained, since they prevent the simul-
taneous action that would lead to inconsistency in the first place. On the other hand, optimistic
strategies support more open styles of working, and achieve better interactive performance when
the working styles do not lead to inconsistency. Prospero uses an optimistic strategy because the
freedom and flgibility it provides is better suited to the needs of collaborative work. The price of
this freedom is that the toolkit must provide explicit means to maintain consistency.

With any optimistic strategy, the design problem is the detection and resolution of conflicts as they
occur. However, the divergence moget se explicitly makes no commitment to either the nature

or the extent of the divergence, which would help us bound this problem. The longereavosst

of activity remain active but unsynchronised, the greater their potential divergence. In turn, the
greater the divergence, the more complex it becomestdveeconflicts at synchronisation-time.
Indeed, the system mangver be able to resolve two arbitrary streams into a single, coherent view
of the data store. Essentially, unconstrained divergence leads tardyb@omplex synchronisa-

tion. Some form of consistency management has to be introduced to resolve this problem.

5.1 Variable Consistency

The first approach used in Prospero is to distinguish betaewarctic andsemantic consistency.
Semantic consistency is the traditional form employed in distributed and collaborative systems;
syntactic consistency can, however, provide a means for supporting ongoing work in the face of
potential conflicts.

Semantic consistency guarantees that the data store contains no inconsistencies from the perspective
of the application domain. This means that processing can continue and the application can operate

17

effectively over the data. Syntactic consistency is a weaker form. It guarantees only that thereis a
consistent structure for the data, but that structure might itself hide semantic inconsistencies. Struc-
tural integrity allows certain forms of processing to continue, but there are still inconsistenciesfrom
the perspective of the application domain.

Consider the co-authoring case again, as an example. If two users make different changes to the

same paragraph, an inconsistency arises, and it can be resolved in various ways. To achieve seman-

tic consistency, the system must ensure that there is only one copy of the paragraph which can be

seen by al participants. For minor changes, it may be possible to integrate the changesinto asingle,

unified paragraph. If one of the authors removed a sentence while the other inserted two words into
adifferent sentence, then the system could apply both their changes to yield a semantically consis-

tent result. In the face of major changes, though, this may not be possible. If both users deleted the

whole paragraph and wrote anew one, then their changes could not be integrated. In cases like this,

most CSCW systems look to some other mechanism to achieve semantic consistency, such as by
selecting one paragraph rather than the other as the “winner”. The selection might be done by look-
ing at the extent of the changes, by looking at the times when the changes where applied, by using
the users’ “roles” to decide who has control, or even by choosingaaity#.

An alternative approach is to make the data syntactically consistent—structurally sound but with
unresolved inconsistencies. In this example, one way to achieve syntactic consistency would be to
wrap the two paragraphs up in a larger structure that presents them both as alternatives. Prospero
calls this approachggregation. This preserves the work of both authors, allows them to continue
with their work, but leaves an inconsistency to be resolved later.

Different domains provide different means to support syntactic consistency. For numerical data, for
instance, it might involve introducing approximate values with error bounds. Whatever the domain,
though, the difference between semantic and syntactic consistency provides an opportunity to defer
conflict resolution while continuing to allow work.

Prospero allows programmers to deal in terms dewdift levels of cosistency, and so it can
employ this strategy to manage consistency fluidly. As observed, though, the actual realisation of
syntactic consistency varies in different settings. The most significant feature of Prospero’s consis-
tency model is that it operates in termsygflication semantics, rather than in terms of a predefined
model.

5.2 Using Application Semantics

The key observation behind the variable consistency approach above is that the toolkit components,
themselves, are not the final arbiters of “consistency”. Consistency is application-relative. With
variable consistency, the toolkit can focus on making the data condostéme purposes at hand

by capitalising on aspects of the application domain and the circumstances in which the toolkit is
being used.

However, while using application-specific synchronisation mygistpone some of the problems
of unbounded divergence, the basic problem of unbounded inconsistency remains with us. The

3. One common alternative, of course, is to presume that the users can sort it out and do nothing at all (the “social proto-
col” approach). Of course, doing “nothing at all” still involves dasogething; the question is what level of consis-
tency, if any, is maintained by the system’s response to this circumstance.

18

same basic techniquesxploiting application semantics—can be applied to this problem. Prospero
introduces the notion of application-specific consistency guarantees to control for the divergence
process using details of particular circumstances.

This approach has its origins in a generalisation of the locking mechanisms used by many existing
CSCW systems.

5.3 Data Locking Approaches

The most widespread traditional mechanism for avoiding inconsistency in CSCW systihas is
locking. In the course of their work, users (implicitly or explicitly) obtain a “lock” for some or all

of the data store. Without a lock, no changes can be made; and since a lock is only granted to one
user at a time, inconsistency cannot arise. Asynchronous interaction and floor-control algorithms
are special cases of the locking approach that lock the whole data store at once.

As outlined earlier, Greenberg and Marwood [1994] discuss some issues surrounding concurrency
control in CSCW systems. In particular, they discuss how the choice ofroemcy management
strategy can have a significant impact on the styles efdntion that an gglication can support.

For instance, the temporal properties of concurrency control strategies, such as relative execution
times of actions over shared data, can interfere with interactional requirements iarfaeéniSim-

ilarly, approaches that apply st hoc serialisation on user actions may introduce unexpected
interface behaviours (such as undo-ing actions under the users’ feet).

Locking is a very general approach. Different particular implementations vary along many dimen-
sions, such as in how the locks are requested, obtained, granted and relinquished, what kinds of
operations require locks, and the granularity of data units controlled by a single lock. In these vari-
ations, the central lock-act-release strategy, supporting a pessimistic concurrency model, remains
unchangefl

As Greenberg and Marwood'’s analysis points out, the implications for grouaditide mean that

these sorts of strategies are appropriate in some cases, but not others. While the pessimistic locking
model may be appropriate for some cases where data integrity constraints are strong (such as col-
laborative software development), they impose too high an overhead for many looser or free-form
collaborative activities. This makes a strong locking model an inappropriate basis for Prospero,
since it aims to capture both these sorts of collaborative application.

5.4 Promises and Guarantees

In an attempt to find a more flexible approach than the strict locking mechanism, and one more
attuned to the needs of a CSCW toolkit, our starting point is with erglésation of the traditional
locking process.

5.4.1 Guarantees of Achievable Consistency

We begin by looking at what happens in the lock-act-release cycle. Holding the lock ensures that
no other user can act over some piece of data, and so that inconsistency cannot arise. A lock is
obtained through a request specifying some part of the data store (possibly all of it) over which the

4. However, Munson and Dewan [1996] have considered rich type-specific lock-table-based concurrency control in
coordination with a merging strategy. This is a powerful combination that independently yields similar results to the
techniques described here. However, see the discussion | ater concerning type-specific and application-specific concur-

rency.

19

user will act. So, locking is essentially a mechanism by which a system component can obtain a
guarantee of achievable consistency in return for a statement of future activity.

This formulation has a number of interesting implications. First, consider the guarantee. Especially
in light of our discussion of variable consistency earlier, there is clearly a range of potential guar-
antees that could be given. Strong locks are all-or-nothing, but when we generalise to guarantees,
we introduce potential variances in the guarantees and in the consistency achievable. The locking
authority5 can determine the level of consistency that can be achieved based on currently-issued
guarantees across the system. Second, the statements (or promises) of future activity are similarly
variable. They may vary in their extent, duration and specificity.

Third, and perhaps most importantly, when we think of this exchange as being less absolute than
the strict locking exchange (an absolute guarantee for an absolute promise), then it opens up the
opportunity for negotiation; an application may make increasingly restrictive promisesin exchange
for increasingly strong guarantees of consistency. The promise/guarantee cycle is the basis of the
consistency guarantees approach.

5.4.2 Breaking Promises

Flexible promises and guarantees allow better interleaving of activity than would be possible with
strong locks. Since the locking authority receives more details of future activity, it can make better
decisions about what sorts of actions can be permitted. Since the client applications can accept
weaker guarantees, they can proceed where they would otherwise be blocked.

The promise/guarantee mechanism retains the important predictive element of locking. Applica-

tions still make “ugfront” promises about the activities that they will carry out. However, this
predictive aspect interfer@gth another important criterion for collaborative applications, support
for opportunistic action. Predictive strategies restrict opportunistic action (which is by definition
unpredictable).

Prospero addresses this problem through a second consistency prindiga:can break a prom-
ise, in which case the locking authority is not held to its guarantee.

This principle allows client applications to engage in activities that step beyond the bounds of their
promise. However, should they do this, then the system may no longer be able to achieve the level
of consistency assured by the guarantee. The guarantee, then, is potentially void (although, of
course, in specific circumstances the guaranteed consistency may still be achievable).

With this principle in place, the consistency guarantee mechanism provides more direct support for
opportunistic working styles. Just as in naturalistic work, stepping outside previously-agreed lines

is not impossible; but the mechanism provides méfextive guarantees when useabperatively

by both client and server. The system allows for unpredicted action, although users may pay a price;
the system may only be able to achieve syntactic consistency later, for example.

By placing this within the consistency mechanism, we allow for the fact that the user need not
(often, should not) be exposed to this complexity and unpredictability. The facilities are provided
so that they can be appropriately deployed (or not) by an application developer. A developer might

5. These discussions emerge naturally in terms of clients and servers, although in fact Prospero uses a peer-to-peer archi-
tecture. | use the term “locking authority” to suggest a “lock server” that may, in fact, be distributed throughout the sys-
tem.

20

choose not to exploit guarantee negotiation in a particular application, where application require-
ments or usage patterns might make it inappropriate. Safety-critical applications, for instance,
would probably not be appropriate places to use this mechanism. In other cases, an application
devel oper might want to warn the user when such asituation waslikely to occur, so that an informed
decision could be made as appropriate to the particular circumstances. The framework supports
these behaviours, but does not require them. The ability to control optimistic concurrency control
in terms of semantically defined application actions gives us greater control. For example, the
COAST system [Schuckmann et al., 1996] uses optimistic concurrency control, but because their
transaction model is automatically derived from application activity, it has no way to understand
which sorts of inconsistency are problematic and which are not. Consequently, it errs on the side of
safety and implements full ACI D® properties—even though these may well be considerably stron-
ger properties than are needed (and hence interfere with work when global commits fail).

Essentially, allowing applications to break their promises preserves the advantages of optimistic
concurrency control, but combining this with a guarantee mechanism allows, firsatargware-

ness of the consequences of those actions, and, second, a richer semantic framework for describing
styles of application action.

Consistency garantees in Prospero provide a way to overcome the problem of unbounded diver-
gence; they curb Prospero’s innate optimism. They provide some of the predictable consistency of
pessimistic strategies, but in a way that is sensitive to patterns of collaborative work.

5.5 Semantically-Informed Database Management

The variable consistency approach uses knowledge of application semantics to specialise and
improve the synchronisation process. In turn, the consistency guarantee mechanism uses knowledge
of application semantics—and the semantics of particular operations—é¢asechepportunities

for concurrency and parallel activity.

Some similar approaches are discussed here that use application semantics and specificity in data-
base processing. Barghouti and Kaiser [1991] give a comprehensive survey of advanced
concurrency control techniques. Most of these techniques are aimed at improving processing per-
formance while maintaining the illusion of individual activity over the database—clearly, a focus
quite different from that ofallaboration. However, two aspects of database research are particu-
larly related to the consistencyarantees approacsemantics-based concurrency andapplication-

specific conflict resolution.

5.5.1 Semantics-Based Concurrency

Database systems use a transaction model to partition the instruction stream. Transactions provide
serialisation (ordered execution) and atomicity (all-or-nothing execution). However, if the system
can detect that there is no conflict between two transactions, then it might execute them in parallel
or interleaved, without interfering with transactional properties. Thesictien-time and response
characteristics of database systems are generally such that delays introduced while calculating
appropriate serialisation orders for transaction streams will not have a significant impact on inter-
active mrformance.However, shared data stores supportingraattive ollaborative systems

6. Atomic, Consistent, |solated and Durable.

21

require crisp performance, and so it is useful to look at how database research has investigated the
opportunities to increase concurrency in transaction execution.

Traditional database systems detect two principal forms of conflict. A write/write conflict occurs

when two transactions write to the same location in the database. An ordering has to be established

for these transactions to retain the model of atomic, serialised execution. A read/write conflict

occurs when one transaction writes, and the other reads, the same data. Inconsistency can result if

the read falls before the write during simultaneous execution. If conflicting transactions are exe-

cuted concurrently, then the transaction model’s serialisation properties may be lost; so conflicting
transactions must be executed serially.

However, this is a very expensive way to maintain the transaction model, since the analysis of con-
flict is very coarse-grained. In the absence of transaction conflicts, the system can guarantee that the
transactions can safely be executedanaflel. On the other hand, the presence of a conflict does

not imply that inconsistencwill result. For example, consider a transaction that issues a read
request but makes no use of that result in its later computation (or does, but the use is robust to par-
ticular changes). It could, quite safely, be executed in parallel with another that writes the same data
item. However, those circumstances would signedaal/write conflict and the potential concur-

rency would be lost. More generally (and more practically), transaction concurrency (and hence
throughput) could be improved with more detailed access to transaction semantics, or to application
semantics.

Approaches of this sort have been explored by a numbereafrders. Fanstance, Herlihy [1990]

exploits the semantics of operations over abstract data types to produce validation criteria, which
are applied before commit-time to validate transaction schedules. His approach uses predefined sets
of conflicting operations, derived from the data type specifications. Looking at the data type oper-
ations that transactions execute allows a finer-grained view of potential conflicts, and increases
concurrency. Farrag and Oszu [1989] exploit operation semantics by introducing a break-point
mechanism into transactions, producing transaction schedules in which semantically-safe transac-
tion interleavings are allowed. Again, the potential for concurrency is increased without disrupting
transactional properties.

One potential problem with each of these approaches is that they neguo@mputation of con-

flicts, compatibilities and safe partial break-points. This implies that these mechanisms could not
be seamlessly integrated into a general-purpose database management system. However, this
doesn’t pose a problem for using semantically-based techniques in Prospero, since Prospero doesn’t
need to provide a complete general-purpose service independent of any application. Instead, it pro-
vides a framework within which application-specific semantics can be added by application
programmers (rather than being known to the system in advance). Particular behaviours are coded
in Prospero in full knowledge of the relevant semantic structure of application operations.

The other major distinction between this approach and Prospero’s use of consistency guarantees is
that Prospero’s approach is application-specific rather than type-specific. Type-specific semantic
consistency such as that described here provides object-level consistency based on individual oper-
ations over those specific objects. However, the consistency guarantees approach provides the
application developer with a higher-level, application-specific form of consistency control based
not on the semantics of application types, but on how those application typesdte achieve

22

application behaviour. So, while concurrency control based on type semantics can be exploited in
collaborative applications (such asin the work of Munson and Dewan [1996]), consistency guaran-
tees are closer in spirit to application-specific approaches than to type-specific ones.

5.5.2 Application-Specific Conflict Resolution

A second approach from database research that is relevant to the consistency guarantees mechanism
isthe use of application-specific conflict resolution. Application-specific techniques differ from the
semanti c-based techniques above in that they achieve consistency at the level of the application as
awhole rather than the individual object types used to implement it.

The Bayou system, developed at Xerox PARC, provides an example of this approach. Bayou is a
replicated database system for mobile computers, which are frequently active but disconnected
from their peers. In most systems, disconnection is an unusual state, and the systems can normally
be assumed to be connected to each other; but in mobile applications, disconnection is the rule,
rather than the exception.

Bayou provides amechanism by which client applications can become involved in the resol ution of

database update conflict that can occur with replicated, partially-disconnected databases [Demers

et al., 1994]. Bayou write operations can include mer geprocs—segments of code that are interpreted
within the database system and provide application-specific management of conflicts. For instance,
in a meeting scheduling application, a wiftarrying a record of a scheduled meetingyhh be
accompanied with code that would shift the meeting to alternative times if the desired meeting slot
is already booked. Mergeprocs provide a means for application specifics to be exploited within the
general database framework. Bayou also provides “session guarantreg’eflal. 1994] that give
applications control over the degree of consistency they requirdféatiee operation in specific
circumstances. Clients can trade data consistency for the ability to keep operating in disconnected
conditions. Both of these techniques are based on an approach similar to that exploited in Pros-
pero—allowing clients to become involved in howrastructure support is configured to their
particular needs. There has been some experience in applying these approaches to the design of col-
laborative applications [Edwards et al.,, 1997], although Bayou's use of a loosely-connected
database layer restricts it to asynchronous applications.

More generally, one focus of research, particularly in databases supportingreafevelopment

or CAD/CAM, has been on variants of the transaction model supporting long-duration and group
transactions (e.g. [Kaiser, 1994]). Thase variants that elqit a gereral style of intera@n, rather

than the specifics of particular applications; however, they do begin to address the needs of inherent
collaborative applications.

5.6 Programming with Consistency Guarantees

This section has dealt with the generic model for consistency management using consistency guar-
antees. Before going on to look at specific examples, we need to consider how consistency
guarantees are realised in Prospero.

Prospero makes promises and guarantees available to programmers as the prirfeary iotdre
consistency mechanism. As described in the previous section, Prospero uses a command object
model to reify user activities within the programming framework. Promises and guarantees need to
deal not with specific commands, but with the semantic properties of those actions within the appli-
cation domain. However, the significant feature of this semantic approach is that Prospero should

23

itself be neutral with respect to the application domain, and hence to the semantics of actions there.
Prospero uses a “semanticse semantics” model tdlaw programmers to deal in terms of seman-

tic properties without making specific commitments to the semantic features that may exist in any
given domain.

5.6.1 Semantics-Free Semantics

The primary role of the semantic descriptions is to allow coordination between the pre-divergence
point (the “promise” phase) and the post-divergence point (“synchronisation”). The efficacy of the
approach is dependent on this coordination—actions being described and later recognised—rather
than on a detailed, structured semantic account of user-level operations. So, while the properties that
we would like to base our descriptions on seantic properties, the descriptions themselves do

not have tdave semantics. What Prospero needs to provide is a waferfing to semantic prop-

erties, but not a language of semantics. It's enough to be able to distinguish and recognise semantic
propertyf oo, without having to give an account of wiiato means.

In other words, Prospero needs to offeaming solution, not alescription solution. The applica-

tion programmer names a set of semantic properties relevant to his or her application domain, and
coordinates activity in terms of those, but the details of those semantics need not be described. Once
they have been named, they can be used as a basis for coordination.

5.6.2 Class-based Encoding

The mechanism that Prospero uses to accomplish ttisssbased encoding. Particular semantic
properties for an application are implemented as classes of command objects. Each instance of a
command object represents a particular invocation of that command, along with the relevant param-
eters and contextual information. Command objects inherit from the classes that represent their
semantic properties. Each command object then becomes subject to any methods defined for its par-
ticular semantic properties.

The use of explicit command obijects is, in itself, a useful mechanism for representing sequences of
action andarriving at appropriate mechanisms for resolving conflicts that might arise; but encoding
semantic properties in the inheritance structure of the command objects yields two particular bene-
fits when programming with Prospero. First, the mechanism is inhesstehgible; the application
developer can create new semantic properties from existing ones within the same mechanism as she
uses to createpalication structures and objects (i.e. subclassing and specialisation). Second, class-
based encoding allows semantically-related behaviours to be definatbitarative style. Pros-

pero programmers declare the consequences of semantic properties through separable methods that
apply to classes of semantic property. CLOS'’s generic dispatch mechanism can be used to ensure
that the relevant actions (methods) are applied to specific sorts of actions (semantic classes). This
allows the consistency management mechanism twdsed declaratively and itéireely, rather

than forcing the programmer to encode it in one large, monolithic resolution mechanism (which
would then, by its nature, be inaccessible to application programmers and locked within the toolkit).

5.7 Consistency Guarantees: Summary

While the divergence approach introduced in Section 5 allows us to manage activity over distributed
data in ways more appropriate to collaborative work, it presents a problem. Potentially unbounded
divergence can create situations in which it is difficult or impossible to resolve inconsistency in any
useful way.

24

Consistency guarantees balance this unboundedness by providing a way to constrain divergence.
The mechanism generalises the traditional lock-act-release cycle by casting it not in terms of abso-
lute locks, but rather in terms of variable promises of future activity and guarantees of achievable
consistency. These promises and guarantees are constructed from terms that are meaningful accord-
ing to the semantics of the application domain. Exploiting application semantics allows the
consistency mechanism to be tailored to the particular needs of specific collaborative applications
and settings, and allows programmersto create applicationsthat capitalise upon regularities and pat-
ternsin the work being conducted. At the same time, moving away from a basic read/write model
to one that is grounded in the application specifics allows new opportunities for parallel work, and
so supports multi-synchronous and opportunistic working styles.

6 WRITING APPLICATIONS IN PROSPERO

Divergence, synchronisation and consistency guarantees, as outlined above, provide a framework
in which the semantics of applications and their operations can be used to improve concurrency
management for collaborative work. Earlier sections have discussed some specific issuesin the rep-
resentation of these mechanisms in the toolkit, and provided some pointers to how programs are
developed. This section gives an overview of the programming interface and experience, as an ori-
entation for the examplesin Section 7.

Prospero isimplemented in CLOS. Network communication between Prospero peersis performed

using an RPC layer provided by the underlying Common Lisp implementation (the “wire” package
of CMU Common Lisp). Again, Prospero itself provides no user interface functionality; in the pro-
totype applications, the user éntaces have been implementesing Garnet [Myers et al., 1990],
although another package could have been used.

6.1 Base-Level Programming: Writing Applications

As outlined earlier, writing programs at the base level means creating collaborative applications that
make use of the features and functionality offered by the Prospero toolkit. All applications involve
base level programming.

6.1.1 Streams

To write a collaborative application using Prospero, the programmer organises the system as a set
of streams of activity. Typically, each stream of activity will be associated with one particular user

in a session, although this is not required. Application activity creates action objectsarettichn

inserted into a particular stream; periodically, the streams are synchronised so that actions in each
stream can be exchanged and communicated. Figure 1 shows the functions in the Prospero API that
implement this level of functionality.

The formdef act i on creates a new sort of action. Actions are defined by the properties that they
exhibit (properties being defined by the fod®f pr operty). Actions may have multiple proper-

ties. The functiorcr eat e- act i on creates a new #on object; its arguments specify the type of
action performed and the particular details associated with this particular invocation. The program-
mer then useadd- act i on-t o- st r eamto associate the action with a particular stream. Prospero
provides classes for both “local” and “remotefestims (erhodied by the classeé®cal - st ream

andr enot e- st r eam). Actions can only be added to local streams; remote streams are proxies for
streams elsewhere in the system, and are used to specify the details of synchronisation. Two forms

25

(def pr operty property-type [prent-type..)]
defines new property type based on named parents
(def acti on action-type [property .).]
defines new action object type
(creat e- act i on action-type [parameteps]
creates an action object of a particular type
(performlocal -acti on action
executes an action object in the local context
(add- acti on-t o- st reamaction stream
associates an action with a stream object
(synchroni se local-stream remote-stream
synchronises a local stream with a remote one
(wi t h-1ocal - st reamstream [body ..)]
executes body with a local stream binding
(def promi se promise-type [prent...]
defines a new promise type based on parents

(creat e- proni se promse-typé
creates a promise object
(def guar ant ee guarantee-type [parent)..]
defnes e a new guarantee type based on parents
(creat e- guarant ee guarantee-type
creates a new guarantee object
(get - guar ant ee Stream promise
retur ns guar antee from stream for offered promise
(redeem guar ant ee Stream guarantge
returns a guarantee
(wi t h- guar ant ee stream promise [body).]
executes body with a guarantee binding
(requi re-guar ant ee guarantee-type stream
promise [body ..)]
executes body with a guarantee binding of a
particular type

FIGURE 1: Base-level API.

of local stream are predefined and provided by the toolkit. I nstances of bounded- st r eamaccumu-
late a certain number of actions before they attempt to synchronise themselves with their peers;
instances of expl i cit-synch-streamwill not synchronise until synchronisation is explicitly
performed by a call to synchr oni se. Both of these stream types are subclasses of the | ocal -
st r eamclass. Applications can make use of these stream typesdirectly, or create new onesthrough
metalevel customisation.

6.1.2 Promises and Guarantees

Prospero al so provides some support for the use of promises and guarantees as the base level; how-
ever, since the full benefits of the consistency guarantee approach require the use of semantic
information about applications, which constitutes metalevel programming, there isless mechanism
of direct use at the base level. However, the basic framework can be used to constrain divergence.

The mechanisms at the base level are primary definitional—that is, mechanisms are provided to
define various types of entities, which can subsequently be used to express degrees of metalevel
specialisation. These entities, thoughe dso part of the base level programmingenfiace. We

have already seen thagf acti on can be used to define new actions that users can generate; by
analogydef pr oni se defines the promises that can be made. Promises, like actions, can be defined
in terms of properties (and also in terms of each other). Conceptually, the distinction is that actions
represent specific user actions, while promises are used to describe whole sequences of activity that
take place between periods of synchronisation. Promises characterise the sorts of actions that will
take place (that is, the properties of the set of actions), but not the specific actions themselves. This
provides an opportunity for richer and less restrictive descriptions.

At the base level, two classes of consistency guarantee are providedt ahlleduar ant ee and

nul | - guar ant ee. Essentially, these resemble, respectively, full locks and no locks at all
(although, of course, unlike locks, they do not have to be acquired, nor respected). In other words,
the significance of guarantees is not in the use of predefined ones like these, but that the offer a lan-
guage in which to define new sorts of guarantees (and since those new sorts will be rooted in the
application semantics, they cannot be defined in advance.)

26

Figure 1 also shows the API for manipulating the guarantees mechanism at the base level. Guaran-
tees are made in terms of promises, which are defined with def property and created with
creat e- property, just like actions. The function get - guar ant ee requests a guarantee from a
stream for aparticular promise, andr edeem guar ant ee isused to redeemi it later; so callsto these
two functions delimit a sequence of activity carried out under the guarantee. Calling get - guar an-
t ee will cause Prospero to send a promise to a stream, which will evaluate the promise, comparing
it to other guarantees that have already been issued, and return the best guarantee that can be given
under the circumstances. The nature of that comparison will be examined in more detail in a
moment, but does not form part of the base level interface. Later, once a sequence of activitieshave
been carried out under a particular guarantee, the guarantee can be returned using r edeem
guar ant ee.

For convenience, the form wi t h- guar ant ee can be used as a shorthand for a common idiomatic
structure; it requests a guarantee, executes a body of code under that guarantee, and then redeems
it. Itspartner, r equi r e- guar ant ee, ensures that a particular sort of guarantee be achieved before
the code is executed.

6.2 Metalevel Programming: Customising the Toolkit

Base level programming combines the features of the toolkit to create collaborative programming.
Metalevel programming augments and specialises those features to provide customised support for
particular applications. Metalevel programming allowsthe toolkit to provide more efficient support
for particular applications, to support applications that would otherwise not be supported, or to
allow forms of collaborative work that cannot be accommodated in the base level framework.

The metalevel is implemented using a metaobject protocol [Kiczales et a., 1991]. A metaobject

protocol is an object-oriented encoding of the reflective link between application and implementa-

tion internals. A view of the implementation is described in object-oriented terms, and then
provided to the application for examination and revision. The metaobject protocol defines not

simply the toolkit's internal structures, but also a view imber it uses those structures to achieve

its functionality. This then allows the application programmer to inspect behaviours and interpose
code, and so become involved in the infrastructure implementation. In other words, while the
metaobjects define the internal structures of the toolkit, the protocol reveals how these interact to
achieve visible behaviours.

Customisation is achieved by “inserting” code into the implementation layer. Other reflective sys-
tems such as 3-Lisp haveeated customised ways of doing this “level4shg”, but in a metaobject

protocol it can be achieved through subclassing and specialisation. In Prospero, we provide the
means to insert programmer code into the components of the toolkit dealing with the creation of
objects, the manipulation of streams and synchronisation, as well as the evaluation of promises and
granting of guarantees. Creating new sorts of streams and guarantees provides us with a means to
do this through standard object-oriented techniques, as well as providing us with control over the
scope of changes (by associating them only with these new classes).

Metalevel programming in Prospero consists in identifying those behaviours in the toolkit that
should be adjusted, and then creating new streams and classes with new behaviours for these com-
ponents. Control, then, is achieved through the protocol: the sequence of generic functions through
which the toolkit’s internal behaviours are coordinated.

27

(propagat e- acti on-t o- st reamaction (conpat i bl e- proni ses promisel promise2)

remote-stream ..) determines compatability level of two simulta-
sends action object to remote stream Neous promises
(check- send- act i on action remote-stream) (grant - guar ant ee promise local-stream)
transforms action for transmission grants a guarantee for the local .stream.
(check- | ocal | y- perform acti on action (guar ant ee- f or - promi se promise-wireform)
remote-stream) determines maximal guarantee for promise

transforms action for local execution
(synchroni se-renpt e- act i on action)
handle an incoming action object

FIGURE 2: Generic functions used to control internal behaviour.

The consequence of this approach isthat it is difficult to identify an API for the metalevel in quite
the same way as we could for the base level. Metalevel programming uses just the same program-
ming constructs as programming at the base level, but it uses them in different ways. Rather than
using them to achieve effects directly, it uses them as points of articulation for adjusting internal
behaviour. Of course, we can, in a specific piece of code, identify those lines that constitute meta-
code; lines of code executed in the context of the toolkit rather than that of the application; and we
can identify uses of the toolkit structures that constitute metalevel programming. There are also
some API calls that are used primarily to adjust the behaviour of the toolkit. For instance, the
method conpat i bl e- proni ses is used to determine whether two promises are compatible for
simultaneous execution. This method is used by Prospero in evaluating promises and making a
determination of the level of guarantee that can be offered in response, as part of the remote
response to a call to get - guar ant ee, as discussed earlier. So, when an application programmer
wishes to specialise the process of granting guarantees, perhaps for newly defined promise types,
thisiswhere control can be exercised.

Figure 2 lists some of the major functions that provide points of articulation for modification of
internal behaviour (in addition to those listed previously asbase-level functions). In order to provide
a more detailed exposition of the use of Prospero, the next section illustrates how some simple
sampl e applications can be constructed.

7 APPLICATION EXAMPLES

This section provides some example applications built using Prospero. Asfar as possible, the exam-
ples omit detailsthat are not immediately relevant to the topic at hand. So, for instance, internal data
structure representation is not presented, except whereit is significant to interaction and synchroni-
sation; similarly, the manipulation of user interface e ements, which istypically asignificant source
of programming verbiage, is also omitted. The examples are written in CLOS, but the discussion
will emphasise the structure, which can be applied to other implementations.

Three examples are presented here (further complete examples can be found elsewhere [Dourish,
1996]). Thefirst isasimple shared drawing program, and illustrates the use of actions and streams
to create a collaborative application. The second example is a hypertext database editor, and illus-
trates the use of consistency guarantees to manage more complex interaction. The third exampleis
an extension of the hypertext database editor to accommodate opportunistic work.

28

1: (defun polyline-editor ()

2 (let ((window (create-window “Polyline Editor”)))

3 (add-to-window (create-interactor ‘polyline-interactor

4: ‘where window

5: ‘when ‘mouse-down

6: finish-fn #'add-new-polyline)))))
7

8
9

(defun add-new-polyline (interactor points)
(add-to-window (create-instance ‘polyline :points points)))

FIGURE 3: Simple polyline editor.

: (defaction <polyline-action>)

(with-local-stream (make-instance ‘<bounded-stream>)
(let ((window (create-window “Shared Polyline Editor”)))
(add-to-window ...))

(defmethod add-new-polyline (interactor points)
(let ((pl-action (create-action <polyline-action> points)
(perform-local-action pl-action))

NN R

10:
11: (defmethod perform-local-action ((action <polyline-action>))
12: (add (create-instance ‘polyline (action-params action))

: window)))

FIGURE 4: Multi-user polyline editing with Prospero base-level support.

Since the primary design goal in Prospero is flexibility in support of a wide range of applicability
to specific application settings, it follows that the point to be made with these examplesis not that
such-and-such an application can be developed, or that such-and-such a technique can be used in
creating a collaborative application. For most applications that can be created with Prospero, asim-
ilar application could be created with another toolkit such as those discussed earlier. Instead, the
point to be illustrated is the range of applications that can be developed using this single toolkit
framework. In other words, while standard approaches might be able to support one application or
another, they would typically not support the range of variability found in across the set of examples
presented here.

7.1 Example: Shared Drawing

Thefirst example isasimple multi-user whiteboard application with areplicated architecture. Users

can create simple “scraw!” strokes (captured as “polylines”, or line segment sequences), and their
actions are periodically broadcast to other sites. The functionality is extremely simple; this example
is presented mainly to show how collaboration can be added to a single-user application using Pros-
pero’s base-level functionality.

Figure 3 shows the basic structure of the original, single-user application. (Details, particularly of
the graphical toolkit, have been omittedem theywould distract from the core functionality.) A
window is created, and an “interactor” [Myers, 1990] is associated with it, to handle a particular
form of user interaction. This particular interaction is configured to run when the user holds down
the mouse button; when it is released, the funaibi new pol yl i ne is called with arguments
representing the new object. This function then creates a polyline object and adds it to the display.

29

1: (defnethod performlocal-action :after ((action <action>))

2: (add-action-to-stream action (current-local-stream))

3:

4: (defrmethod add-action-to-stream ((action <action>) (stream <streanp))

5: (push action (stream actions stream)

6:

7: (defmethod add-action-to-stream:after (action (stream <bounded-streanp))
8: (if (full-p stream

9: (synchronise stream (streamrenote stream)))

10:

11: (defmet hod synchroni se ((stream <bounded-strean®) (stream <renote-streanp))

12: (dolist ((action (reverse (streamactions strean)))
(propagat e-acti on-to-stream acti on renote)
14: (streamreset stream)

Ay
w

FIGURE 5: Internal Prospero code implementing bounded streams.

Figure 4 shows how this program can be turned into a collaborative application using Prospero. The
collaborative application has some minor changes in structure, to accommodate the objects and
functions added by Prospero. Lines making use of Prospero features are highlighted by underlining.

Basic graphical interaction is handled with an interactor, just as before. The differenceisin how the
polyline itself is created. Since Prospero operates in terms of command objects that explicitly rep-

resent user actions, thisfunction is now handled indirectly through the creation of an action object.

How do we do this? At line 1, a new sort of action is defined for polyline creation’. The function

add- new pol yl i ne at lines 7-9 novereates an actioobject of this type, corresponding to the
user’'s behaviour, by calling create-action, which creates a new command object encapsulating the
particular parameters of this user action (the points of the polyline). Then it “applies” this action by
calling the methogber f or m | ocal - acti on. This is a method defined by Prospero, although it
has no functionality for new sorts of objects defined by applications, and so the application pro-
grammer has to define some behaviour for performipgl &1 i ne- acti on. This is done at lines
11-13 by specialising the generic function specifically for objects of ¢fassyl i ne- acti on>.

This new method arrides other applicable methods; it creates the polyline object and adds it to
the shared workspace. All this happens within the context of an instahesiroded- st r eam
defined at line 3.

Why does the application perform its actions iadily through this action object? The answer is
that action objects and the methods defined on thena pint of coordination with Prospero’s
mechanisms for managing collaboration. Figure 5 shows some of the ifistrnefure of Prospero
corresponding to the mechanisms used in this example. At lines 1-2,emtiahod™ is defined
for the generic functioper f or m | ocal - act i on. The effect of this is toresure that, once the
local behaviour has beerformed (the behaour provided by the application developer in figure

7. The use of angle brackets is acommon notational convention used in CLOS to denote class objects. Objects that Pros-
pero application developers create such as action types, promises and guarantees are generally actually classes, so that
they can be used as part of method definitions.

8. In other words, this is the implementation code. Application developers would neither supply or seethis. Itis shown
here for explanation.

9. In addition to normal (“primary”) methods, CLOS provides “before-methods” and “after-methods” which are col-
lected and run before and after the primary method for any given generic function. Applications can use them to associ-
ate behaviour with generic functions, without replacing the existing functionality.

30

4), thenthe method add- act i on- t o- st r eamwill be called to associate this action object with the
currently active local stream.

Sincethe application devel oper set thelocal stream to beabounded- st r eam whichisone of Pros-

pero’s pre-defined local stream types, the bahag shown at lines 4-14 in figure 5 apply.
Bounded streams accumulate their actions until a threshold (bound) is reached, at which point they
are synchronised (lines 8-9). Synchronisation involves going through the accumulated local actions
and sending them tcepr streams to be incorporatatb the action streams there (lines 12—13). The
application developer, however, does not have to manage any of this behaviour. Bowgzaes st
carry their own synchronisation behaviour with them; the application developer has simply had to
perform ations indirectly through the command objects to get the collaborative action desired.

So, in this case, to turn the application into a collaborative application, the application developer
needed only to add a small number of lines of code, to set up the stream and handle application activ-
ity through command objects.

7.2 Example: Hypertext Database Editing

The previous example provided a simple illustration of the basic use of actions and streams in Pros-
pero to create a synchronous replicated drawing application. With those basic concepts covered, we
can proceed to a more ambitious example, which will illustrate the use of semantic properties and

consistency garantees.

This second example is a hypertext database editor. Nodeseatedcand dited, and then are

linked together to create a hypertext document. We consider the creation and editing of nodes to be
content-based activities, and the manipulation of their links and relationships to be structuring activ-
ities. We can consider these two classes of action to be independent. Changing structure and
changing context can loarried out in parallel wlhout conflict, even though both result in changes

to the underlying data store. In a traditional system, there would be no way to distinguish these
cases. Any attempt to change stored data would look like a write operation, and since some write
operations may result in conflictall write operations would have to lock out other users. Using
consistency guarantees, we can incorporate richer semantic information, achieve a better match
between the application and the infrastructure, aacasepportunities for parallel work.

The consistency guarantee mechanism can be used to creaseadicrpetween these two forms

of access, incorporating this piece of knowledge about the semantic structure of the domain. Figure
6 shows the encoding of these semantic properties in Prospero; metalevel code is highlighted in ital-
ics. At this stage the programmer sets up a description of the application domain in terms of the
semantic properties of actions (lines 1-4), and of the actions and pr&hnisesms of these prop-

erties. The properties will subsequently be used to refine the consistency management mechanism.

The programmer sets up four properties in lines 1-4. These describe the different changes that might
introduced into the data store byfdient user a@tons. The actions of the application are then given

and inherit the relevant properties (6—10). Promises are defined in terms of the sets of expected
semantic properties for any given period of divergence. Later on, the system will want to ensure that
the properties of promises and the properties of the sequences of action that take place under them
line up. Promises can be defined dynamically, but in this case we pre-define the ones that we know

10. In this example, we use only pre-defined guarantees; otherwise, those would also be set at this point.

31

(def property <append>)

(def property <structure-change)
(def property <content-change>)
(def property <no-change>)

(def action <create-object-action> <append>)
(defaction <find-action> <no-change>)

(defaction <set-field-action> <content-change>)
(defaction <change-field-action> <content-change>)
10: (defaction <add-Iink-action> <structure-change>)

eXNoaRWNRE

12: (def promnmi se <structure-prom se> <structure-change> <no-change>)

13: (def promi se <content-prom se> <cont ent - change> <no- change>)

14: (defpromise <structure-content-promise> ‘(<structure-promise> <content-

promise>))

15:

16: (def et hod conpati bl e-prom ses ((pl <structure-change>) (p2 <structure-
change>))

17: nil)

18:

19: (defnethod conpati bl e-pronm ses ((pl <content-change>) (p2 <content-change))
20: nil)

FIGURE 6: Setting properties, actions and promises for hypertext database editing.

will be used. Note that the <st r uct ur e- change- pr oni se>, which allows for changes to both
components of the database, inherits from the <st r uct ur e- pr oni se> and the <change- pr om
i se>, so that definitions based on those will also apply to this promise, which combines their
effects.

Creating these semantic structures provides us with an enriched language (a language of domain
semantics) for doing metalevel tailoring. Lines 16—20 show the use of these semantic structures in
configuring the behaviour of the consistency control mechanism. These lines inform the toolkit that
a promise involvingst r uct ur e- change cannot be granted at the same time as another also
involving st r uct ur e- change, and that the same exclusion principle holds for promises involving
cont ent - change. The application developer expresses this by providing new methods for the
metalevel generic functiotonpat i bl e- pr oni ses, which tests whether two promises are com-
patible. This predicate is used to select the guarantee that will be retlrfieel user's metacode

will be used by the toolkit in resolving requests for promises, based on the application semantic
properties defined earlier. In this way, the toolkit's internal behaviour (granting guarantees) has
been specialised to accommodate the specific features of this application (parallel updating of struc-
ture and content).

11. CLOS's true and false (t and nil) are shorthands for full and null guarantees. By default, promises are compatible;
overriding the method for these particular sorts of promises denotes exceptions. CLOS’s “generic dispatch” mechanism,
which matches generic function calls to specific methods, ensures that the most specific set of comparisons are per-
formed.

32

1: (defun request-guarantee ()

2: (let ((prom se (case *access- nbde*

3: ((:entry) (create-proni se <content-pronise>))

4. ((:linkage (create-pronise <structure-pronise>))
5: (t (create-pronise <structure-content-promise>)))))
6: (get-guarant ee *server-streant pronise)))

7:

8: (defun ui-set-npde (gadget menuitem subnenuitem

9: (declare (ignore gadget nenuiten))

10: (setq *access-npde* (intern (string-upcase subnenuitem

11: (find-package “"KEYWORD")))

12: (if *current-guarantee*

13: (redeem-guarantee *server-stream* *current-guarantee*)

14: (setq *current-guarantee* (request-guarantee)))

FIGURE 7: Claiming and redeeming guarantees.

Next, the code managing the performance of activitiesisthen surrounded by guards that obtain and

resolve guarantees. This is managed through the mechanism in the user interface by which users

change between different editing modes, as shown in figure 7. As before, use of Prospero function-

aity is highlighted by underlining. When the mode is changed through the user interface menu

control, the function ui - set - node (line 8) is called; it will request a new guarantee based on a

promise constructed from the current edit mode setting (lines 1-6). The gatl-tguar ant ee at

line 6 causes infrastructure’s guarantee mechanism to be invoked, which in turn will exploit the spe-
cialisation that the programmer created at lines 16—-20 of figure 6 by configuring the promise
comparison mechanism. The user interface allows work to proceed, reflecting the current guarantee
status in the user interface. When actions are executed for which the guarantee is not valid, the user
is informed once through a pop-up menu, and continuously through a status indicator.

Finally, figure 8 show some excerpts from the code that implements the application behaviour. Calls

to Prospero behaviour are highlighted by underlining. The methods at lines 1-4 aock#te9

“after” methods that execute once the application behaviour has run and associate new action
objects with the current local stream. The local stream in this example is an instaxpkiafi t -

synch- st ream (rather tharbounded- st r eamas in the previous example), supporting a more
asynchronous style of working. An explicit-synch-stream is not synchronised with its peers until a
specific action of typesynchr oni se> is added to it; this causes synchronisation to take place. In

this example, it causes the effects that the user has performed to be checked into the database (in a
remote server stream).

(defrmethod add-1ink :after ((from<record>) (to <record>))

(let* ((fromid (record-id from) (to-id (record-id to))
(action (create-action <add-link-action> *ident* fromid to-id)))

(add-action-to-stream action (current-local -stream)))

(defmet hod new-record :after ((record <record>))
(let* ((id (record-id record)) (type (class-nane (class-of record)))
(action (create-action <create-object-action> *ident* id type)))
(add-action-to-stream action (current-local -stream)))

BooNoakhwn R

=
vEo

(def met hod checkin ()
(add-action-to-stream (create-action <synchroni se>)
(current-local -stream))

[EnY
w

FIGURE 8: Performing actions in the hypertext database.

33

So, through the use of metalevel specialisation, the toolkit has been extended to accommodate the
specific semantic features of this domain. The working style to which this application lends itself
would be unavailable to applications created with atoolkit that employed standard, undifferentiated
data storage semantics.

7.3 Example: Accommodating Opportunistic Work

The first example showed the use of Prospero’s streams mechanism to support synchronous or
“real-time” collaborative interaction. In the second example, however, the same basic mechanism—
periodically-synchronised streams that accumulate sequences of user actions—was used to support
a more asynchronous style of client/serveerattion. Supose, now, that we want to go further,

and extend this example to incorporate support for opportunistic work as described earlier. How
would we go about this?

The structure of the example was that a user interface control selected a mode of operation, via the
functionset - ui - node, and that this mode-setting behaviour would control the making of prom-
ises and the securing of guarantees. However, this mode is purely advisory; it does not restrict the
sort of actions that users can perform. So, actions can still take place that are outside the scope of
the promise made (and hence the guarantee granted). Activities like this constitute a broken prom-
ise. This is how opportunistic work becomes manifest to the system, in the form of actions that are
performed outide the scope of the granted guaratftee

The application developer can choose to resolve these situatiorféenertdi ways, and to place
responsibility for handling them at various parts of the system. In this particular case, we will
choose to handle broken promises on the server side. Figure 9 shows the server-side code that deals
with incoming actions during the synchronisation process. When synchronisation @esapl

stream of actions arrives at the server; the metgod hr oni se- act i on is called to process each

one. First, it looks up the stream that performed the action, and the guarantee under which that
stream has been acting. A guarantee records the promise that was made for it, and so the action can
be compared to the promise that was méide §) to determine whether or not it is in agreement

with the action. (This comparison is made on the basis of the properties of the action and the prop-
erties of the promise; recall that they were both specified in terms of properties.) If they match, then
the action can be performed on this side (via the generic furatical | y- per f or m acti on).

(defmet hod synchroni se-renote-action (action)
(let* ((stream (action-stream action))
(prom se (prom se-for-stream stream *l ocal -streant)))
;; first check if this action was under a valid prom se
(i f (guaranteed-action action (guarantee-pronise pronise))
(l ocal l y-performaction action)
;; otherwise, try to conplete it anyway
(i f (acceptabl e-action action)
(local l y-performaction action)
;; fail in the last resort
(syntactically-locally-performaction action)))))

RRooNoORhwNR

eoe

FIGURE 9: Supporting opportunistic activity.

12. The term “opportunistic work” implies a certain intention on the user’s part. This may not be entirely accurate. For
instance, similar circumstances could conceivably result from certain sorts of network partition, server failures, etc.

34

However, we are interested here in the case where this does not take place. Thisis where the appli-

cation devel oper can choose to allow promisesto be broken, and decide how to handle them. In this

case, the decisionis as follows. First, the application determines whether or not there would be any

conflict or error resulting from applying the action even though it is outside the granted promise

(line 8, using accept abl e- act i on). If not, then the action can be performed anyway, and soitis

(line 9). What does it mean for an action to be acceptable in this sense? Clearly, thisis an applica-
tion-specific issue. In this case, for example, one acceptable position is, “an action is compatible
with the current state if it results in the current state”. Other semantics are possible. Certainly, Pros-
pero does not attempt to encode this. Prospero’s role here is to provide the framework in which an
application developer can encode application semantics, and to provide enough control over the
basic structures such as promises, action, streams and guarantees that the specific application
requirements can be met.

The last case is the complicated one, corresponding to the situation in which the user has gone ahead
and performed an action outside of the stated promise, and a conflict has resulted from this oppor-
tunistic behaviour. This is the “failure” case, although this application developer chooses not to flag

a failure, but rather to note the problem and continue. In this case, the application programmer has
decided to allow syntactic consistency. The programmer has defined a metheadti cal | y-

| ocal | y- per form acti on, which performs the action but maintains only syntactic consistency.

Note that the return value of the functigynchr oni se- acti on is the return value of whichever
method was used to perform the action locally, eitlveml | y- per f or m acti on orsynt acti -

cal ly-locally-performaction. The return values of the sequence of invocations to
synchronise-action are used to pass information back to the remote stream about the results of syn-
chronisation. This supports cases where the application programmer wishes to distribute the
responsibility for handling the consequences of opportunistic action between the streams involved;
we make no use of it in this example, however.

The mechanisms shown in these three examples highlight how application semantics can be incor-
porated into Prospero by making explicit aspects of the domain semantics and encoding these in the
Prospero framework. This in turn provides the resources for Prospero to manage data distribution
and consistency management in ways appropriate to the specific applications. The examples have
shown that way that the application developer building an application in Prospero is not only pro-
vided with the means to combine predefined components but is able to reach in and specialise
components for particular application settings, enriching the toolkit with application semantics.

8 FLEXIBILITY IN PROSPERO
When we step back from the details, what have the examples in the previous section illustrated?

First, they have shown how the basic components of the toolida(ss, adbns, promises and
guarantees) can be combined to create collaborative applications. The first application showed how
we can wrap application behaviour in Prospero structuresetie a allaborative application; the
second illustrated the use of metalevel description to enhance application support by specialising
toolkit behaviours to the particular needs of specific applications.

Second, they have shown some of the advantages of the particular structures provided in Prospero.
Streams have been used to support both fairly synchronous and fairly asynchronous forms of inter-

35

action, inthefirst and second examples respectively. Actions have been used to characterise arange
of application behaviour, and guarantees have been used to give different degrees of feedback to
users about the likely effects of actions.

Third, they have shown how we can use metalevel description to specialise the toolkit to the needs
of specific applications. We showed this through the consistency guarantee mechanism in the
second example, although it can also be applied to creating new sorts of stream structures, and we
showed using two kinds of predefined streams (created, themselves, through metalevel
specialisation).

Fourth, they have shown that the use of this metalevel specialisation allows a single toolkit to sup-

port a wider range of applications that would be possible otherwise. Particular applications
developed in Prospero may resemble ones that could be generated using other toolKkits, but Pros-

pero’s novelty is in the range of applications that can be developed from a single framework. So,
we can use Prospero to create not only fully synchronous applications, but also loosely synchronous
and asynchronous ones; and applications that rely not only on strong locking, but also on applica-
tion-specific locking or no locking at all. The reflective framework provides for a perspicuous
unification of these approaches.

So, we can step back and ask a more general question. How does Prospero address the flexibility
problems we encounter in designing CSCW toolkits? There are two ways we can address this
guestion.

One is to consider Prospero, itself, as a CSCW toolkit. Like any toolkit, it provides a particular con-
ceptual model for the structure of applications, and the objects and mechanisms to realise
applications organised around this model. Prospero’s model is based around streams, actions, prom-
ises and guarantees. The choice of these particular mechanisms was motived by two considerations.
First, these mechanisms reflect a particular set of requirements for supporting fluid, flexible collab-
orative work, based on the lessons of investigations of collaboration in real-world and laboratory
settings. These four fundamental structures offered by Prospero emphasise the design of applica-
tions that avoid temporal or structural constraints, whichrfare with the performance of
collaborative activity. Second, and more importantly here, they were chosen for their yaluntsas

of articulation at the meta-level; they provide a conceptual separation for the areas of flexibility and
control offered to application developers. Streams and divergence are incorporated into the toolkit
not only because they offer a naturalppimg onto the patterns of collaborative activity we encoun-

ter in real-world settings, but also because they offer a natural way to talk about the wide range of
behaviours we might want to accommodate. Similarly, promises and guarantees are introduced pre-
cisely because they provide a way of talking not just about what the application does, but also about
how the toolkit can go about supporting it, in terms of the application domain. So, the conceptual
structure of the toolkit is designed specifically with notions of metalevel extensibility in mind.
(Recall the earlier observation about the metalevel interface as a designed artifact rather than an
epiphenomenon of the implementation.)

The second way to consider how Prospero addresses the flexibility problems encountered in CSCW
toolkit design is in terms of its strategy of providing application developers with metalevel control
over the toolkit's internal structure.

36

Fundamentally, what Prospero does, through the use of Open Implementation, is to repartition the
design problem. Since the use of Open Implementation allows application developers to revisit
internal toolkit design decisions in order to revise them in accordance with the needs of particular
applications and settings, it moves the burden of matching toolkit mechanisms with application
needs to the application developer. Thisis a considerable benefit to the application devel oper, who
isnot only the person best able to make those decisionsanyway, but isalso, in conventional settings,
the person who is left somehow to identify what those decisions might be and how they can be
worked around. Meantime, the toolkit designer can focus attention on how to provide the applica-
tion developer with an appropriate set of abstractions for both developing applications and
controlling thetoolkit internals. In other words, both the tool kit developer and the application devel -
oper are ableto concentrate on those elements of the overall problem that aretheir particular domain
of expertise; yet at the same time the structure of the system allows their two contributions to be
brought together more fruitfully in the design of any particular application.

9 CONCLUSIONS

In any toolkit design, a primary concern of the developer is flexibility—the range of applications
that the toolkit can support. For interactive and collaborative systems, the problems are even
greater, since the applidants themselves must also be flexible enough to accommodate the range
of ways in which users and groups engage in their work. The first generation of collaborative tool-
kits focussed largely on the problems of encapsulating common behaviours to ease application
development. A body of recent research has examined the ways in which CSCW toolkits can be
designed so as to support a wider range of application and working styles.

The research described in this paper contributes to this work in two ways. First, it presents a novel
architectural technique that can be harnessed to create toolkits that are both flexible and expressive.
Second, it introduces two particular mechanisms that can be incorporated into the design of CSCW
toolkits. The overall goal of a deeper form of toolkit flexibility in support of both a wider range of
possible applications and support for flexibility within those applications has been grounded not
simply in technological opportunities but in understandings of how group work proceeds. However,
where these observational studies make their mark is in the approaches we use and the technologies
we develop in trying to provide computational support for collaborative activity.

In this article, | have exploited an architectural approach—Open Implementation—that is being
used in other areas of system design to attack these sorts of problems. Open Implementation gives
application programmers metalevel control over the implementation on which they depend. It does
this by introducing a separation between a base interface, which specifies how the application will
use the toolkit ifrastructure, and a meta interface, by which the implementation of that infrastruc-
ture can be examined and modified. Prospero is a prototype CSCW toolkit based on the Open
Implementation approach. Prospero illustrates the application of this technique in the domain of col-
laborative working, and shows how it can be used to repartition the toolkit design problem to the
benefit of both toolkit and application developer.

Prospero also introduces two specific metalevel techniques for the flexible design of collaborative
applications. First, the divergence/synchronisation model provides a framework for describing and
creating a wide range of access patterns to distributed data, specialised for collaborative work, and
scalable across timescales. Second, the consistency guarantees model allows a consistency manage-

37

ment infrastructure to be specialised according to the semantic properties of the application domain.
These approaches can be applied independently of the Open Implementation architectural approach,
but they lend themselves particularly to this approach since they provide not only descriptive power
but also a means to create new behaviours.

Prospero embodies a new approach to the problems of flexibility in CSCW toolkit design. Rather

than attempting to provide a set of maximally-general structures onto which a programmer can map
application needs and requirements, it instead deals with that mapping through a metalevel inter-

face, which can be used to specialise the behaviour of the badadat(and hence theolkit's

internal structures). Metalevel programming capitalises upon the programmer’s knowledge of the
particular domain being supported. Further, the specific mechanisms provided in Prospero for man-
aging collaborative work are ones that operate in terms of the application domain semantics.
Streams will synchronise according to semantically meaningful actions in the application domain.
Consistency guarantees go further and use explicit encodings of semantic propertiatetspe-
cialised behaviours.

The design goals in the development of Prospero have been two-fold. The first goal was to develop
a toolkit that can be used to conveniently capture a wider range of CSCW applications than is pos-
sible using traditional techniques. As illustrated in the examples given here, Prospero has been used
to develop applications that are synchronous and ones that are asynchronous; some thddare fre

all and some that use more structured forms of interaction; some that use replicated and some that
use centralised data storage; and ones in which synchronisation arises automatically and ones in
which it is explicitly controlled by users. Traditional toolkits cannot capture this range of applica-
bility to different situaibns and application demands. The second goal was to illustrate and develop
the use of semantic approaches to the creation of collaborative applications. The variety of forms of
collaborative activity that we observe in laboratory esal-world selings are testament to the vari-

ety of potential forms of collaboration in different settings. Prospero has taken this observation as
a basic design premise and provided technological support for the semantically- ffesedtidi-

tion between domains and applications.

Prospero is a prototype system that provides a proof-of-concept implementation of these ideas.
Ongoing development of semantically enriched approaches in which ¢n&citidn between infra-
structure and use is taken as a primary design directive holds considerable promise for a new range
of collaborative applications that fit more seamlessly with patterns of everyday collaborative work.

Acknowledgments

This work was conducted while | was employed at the Xerox Research Centre Europe (Cambridge
Lab, formerly EuroPARC) and studying in the Department of Computer Science at University Col-
lege, London. The first draft of this article was written while | was employed at Apple Research
Laboratories.

| would particularly like to thank Richard Bentley, Jon Crowcroft, Prasun Dewan, Beki Grinter,
Rachel Jones, John Lamping and Tom Rodden and the anonymous TOCHI reviewers for their
insights and contributions to the development of the research and this article.

References
Barga, R. and Pu, C. 1996. Reflection on aLegacy Transaction Processing Monitor. In Proc. Reflection '96

38

Barghouti, N. and Kaiser, G. 1991. Concurrency Control in Advanced Database Applications. Computing
Surveys, 23(3), pp. 269-317.

Beaudouin-Lafon, M. and Karsenty, A. 1992. Transparency and Awareness in Real-Time Groupware
Systems. IProc. ACM Symposium on User Interface Software and Technology UIST'92. ACM, New York.

Beck, E. and Bellotti, V. 1993. Informed Opportunism as Strategyrdn. Third Eruopean Conference on
Computer-Supported Cooperative Work ECSCVWd8wer, Dordrecht.

Bentley, R. and Dourish, P. 1995. Medium versus Mechanism: Supporting Collaboration through
Customisation. In Proc. Fourth European Conference on Computer-Supported Cooperative Work
ECSCW’95KIluwer, Dordrecht.

Berlage, T. 1994. A Selective Undo Mechanism for Graphica User Interfaces Based on Command Objects.
Transactions on Computer-Human Interactid(3), 269-294.

Braun, T. and Diot, C. 1995. Protocol Implementation Using Integrated Layer Procesdfigc.lACM
SIGCOMM’95 ACM, New York.

Cao, P., Felten, E. and Kai, L. 1994. Implementation and Performance of Application-Controlled File
Caching. In Proc. ACM Symposium on Operating Systems Design and Implemenpatid65-178. ACM,
New York.

Clark, D. and Tennenhouse, D. 1990. Architectural Considerations for a New Generation of Pra@idols.
SIGCOMM Communications Review, 20(4), 200-208. ACM, New York.

Crowley, T., Milazzo, P., Baker, E., Forsdick, H. and Tomlinson, R. 1990. MMConf: An Infrastructure for
Building Shared Multimedia Applications. Proc. ACM Conference on Computer-Supported Cooperative
Work CSCW '90ACM, New Y ork.

Demers, A., Petersen, K., Spreitzer, M., Terry, D., Theimer, M. and Welch, B. 1994. The Bayou Architecture:
Support for Data Sharing Among Mobile Users. In Proc. IEEE Workshop on Mobile Computing Systems and
Applications | EEE.

Dewan, P. and Choudhary, R. 1992. A High-Level and Flexible Framework for Implementing Multiuser User
Interfaces. Transactions on Information Systeri§(4), 345-380. ACM, New York.

Dix, A. 1992. Pace and Interaction.People and Computers VII: Proc. of HCI'92ambridge University
press. Cambridge.

Dourish, P. 1995. Developing a Reflective Model of Collaborative Systems. Transactions on Computer-
Human Interaction2(1), 40-63. ACM, New York.

Dourish, P. 19960pen Implementation and Flexibility in CSCW Toolkits. PhD Dissertation. Department of
Computer Science, University College, London.

Dourish, P. and Bellotti, V. 1992. Awareness and Coordination in a Shared Worksp@ma. kiCM Conf.
Computer-Supported Cooperative Work CSCWA2M, New Y ork.

Edwards, K. 1996. Coordination Infrastructure in Collaborative Systeni®hD dissertation. College of
Computing, Georgia Institute of Technology, Atlanta, Georgia.

Edwards, K., Mynatt, E., Petersen, K., Spreitzer, M., Terry, D., and Theimer, M. 1997. Designing and
Implementing Asynchronous Collaborative Applications with Bayou. In Proc. ACM Symposium on User
Interface Software and Technology UIST'8CM, New Y ork.

Ellis, C. and Gibbs, S. 1989. Concurrency Control in a Groupware System. In Proc. ACM
Conf.Manamagement of Data SIGMOD:&9CM, New Y ork.

Farrag, A.A. and Ozsu, M.T. 1989. Using Semantic Knowledge of Transactions to Increase Concurrency.
Transactions on Database Systert¥(4), 503-525. ACM, New York.

Gabriel, R., White, J.L. and Bobrow, D. 1991. CLOS: Integrating Object-Oriented and Functional
ProgrammingCommunications of the ACM, 34(9). ACM, New York.

Greenberg, S. and Marwood, D. 1994. Real-time Groupware as a Distributed System: Concurrency Control
and its Effect on the Interface.Pmoc. ACM Conf Computer Supported Coooperative Work CSCWTH,
New Y ork.

39

Greif, I. and Sarin, S. 1986. Data Sharing in Group Work. In Proc. ACM Conference on Computer-Supported
Cooperative Work CSCW’'8B.CM, New Y ork.

Grinter, R. 1996. Supporting Articulation Work Using Software Configuration Management Systems.
Computer Supported Cooperative Work: The Journal of Collaborative Comp6fdilg 447—465. Kluwer,
Dordrecht.

Haake, A. and Haake, J. 1993. Take CoVer: Exploiting Version Management in Collaborative Systems. In
Proc. InterCHI’93 ACM, New Y ork.

Harty, K. and Cheriton, D. 1992. Application-Controlled Physical Memory using External Page-Cache
Management. In Proc. ACM Conference on Architectural Support for Programming Languages and
Operating Systems ASPLOSACM, New Y ork.

Herlihy, M. 1990. A pologizing V ersus Asking Permission: Optimistic Concurrency Control for Abstract Data
Types. Transactions on Database Systedty(1), pp. 96—124. ACM, New York.

Hill, R., Brink, T., Rohall, S., Patterson, J. and Wilner, W. 1994. The Rendezvous Architecture and Language
for Multi-User Applications Transactions on Computer-Human Interaction, 1(2), pp. 81-125. ACM, New
York.

Kaiser, G. 1994. Cooperative Transactions for Multi-User Environmént&¥on Kim (ed.), Modern
Database Management: The Object Model, Interoperability and Beyond. ACM Press, New York.

Kiczales, G. and Rodriguez, L. 1992. Efficient Method Dispatch in PCBrdn. ACM Symposium on Lisp
and Functional Programming (Nice, France). ACM, New York.

Kiczales, G. 1992. Towards a New Model of Abstraction in Software Engineerifyoén International
Workshop on New Modelsfor Softwar e Ar chitecture: Reflection and Meta-Level Architecture (Tokyo, Japan).

Kiczales, G. 1996. Beyond the Black Box: Open ImplementatioBE Software, January, 6—11. IEEE.

Kiczales, G., des Riviéres, J. and Bobrow, D. 198e Art of the Metaobject Protocol. MIT Press,
Cambridge, Mass.

Maeda, C. 1996. A Metaobject Protocol for Accessing File Systeni,om International Symposium on
Object Technologies for Advanced Software ISOTAS'96

Munson, J. and Dewan, P. 1994. A Flexible Object Merging Framework. In Proc. ACM Conf. Computer-
Supported Cooperative Work CSCW'84CM, New Y ork.

Munson, J. and Dewan, P. 1996. A Concurrency Control Framework for Collaborative Systems. In Proc.
ACM Conf. Computer-Supported Cooperative Work CSCVWA@8/, New Y ork.

Myers, B. 1990. A New Model for Handing Input. ACM Transactions on Information Syster8€3), pp. 289—
320. ACM, New York.

Myers, B., Guise, D., Dannenberg, R., Vander Zanden, B., Kosbie, D., Pervin, E., Micklish, A. and Marchel,
P. 1990. Garnet: Comprehensive Support for Graphical, Highly-Interactive User Intelfte Somputer,
23(11). IEEE.

Nichols, D., Curtis, P., Dixon, M., and Lamping, J. 1995. High-Latency, Low-Bandwidth Windowing in the
Jupiter Collaboration Systenmin Proc. ACM Symposium on User Interface Software and Technology
UIST'95 ACM, New York.

O’Malley, S. and Peterson, L. 1992. A Dynamic Network Architectliransactions on Computer Systems,
10(2). ACM, New York.

Rao, R. 1991. Implementational Reflection in Silica.Piroc. European Conference on Object-Oriented
Programming ECOOP’'91Springer-Verlag.

van Reneese, R., Birman, K. and Maffeis, S. 1996. Horus: A Flexible Group Communication System.
Communications of the ACGN39(4), 76—-83. ACM, New York.

des Riviéres, J. and Smith, B. 1984. The Implementation of Procedurally Reflective Langudgex. In
ACM Conference on Lisp and Functional Programming, 331-347. ACM, New York.

Roseman, M. and Greenberg, S. 1993. Building Flexible Groupware Through Open Proidtas ACM
Conference on Organisational Computing Systems COOCS0BI, New Y ork.

40

Roseman, M. and Greenberg, S. 1996. Building Real-Time Groupware with GroupKit, a Groupware ToolKkit.
Transactions on Computer-Human Interaction, 3(1). ACM, New Y ork.

Schuckmann, C., Kirchner, L., Schimmer, J. and Haake, J. 1996. Designing Object-Oriented Synchronous
Groupware with COAST. IfProc. ACM Conference on Computer-Supported Cooperative Work CSCW’96
ACM, New York.

Shen, H. and Dewan, P. 1992. Access Control for Collaborative Environments. In Proc. ACM Conference on
Computer-Supported Cooperative Work CSCWA2M, New Y ork.

Smith, B. 1984. Reflection and Semanticsin LISP. In Proc. ACM Symposium on Principles of Programming
Languages POPLIACM, New York.

Stroud, R. and Wu, Z. 1995. Using Metaobject Protocols to Implement Atomic Data Types. In Proc.
European Conference on Object-Oriented Programming ECOQB&tnger-Verlag.

Suchman, L. 1987. Plans and Situated ActionSambridge University Press, Cambridge.

Terry, D., Demers, A., Petersen, K., Sprietzer, M., Theimer, M. and Welch, B. 1994. Session Guarantees for
Weakly Consistent Replicated Data. In Proc. International Conference on Parallel and Distributed
Information Systems

41

	1 Introduction
	2 Fluid Use and Static Infrastructure
	2.1 Elements of CSCW Infrastructure
	2.2 Flexibility in Cooperative Work
	2.3 Varieties of Technical Flexibility
	2.4 Flexibility in CSCW Toolkits
	2.5 Summary

	3 Open Implementation
	3.1 Open Implementation Analysis
	3.2 Reflection and the OI Solution
	3.3 An Open Implementation Strategy for CSCW

	4 Divergence and Synchronisation
	4.1 Inconsistency Avoidance and Streams of Activity
	4.2 Divergence and Synchronisation
	4.2.1 Divergence and Versioning
	4.2.2 Divergence and Operational Transformation
	4.2.3 Divergence and Replicated Databases

	4.3 Capitalising on Divergence
	4.3.1 Scalability
	4.3.2 Multi-Synchronous Applications
	4.3.3 Supporting Opportunistic Work

	4.4 Divergence and Synchronisation in Prospero
	4.5 Divergence and Synchronisation: Summary

	5 Constraining Divergence: CONsistency Guarantees
	5.1 Variable Consistency
	5.2 Using Application Semantics
	5.3 Data Locking Approaches
	5.4 Promises and Guarantees
	5.4.1 Guarantees of Achievable Consistency
	5.4.2 Breaking Promises

	5.5 Semantically-Informed Database Management
	5.5.1 Semantics-Based Concurrency
	5.5.2 Application-Specific Conflict Resolution

	5.6 Programming with Consistency Guarantees
	5.6.1 Semantics-Free Semantics
	5.6.2 Class-based Encoding

	5.7 Consistency Guarantees: Summary

	6 writing Applications in prospero
	6.1 Base-Level Programming: Writing Applications
	6.1.1 Streams
	6.1.2 Promises and Guarantees

	6.2 Metalevel Programming: Customising the Toolkit

	7 Application examples
	7.1 Example: Shared Drawing
	1: (defun polyline-editor ()
	2: (let ((window (create-window “Polyline Editor”)))
	3: (add-to-window (create-interactor ‘polyline-interactor
	4: :where window
	5: :when ‘mouse-down
	6: :finish-fn #’add-new-polyline)))))
	7:
	8: (defun add-new-polyline (interactor points)
	9: (add-to-window (create-instance ‘polyline :points points)))
	1: (defmethod perform-local-action :after ((action <action>))
	2: (add-action-to-stream action (current-local-stream)))
	3:
	4: (defmethod add-action-to-stream ((action <action>) (stream <stream>))
	5: (push action (stream-actions stream))
	6:
	7: (defmethod add-action-to-stream :after (action (stream <bounded-stream>))
	8: (if (full-p stream)
	9: (synchronise stream (stream-remote stream))))
	10:
	11: (defmethod synchronise ((stream <bounded-stream>) (stream <remote-stream>))
	12: (dolist ((action (reverse (stream-actions stream)))
	13: (propagate-action-to-stream action remote)
	14: (stream-reset stream))

	7.2 Example: Hypertext Database Editing
	1: (defproperty <append>)
	2: (defproperty <structure-change)
	3: (defproperty <content-change>)
	4: (defproperty <no-change>)
	5:
	6: (defaction <create-object-action> <append>)
	7: (defaction <find-action> <no-change>)
	8: (defaction <set-field-action> <content-change>)
	9: (defaction <change-field-action> <content-change>)
	10: (defaction <add-link-action> <structure-change>)
	11:
	12: (defpromise <structure-promise> <structure-change> <no-change>)
	13: (defpromise <content-promise> <content-change> <no-change>)
	14: (defpromise <structure-content-promise> ‘(<structure-promise> <content- promise>))
	15:
	16: (defmethod compatible-promises ((p1 <structure-change>) (p2 <structure- change>))
	17: nil)
	18:
	19: (defmethod compatible-promises ((p1 <content-change>) (p2 <content-change))
	20: nil)
	1: (defun request-guarantee ()
	2: (let ((promise (case *access-mode*
	3: ((:entry) (create-promise <content-promise>))
	4: ((:linkage (create-promise <structure-promise>))
	5: (t (create-promise <structure-content-promise>)))))
	6: (get-guarantee *server-stream* promise)))
	7:
	8: (defun ui-set-mode (gadget menuitem submenuitem)
	9: (declare (ignore gadget menuitem))
	10: (setq *access-mode* (intern (string-upcase submenuitem)
	11: (find-package “KEYWORD”)))
	12: (if *current-guarantee*
	13: (redeem-guarantee *server-stream* *current-guarantee*))
	14: (setq *current-guarantee* (request-guarantee)))
	1: (defmethod add-link :after ((from <record>) (to <record>))
	2: (let* ((from-id (record-id from)) (to-id (record-id to))
	3: ����(action (create-action <add-link-action> *ident* from-id to-id)))
	4: (add-action-to-stream action (current-local-stream))))
	5:
	6: (defmethod new-record :after ((record <record>))
	7: (let* ((id (record-id record)) (type (class-name (class-of record)))
	8: ����(action (create-action <create-object-action> *ident* id type)))
	9: (add-action-to-stream action (current-local-stream))))
	10:
	11: (defmethod checkin ()
	12: (add-action-to-stream (create-action <synchronise>)
	13: (current-local-stream)))

	7.3 Example: Accommodating Opportunistic Work
	1: (defmethod synchronise-remote-action (action)
	2: (let* ((stream (action-stream action))
	3: ����(promise (promise-for-stream stream *local-stream*)))
	4: ;; first check if this action was under a valid promise
	5: (if (guaranteed-action action (guarantee-promise promise))
	6: (locally-perform-action action)
	7: ��;; otherwise, try to complete it anyway
	8: ��(if (acceptable-action action)
	9: ���(locally-perform-action action)
	10: ;; fail in the last resort
	11: (syntactically-locally-perform-action action)))))

	8 Flexibility in Prospero
	9 Conclusions
	Acknowledgments
	References

	Using Metalevel Techniques in a Flexible Toolkit for CSCW Applications
	Paul Dourish
	Xerox Palo Alto Research Center 3333 Coyote Hill Road Palo Alto CA 94304 USA dourish@parc.xerox.com

