
h and
 man-

es how

ution,

action

 infra-

porting

Using Metalevel Techniques in a Flexible
Toolkit for CSCW Applications

Paul Dourish

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto
CA 94304 USA
dourish@parc.xerox.com

This paper appears in ACM Transactions on Computer-Human Interaction, 5(2), 109-155.
Abstract. Ideally, software toolkits for collaborative applications should provide generic, reusable
components, applicable in a wide range of circumstances, which software developers can assemble

to produce new applications. However, the nature of CSCW applications and the mechanics of
group interaction present a problem. Group interactions are significantly constrained by the struc-

ture of the underlying infrastructure, below the level at which toolkits typically offer control.

This article describes the design features of Prospero, a prototype CSCW toolkit designed to be

much more flexible than traditional toolkit techniques allow. Prospero uses a metalevel architecture
so that application programmers can have control over not only how toolkit components are com-

bined and used, but also over aspects of how they are internally structured and defined. This
approach allows programmers to gain access to “internal” aspects of the toolkit’s operation that

affect how interaction and collaboration proceed. This article explains the metalevel approac
its application to CSCW, introduces two particular metalevel techniques for distributed data

agement and consistency control, shows how they are realised in Prospero, and illustrat
Prospero can be used to create a range of collaborative applications.

Categories and Subject Descriptors: Categories and Subject Descriptors: C.2.4 [Computer-Com-
munication Networks]: Distributed Systems—distributed applications; distributed databases;

D.2.2 [Software Engineering] Tools and Techniques—user interfaces; H.1.2 [Models and Prin-
ciples] User/Machine Systems—human factors; H.5.3 [Information Interfaces and
Presentation]: Group and Organization Interfaces—theory and models.

General terms: Design, Human Factors, Languages.

Additional key words and phrases: metalevel programming, open implementation, data distrib
divergence, consistency control, consistency guarantees, software architecture.

1 INTRODUCTION
In the early days of collaborative system design, the software components for multi-user inter

and collaboration were crafted by hand for each application. Object replication and sharing
structures, consistency management mechanisms and multi-user interface widgets were written

from scratch to produce experimental systems for investigating the use of computer tools sup
collaborative work.
1

being
ue that

 Imple-
spero’s

rgence/
ospero.
In this regard, CSCW development is no different from any other area of experimental system

design. Being a pioneer means exploring an area where no-one else has been, and so there is nothing

left over from previous trips to be reused. Nor is CSCW different from any other area in terms of
subsequent development patterns when the needs of a novel application area are better developed.

Common features of system design emerge, and developers begin to identify the core system ele-
ments and requirements which the application domain defines. As these become better understood,

toolkits of reusable, widely applicable components emerge.

A cursory look at the historical development of CSCW applications and systems shows this trend.

Most systems described at the first CSCW conference in 1986 (such as those of Greif and Sarin
[1986]), or in the earlier workshop in 1984, were designed from scratch; however, by the third ACM

conference in 1990, toolkits such as MMConf [Crowley et al., 1990] and Rendezvous [Hill et al.,
1994] had emerged offering programmers components which had been found to be generally appli-

cable in a range of situations.

This issue of general applicability is the crux of the design of any toolkit, and will be the primary

focus of this article. In particular, we will be concerned with the fact that toolkit designer must fur-
nish the application designer with a set of features regular enough to apply in a range of

circumstances, but flexible enough to support the needs of different applications. The problem that
motivates the research described in this article tackles is, what technology can be brought to bear

on the resolution of this tension?

I will argue that this design issue, common across all toolkits, is particularly problematic in the

CSCW domain. I will present the particular techniques used in the design of Prospero, a radically
flexible CSCW toolkit, to address these problems. Prospero embodies three particular techniques

which will be addressed here. The first, Open Implementation, is a general architectural technique
which has recently emerged as a solution to the engineering requirement for flexible abstractions in

a range of domains, providing metalevel control over implementations. The potential applicability
of Open Implementation to CSCW design was originally introduced in a previous article [Dourish,

1995]; this article focuses on how the approach has been realised and applied in the design of Pros-
pero. The second and third techniques, divergence/synchronisation and consistency guarantees, are

particular metalevel techniques developed in Prospero for CSCW applications. These techniques
are designed to work well within an Open Implementation framework, but can be applied

independently.

The structure of the rest of this article is as follows. Section 2 will outline some issues in CSCW

toolkit flexibility. It will present evidence for the particular need for flexibility in CSCW, using
studies of collaborative activity to point to the interdependence of usage patterns and system infra-

structure. Traditionally, these concerns, the “high level” and the “low level”, are regarded as
relatively independent, and have been approached from this perspective; however, I will arg

the interdependence forces us to take a different approach. Section 3 will introduce the Open
mentation approach which Prospero embodies, and outline the general structure of Pro

solution to the problems raised in Section 2. Subsequently, Sections 4 and 5 will discuss dive
synchronisation and consistency guarantees, the two CSCW-specific techniques used in Pr

Sections 6 and 7 will show how Prospero is used to construct collaborative applications.
2

ion in

ample,
gram-

rovide
 level”

ns can
ly prob-

terfere

iscuss

stem-
these

are

rti-

 dis-
ategies

 given
 Static

twork.
uces

issues

opies

solution

logical
2 FLUID USE AND STATIC INFRASTRUCTURE
The goal of any toolkit design is to provide generic, reusable components that are applicable to a

wide range of applications. The value of the toolkit lies in the range of applications that can be sup-
ported. However, every application has different requirements. The design tension, then, lies in the

creation of components that can be general enough to apply widely, but which can also support the
rich set of specific needs of those applications.

Along with other system components such as operating systems and network services, toolkits pro-
vide elements of application infrastructure—elements that will be deployed by an applicat

various ways, but which are independent of the specifics of the application domain. So, for ex
a user interface toolkit might offer widgets such as pull-down menus and scroll-bars; and a pro

ming language will provide data structures and control structures which can be combined to p
an infinite range of specific configurations. This depends upon a separation between the “low

features of infrastructure and the “high level” features of an application.

One important feature of CSCW toolkits and applications, however, is that significant interactions

emerge between these low and high levels. As will be argued in Section 3, similar interactio
be found in other areas, but the goal of this section is to show that these issues are particular

lematic in collaborative settings, because the static elements of infrastructure frequently in
with the essentially dynamic elements of what is to be supported—collaborative working.

I will begin, in Section 2.1, by outlining some of the elements of CSCW infrastructure, the funda-
mental computational elements on which CSCW applications depend. In Section 2.2, I will d

a number of studies of group working that illustrate how the progress of group work can be sy
atically undermined by the issue of infrastructure configuration. Section 2.4 will outline how

problems have been addressed in other work.

2.1 Elements of CSCW Infrastructure
There are a number of common elements which arise in the design of CSCW applications, and

therefore areas in which CSCW toolkits can provide support for application developers. In this a
cle, we will focus particularly on data distribution and consistency control.

Data distribution concerns the way in which application data in a collaborative application is
tributed across the network nodes participating in that session. Centralised and replicated str

vary in the number of copies of any data item which are available within the system at any
moment. Replicating data items lowers latency but introduces problems of synchronisation.

and dynamic strategies vary in their approach to the movement of data items within a ne
Moving data around may allow it to be located close to the site of current activity, but introd

problems of finding data items when they are needed.

When multiple copies of a single data item are available at multiple points in a network, then

of consistency management arise. A variety of strategies can be adopted to ensure that data c
are maintained in synchronisation with each other. These might involve interaction mechanisms

that ensure that only a single activity can be performed over a data item at any given moment,
sequencing mechanisms that ensure consistent execution orders for different actions, or re

mechanisms that combine potentially simultaneous actions into a unified sequence of
actions over the data store.
3

lica-
r she

ts”
econd,

ategies
Conse-

on of

ay in
ar con-

th new

by
ticularly

rative
ly dif-

ues-

rticular

se of
tem to

sh and
 the

raction,
r

e docu-
ividual

 shared

of the
ared

 This
Although this paper will deal largely with these two areas of concern, there are, of course, other

areas of CSCW infrastructure which arise in the design of CSCW software toolkits. Examples

include user interface management, user interface linkage, interface creation, session management,
access control and awareness provision. In each of these areas, the same general concerns arise with

the balance between control and flexibility and the wide range of possibilities for the provision of
basic functionality.

These areas of concern are presented here as elements of CSCW infrastructure, the underlying tech-
nology on which applications rest. What are the consequences of this? Primarily, “infrastructure”

here carries two implications. First, it implies that these concerns become invisible to the app
tion programmer, since they are carried out below the level of abstraction at which he o

operates. Applications are developed by manipulating abstract entities such as “shared objec
which encapsulate strategies for distribution, replication, synchronisation and awareness. S

and relatedly, it implies that the application programmer can have no control over these str
and mechanisms, since he or she is denied even the terms in which to talk about them.

quently, then, the particulars of the application domain can play no part in the selecti
appropriate design decisions in the infrastructure.

These aspects of infrastructure development are well-known and derive directly from the w
which software systems are developed and deployed. This paper is concerned with particul

sequences of this approach for the development of collaborative systems, and in turn wi
opportunities for the design of collaboration toolkits which follow from them.

2.2 Flexibility in Cooperative Work
The presentation of different dimensions of flexibility in CSCW design has been driven, so far,
technical demands and technical criteria. However, one reason that these issues are par

salient in the design of collaborative systems is the flexible working styles observed in collabo
work settings. The issue here is not simply that people engage in collaborative work in wide

fering ways; it is that these different working styles carry with them very different implications for
the configuration of infrastructure and so, in turn, the variability in working methods calls into q

tion the “encapsulation” of infrastructure design decisions. This section discusses some pa
studies to illustrate this point.

Dourish and Bellotti [1992] present findings from a set of laboratory investigations of the u
ShrEdit, a synchronous collaborative text editor. Groups of three collaborators used the sys

support their collaboration on an experimental design task. One significant aspect of Douri
Bellotti’s description is the wide variety of ways in which the groups organised their activity. In

absence of any direction about how best to use the tool to support their collaboration and inte
the groups adopted different working styles to support different forms of collaborative work. Fo

example, some participants divided up the activity between them and then created separat
ments representing these different streams of activity. Some used private documents for ind

work and shared windows only for group-sanctioned material; and others used a single large
document as a general collaborative workspace.

Dourish and Bellotti also report on the ways in which individuals would use specific features
interface to support the fluid coordination of their activities. The system provided interactive sh

feedback, showing each user’s activity within the document to all users synchronously.
4

e their

ivities

f fine-
eness-

er, two
ther on

g
Bellotti

rried
ifferent

 subject
tor

ty, per-
ny of a

.

inter-
Bellotti

ivision

se the

us of
 of the

cast in
ractical)

devel-

esource

s and

t set-
ducted

quence
 or to

us revi-
logical

tations
s not
allowed the collaborators to monitor each other’s activities, observe other’s progress, gaug

own progress in relation to the progress of the group, opportunistically get involved in the act

of others, and so on. The shared feedback approach was critical not simply to the sort o
grained, focussed collaborative activity for which it had been designed, but also for awar

based coordination in general.

Beck and Bellotti [1993] studied collaborative text processing in a quite different domain, the col-

laborative authoring of research papers. In the case study that forms the core of their pap
research collaborators working at different sites separated by thousands of miles work toge

a conference paper reporting on joint research, using traditional tools (single-user document editin
systems, data networks and telephones) to coordinate their work. One point that Beck and

stress from this and other studies is the opportunistic way in which individual work is often ca
out in these settings. They observe that, even in cases where a division of responsibility for d

sections of an emerging document has been decided in advance by the collaborators, this is
to continual, ongoing and individual reconsideration at any given moment. So, one collabora

might well make changes to a part of the document for which she does not have responsibili
haps because it is relevant to her own sections, or because she notices an error, or for a

number of other possible reasons. The significant point here is not simply that these opportunistic
activities take place, but that they take place unproblematically in the course of the collaboration

They do not, typically, interfere with the organisation of the work or cause the work to be
rupted (indeed, they are often carried out so as to ensure the smooth flow of work). Beck and

relate their observations to the design of systems which embody and enforce the informal d
of labour through access control or process management mechanisms.

In a study of the use of Software Configuration Management (SCM) tools in a production software
engineering environment, Grinter [1996] describes how software developers use and abu

mechanisms provided by the SCM system in the coordination of their own activity. The foc
design attention in the SCM system is primarily the software that it manages, but the focus

software engineers is their own work. They mediate, then, between a level of description
terms of the (software) dependencies between different code modules, and the (social and p

dependencies between their individual and collective efforts. Grinter details practices which emerge
in different settings around the use of one particular SCM tool, and show how the software

opers use the tool’s visualisation of the dependency structure of the software system as a r
in organising their own activity.

These studies, although carried out in different domains and organised around different sorts of sys-
tems, carry some general implications for technological design. They show how individual

groups creatively deploy the resources at their disposal to accomplish their work in differen
tings. As groups, settings and circumstances change, so do the ways in which work is con

and, by implication, so do the ways in which people make use of the technology. The conse
for system design is that we must avoid premature commitments to particular styles of work

particular processes by which work may be conducted, since these are subject to instantaneo
sion and variation. The reason that this is problematic, however, is that any particular techno

approach embodies just these sorts of commitments and constraints. Building implemen
inherently involves making commitments to styles of work. In other words, the concern i
5

logical
ment

ext of
t is tra-

ation
erface

gies
revent

n of the
 issue,

ria.

ucture

ctice

 on the

 people
ividual

ls of

y
-

 and

ions,
ly,

e
iour,

pproach
rd-

s their
isposal,

 support

 which
simply with the specific techniques which have been chosen in any instance, but with the very ques-

tion of choosing one technique and encoding it in the system.

To an extent, we are used to dealing with this problem—managing the appropriate techno
choices for working styles—in the user interface domain. However, this problem of commit

applies not only to the traditionally “high-level” issues of interface design and working activity, but
also to the traditionally “low-level” issues of infrastructure support.

A study by Greenberg and Marwood [1994] illustrates just this issue, exploring it in the cont
consistency management algorithms for collaborative applications. Consistency managemen

ditionally provided as infrastructure as described earlier, outside the control of the applic
programmer. However, Greenberg and Marwood demonstrate a range of significant int

design implications for different consistency designs. For example, not only may locking strate
introduce delays which interfere with the fluid management of parallel tasks, but it can also p

group members from using text selection as a gestural mechanism accompanying discussio
document. Consistency management, however, is normally taken to be an infrastructure

invisible at the level of the interface and subject primarily to technical rather than usage crite

In other words, we must be concerned, in CSCW design, not only with the design of infrastr

and the practices of work at the interface, but with the interactions between the two. The require-
ments for flexibility at each level are inter-dependent. Typical system development pra

concentrates on computational techniques or on supporting particular styles of work, but not
relationship between these two concerns; and that is the topic which is addressed here.

2.3 Varieties of Technical Flexibility
What we see when we look at these sorts of studies, then, is the wide variety of ways in which
coordinate their collaborative behaviour around the resources which systems provide for ind

and collective activity. These observations result in a reorientation of our view of the goa
system design. Instead of thinking of systems as embodying mechanisms of coordination and col-

laborative activity, we see them instead as media for the performance of collective action [Bentle
and Dourish, 1995]. We are concerned not simply with the functionality of collaborative applica

tions, but also with the flexibility they provide, allowing users to adapt them to local needs
circumstances and to different ways in which to engage in work.

When we consider the issues of flexibility and malleability in particular collaborative applicat
we find that there are a number of different levels at which they can be addressed and, significant

they are strongly inter-related. The most straight-forward approach is the provision of run-timcus-

tomisation; opportunities for users to adjust parametric controls over the application’s behav

such as interface coupling modes, access control checks, and so forth. Another technical a
would be to exploit run-time adaptation in which the system can re-configure its behaviour acco

ing to immediate patterns of use. So, for example, if a particular group of users organise
behaviour in such a way that each deals only with a subset of the shared objects at their d

then the system might organise the distribution of those objects so that their access patterns
this division of labour effectively. These forms of flexibility provides users with the opportunity to

engage in differing working styles as appropriate to the specific task and circumstances in
they find themselves.
6

sis for
f col-

pport

rly on
ke the

cross a
ronous

tion of

ogram-
 are

ram-

ach to
d data.

l over
ts to be

po-
to

 policy-
ib-
In contrast with this focus on applications, this article is concerned with the problem of flexibility

in CSCW toolkits. Flexibility in a toolkit used to create collaborative applications can be an even

more serious problem than in the design of the toolkits themselves, since the designer of the toolkit
is not in control of the applications which will be developed, and so is even further removed from

how collaborative work will actually be performed. However, just as we saw before, the implemen-
tation decisions that the toolkit programmer makes (such as the replication strategies for shared

objects, for example) impose two levels of constraints: first, they impose constraints on application
developers, in terms of the sorts of applications that can be developed using the toolkit; and second,

they impose constraints on users, in terms of how those applications can be used.

The approach that I will explore here exploits a meta-level run-time architecture in order to allow

programmers and program code to become involved in the implementation of the abstractions that
the toolkit provides. The primary area to be addressed is the scope of the toolkit—the range of appli-

cations that can be developed with it. However, the same run-time architecture is also a ba
other forms of flexibility discussed here—for run-time adaptation to the emergent patterns o

laborative work, and for user involvement in how computational structures are exploited to su
collaborative action.

2.4 Flexibility in CSCW Toolkits
The first generation of CSCW toolkits, such as MMConf and Rendezvous, focussed particula
encapsulating common behaviours from a range of collaborative applications in order to ma

development of new applications faster and easier. While they clearly aimed at generality a
number of potential applications, they restricted themselves to designs supporting, e.g. synch

work (both), centralised data (Rendezvous), etc.

The provision of flexibility has been an important concern in the design of a second genera

CSCW toolkits. Systems developed in recent years have provided open structures for the pr
mer to create a variety of behaviours within the one infrastructure framework. Some examples

given here.

Suite [Dewan and Choudhary, 1992] provides a variety of levels of flexibility, giving the prog

mer control over a number of design dimensions. Suite adopts an editor-based appro
collaborative activity in a shared workspace, conceptualising clients as editors for structure

An access control framework [Shen and Dewan, 1992] is used to provide variable contro
updates to the shared workspace, and a rich coupling model allows the peer interface clien

connected in a variety of ways.

GroupKit [Roseman and Greenberg, 1996] provides flexibility through a facility known as Open

Protocols to allow for the flexible performance of structured interaction between different com
nents of the system [Roseman and Greenberg, 1993]. Open protocols allow developers

encapsulate aspects of the system’s behaviour as server state, which can be controlled by
free protocols. Clients can then embody different policies so that different behaviours can be exh

ited, making the system more flexible and adaptable. For example, different clients could embody
policies dealing with floor control management. The server can then be reused by different clients,

since it is free of commitments to particular policies or behaviour strategies.
7

t, the

nterac-
rough

is a
briefly

ferent
d

 and

SCW
f appli-

us or
-

nised
f col-

talevel
ram-

cation
nd set-

before

ftware

he use
ased,

precis
Intermezzo [Edwards, 1996] is a collaborative toolkit providing radical support for flexibility

through two mechanisms. The first is that applications can download code into the toolkit, written

in a simple interpreted language, which will affect how the toolkit operates.1 The downloaded code
is executed by the toolkit at run-time, and its activation can be controlled by a variety of parameters

which the programmer can set so that the system as a whole will respond to particular changes in
the world or in the collaborative activity. The second support mechanism is the use of dynamic roles

as a context-setting mechanism. Roles are defined by membership predicates rather than by explicit
membership listings, and the roles can be used as the basis of a dynamic, secure access control

mechanism. The result is that views of the data store are dependent on the dynamic state of the col-
laboration, allowing for highly flexible and fluid responses to the progress of collaboration.

2.5 Summary
Toolkit flexibility is a serious concern in any domain, because of the degree of separation between
toolkit developer and application end-user. The toolkit developer’s decisions constrain, firs

design of applications that the toolkit developer cannot know in advance and, second, the i
tions of end-users whose collaboration is founded on the run-time infrastructure provided th

toolkit features. In collaborative work, given the fluid and flexible nature of group activity, it
particularly problematic area. We have seen some of the dimensions of this problem, and

pointed to some existing solutions embodied in collaborative systems and toolkits. The dif
approaches that they embody offer different sets of design choices to application programmers, an

so open up different regions of the design space.

I am concerned here with the scope of a toolkit, or the range of system designs it encompasses,

the work reported here has been directed towards opportunities for radical flexibility in a C
toolkit. Earlier systems such as MMConf or Rendezvous were designed to support a range o

cation domains, but generally focussed on a fixed style of collaboration (synchrono
asynchronous, baton-passing or free-form, etc.) In contrast, and in response to the observed require

ments for fluid working style outlined above, Prospero is a prototype collaborative toolkit orga
around an explicit architectural model for flexibility. Prospero lies in the second generation o

laborative toolkits. In contrast to other second-generation toolkits, it explores the use of a me
architecture in attempting to take a principled approach to the provision of flexibility for prog

mers and users. The metalevel architecture provides a framework for exploring how appli
developers can customise the toolkit to support the requirements of specific applications a

tings. The next section will introduce the architectural principles behind Prospero’s designs,
subsequent sections explore the CSCW-specific solutions that it embodies.

3 OPEN IMPLEMENTATION
The approach adopted in Prospero and explored in this paper draws from ongoing work in so
architecture and other areas of system design that face some of the same problems as those outlined

above. In particular, Prospero adopts the Open Implementation approach [Kiczales, 1996]. T
of this approach, and the principle of Computational Reflection [Smith, 1984] on which it is b

has been explored elsewhere [Dourish, 1995], and so I will restrict myself to a relatively brief
here.

1. This approach has much in common with the Open Implementation approach which will be introduced later, although
it abandons the abstract metalevel interface of the OI approach in favour of direct access to internals.
8

n that

ct that
rent

, the use

 the
just this

ement
lutions

, and a

g the

action
vel

hould
ap-

ays of
s of the

er,
n made

y an

lient.
since

or the
ation of

bers of
e pro-

 sorted
e just

ed list.

f con-
Developments in a variety of systems domains point to the emergence of a particular class of prob-

lem, in which the traditional “upper layers” of a system have access to detailed informatio

should be used to configure the behaviour of the lower layers. The problem here lies in the fa
our traditional model of abstraction does not allow for this downward flow of information. Diffe

strategies have emerged as these problems have arisen in different domains. For example
of Application Layer Framing and Inter-Layer Processing in network protocol implementation

[Clark and Tennenhouse, 1990; Braun and Diot, 1995] or the composable microprotocols ofx-
kernel [O’Malley and Peterson, 1992] or Horus [van Reneese et al., 1996] are responses to

problem. In Operating System design, mechanisms for user-level control over page replac
policy [Harty and Cheriton, 1992] or filesystem cache management [Cao et al., 1994] are so

that have arisen in response to the same class of problems.

3.1 Open Implementation Analysis
The Open Implementation approach provides a general analysis of this class of problems

technical solution. The Open Implementation analysis is as follows.

The traditional model of abstraction separates client from implementation by encapsulatin

implementation in a black box. Access to this implementation is provided through an abstr
barrier, which provides a view onto implementation functionality in terms of a higher-le

abstraction.

In the course of constructing an implementation, the implementor must make a variety of mapping

decisions—decisions about how aspects of the high-level representation and functionality s
be mapped onto the lower-level facilities available. Issues of representation and algorithmic enc

sulation are instances of mapping decisions of this sort. In choosing between different w
making these mapping decisions, the implementor must anticipate the needs of future client

implementation. The mapping decisions support the abstraction offered at the abstraction barri
but they are not part of it, since it would be the same abstraction even if the decisions had bee

in other ways. Since they are not part of the abstraction, the set of mapping decisions made b
implementor are invisible to the client.

However, any useful implementation (or any useful abstraction) will have more than one c
Each client will perform different activities, making use of the same abstraction. However,

clients have different needs of the implementation, they may have different requirements f
way in which the mapping decisions have been made. For instance, consider an implement

a simple records processing system. A client that primarily adds and removes large num
records would wish that the implementation be optimised for addition and deletion; and so th

grammer might hope that the implementor mapped the records onto a linked list rather than a
array. However, the programmer of another client, say one that retrieves records, might hop

the opposite, since a sorted array will be considerably faster to search than an unsorted link

These problems inevitably arise whatever actual implementation decisions are made. In general, the

more clients make use of an implementation, the more likely it is that there will be this sort o
flict between the needs of one client and the needs of another.
9

 con-
eir own

means
ur

eans
vel. As

ls that
seman-

LOS)

S pro-

n anal-
cture

ing the
e and

to the
ck

ges.
. In this

es

t-

cifying
p-

ltiple
criptions

e dis-

t

coding),
[1990]

.) The
lar

ram-

984].
3.2 Reflection and the OI Solution
The Open Implementation solution is based on the principle of Computational Reflection [Smith,

1984]. Reflective systems contain representations of their own activity that are “causally
nected” to the activity they describe. Self-representation means that systems can examine th

state, structure and configuration by examining the representation; the “causal connection”
that manipulations of the representation will be reflected in changes in the system’s behavio2. In

programming languages, where this approach was first fully explored, reflection provided a m
to make the execution environment part of the language, and to do so coherently at a high le

a result, reflective languages allow programmers to write portable debuggers and other too
become involved with the execution behaviour; and extensions to the language syntax and

tics are also possible from within the language itself. The Common Lisp Object System (C
[Gabriel et al., 1991] embodies this sort of mechanism through its metaobject protocol [Kiczales et

al., 1991], an object-oriented encapsulation of the reflective representation that allows CLO
grams to become involved in the implementation of the language.

Reflection gives us a way to address the problems outlined above in the Open Implementatio
ysis. The OI solution is to provide, within the implementation, a representation of its own stru

and behaviour, along the same lines as the reflective self-representations. In addition to us
functionality of the implementation through the abstraction barrier, clients can also examin

control the implementation by means of this model. This structure sets up two interfaces
implementation. The base interface is the traditional interface, the abstraction barrier of the bla

box; while the metalevel interface allows programs to look inside the black box and make chan
Changes made through the metalevel interface affect how base level programs will execute

way, the programmer has the means to specialise the implementation to the specific circumstanc
of each client.

Key features of the metalevel approach, then, is the level of description and the subject matter of
the two sorts of code—base code (written to the base interface) and meta code (written to the me

alevel interface). A simple way to conceptualise the distinction is as a separation between spe
what is to happen (base code) and specifying how it is to happen (meta code). By encoding this se

aration in an object-oriented framework, metaobject protocols support the isolation of mu
metalevel strategies, reuse of metalevel code and a separation of base and metalevel des

[Kiczales, 1992]. The question of subject matter and level of representation is also key to th
tinction between “metalevel extensibility” and “hacking the source” or the use of object-oriented

frameworks. In the OI approach, metalevel modification is done in terms of a specific metalevel

interface. That is, it is performed through an appropriate abstraction over the implementation. Tha

abstraction may be presented in terms of a set of classes and methods (an object-oriented en
but these do not, in themselves, constitute the implementation. (Kiczales and Rodriguez

present an account of an implementation of CLOS that apply demonstrates the distinction
metalevel interface is a designed artifact, not simply an epiphenomenon of some particu

implementation.

Computational reflection was originally developed in the domain of AI systems and AI prog

ming languages; the first fully reflective system was Smith’s 3-Lisp [des Rivières and Smith, 1

2. In other words, the representation “causes” the behaviour as well as describing it.
10

Further explorations largely in the domain of programming languages led to the CLOS metaobject

protocol and the development of the Open Implementation approach. Subsequently, the approach

has been applied to a range of other application domains, such as window systems [Rao, 1991],
operating systems [Maeda, 1996], distributed systems [Stroud and Wu, 1995] and databases [Barga

and Pu, 1996].

3.3 An Open Implementation Strategy for CSCW
As outlined above, the Open Implementation approach has been applied in a wide range of settings

to provide a solution to flexibility problems of the kind described in section 2. It is an inherently
flexible technique providing an approach to the architecture of infrastructure components that sup-

ports their subsequent specialisation to the needs of particular settings. The research described in
this article is an exploration of the use of this technique as a way of mediating between the needs of

toolkit developers and application developers in the creation of CSCW applications. Other systems
(as described in section 2.4) have explored this tension; Open Implementation provides us with a

new way to partition the problem.

Prospero adopts the Open Implementation approach for CSCW toolkit design. As a CSCW toolkit,

it provides a set of objects, mechanisms and behaviours that can be combined to create collaborative
applications. As an Open Implementation, it provides application programs with the opportunity to

become involved in the implementation of the infrastructure that supports them. It sets up a separa-
tion between base level programs and metalevel programs by which the toolkit structures can be

used and specialised. By doing this, it allows a wider range of applications to be developed, since
the commitments (mapping decisions) to particular expected patterns of use, which are made in the

course of infrastructure implementation, are now subject to reconsideration and revision.

The starting point for such a design is a generic, specialisable model of CSCW application behav-

iour. By generic, I mean that this model describes, in general terms, a range of strategies that can
be or have been adopted in a variety of systems. By specialisable, I mean that any particular exam-

ple can be operationally described as a refinement of the general model. The model, then, is not
simply a tool for the analytic description of CSCW architectures and implementations; it can also

be used to generate new ones, as the basis of a reflective implementation.

By adopting the Open Implementation approach, we aim to achieve a number of improvements over

other approaches to CSCW flexibility. First, we aim to provide application developers with a wide
range of potential behaviours, rather than a restricted set of predefined options. Second, we aim to

provide a level of control that allows specialisation to the details of individual applications, rather
than the reuse of generic components. Third, we aim to make this specialisation available through

high-level abstractions at the metalevel interface.

The sections that follow will introduce models of this sort for the areas of data distribution and con-

sistency management. These have been implemented in Prospero, a prototype reflective CSCW
toolkit. Prospero is implemented in CLOS. Although CLOS is itself a reflective programming lan-

guage, reflection in CLOS is not used to support reflection in Prospero. In addition, Prospero itself
does not deal with interface management and window systems; the existing application interfaces

have been developed using the Garnet user interface toolkit [Myers et al., 1990].
11

imulta-
atible
Section 4 will deal with the divergence mechanism for managing distributed or replicated data, and

Section 5 will deal with the consistency guarantees mechanism for consistency management. Sec-

tions 6 and 7 will describe and illustrate how Prospero is used in developing CSCW applications.

4 DIVERGENCE AND SYNCHRONISATION
Some of the issues and design options in managing distributed data were raised earlier, in the dis-
cussion of CSCW infrastructure. Different systems have taken different approaches to the problem.

For example, ShrEdit centralises its data, MMConf replicates it, while Rendezvous and GroupKit
adopt hybrid approaches.

As was outlined above, one reason for this variation in approach is that the choice of management
strategies has strong implications for the interface and for the nature of collaborative interaction in

a CSCW system. Collaborative systems differ crucially from other distributed systems in that not
only the application, but also the interface, is distributed. The trade-offs between availability, trans-

parency, consistency and responsiveness must be made with this in mind, and so design must be
constantly mindful of the way in which application distribution and interface distribution are mutu-

ally influential.

A CSCW toolkit, of course, is one step removed again from real applications and real use. The goal

is to provide a generic framework in which a range of application behaviours can be realised. In
adopting the Open Implementation approach, we want to develop this framework so that it can be

made widely applicable through metalevel specialisation. In Prospero, data distribution manage-
ment is achieved through the divergence/synchronisation model.

4.1 Inconsistency Avoidance and Streams of Activity
The approach to the divergence model begins with a simple but crucial observation; that most

approaches to data management in CSCW deal with inconsistency avoidance rather than consis-

tency management. Rather than working to make data consistent, they set up barriers to prevent

inconsistency arising in the first place. While this approach might work for managing the activity
of distributed system components, it is less useful when trying to manage the activity of distributed

users, since it sets up barriers to particular styles of working.

The simplest approach to avoiding inconsistency is to avoid simultaneous action over individual

data items. This approach attempts to define single, global stream of activity over the data space.
Various common CSCW idioms embody this model of a single stream of activity. For example,

asynchronous access to the workspace uses the distribution of work in time to share the stream
between multiple participants. In synchronous tools, floor control policies have the same effect.

Locking mechanisms also operate this way, although they divide activity spatially as well as tem-
porally; locks ensure that each data item is subject to a single thread of control, currently available

to whomever holds the lock.

Prospero abandons this attempt to construct or create a single stream of activity out of multi-user

activity. Instead, it employs a model of multiple, simultaneous streams of activity over user data,
and then looks to manage the divergence between these streams. Divergence occurs when two

streams have different views of the system’s state or of the data. This could arise through s
neous execution of conflicting operations; or through a lag in the propagation of comp

operations.
12

ms of

-
urther

rther

oaches.

xisted

ltiple
ersion

ment
.

rsion
thin a

a man-
verging

ionally,
 model

stems
tional

ferent

e trans-
 or an

ploited
ming

es have

ed
Since this general view does not imply any particular number of parallel streams of activity, it

encompasses the traditional views outlined earlier; they correspond to the special case of just one

stream. A model based on divergence and multiple streams of activity is the more general case; it
subsumes attempts to maintain a single thread of control.

4.2 Divergence and Synchronisation
The divergence model operates as follows. First, we view activity in a collaborative system as the
progress of multiple, simultaneous streams of activity. Second, we view the emergence of inconsis-

tency as divergence between these streams’ views of user data. In these terms, the proble
distributed data management focus on the re-synchronisation of divergent streams of activity. As

the collaboration progresses, the streams of activity continually split and merge, diverge and syn
chronise. At points of synchronisation, they re-establish a common view of the data store; f

individual activity will cause them to diverge again, necessitating further synchronisation fu
down the line.

The divergence/synchronisation model captures aspects of a number of other CSCW appr
Some particular cases are discussed here.

4.2.1 Divergence and Versioning

Versioning systems maintain a historical record of the versions of some object that have e

over time. They typically allow multiple versions of an object to exist at once, and in some, mu
versions can be simultaneously active. GMD’s CoVer [Haake and Haake, 1993] uses a v

system to manage the cooperative work. CoVer, however, emphasises the creation and manage
of parallel versions rather than the subsequent integration of different versions (divergent streams)

Munson and Dewan [1994] go further in providing a framework explicitly organised around ve
merging, but, like Haake and Haake, they primarily emphasise versioning and merging wi

context of “asynchronous” work, rather than as a more general approach to distributed dat
agement. So, while a versioning approach can be supported in the divergence model, by di

at the level of entire documents (or other coarse-grain objects) and synchronising only occas
I want to consider the wider use of divergence as a general strategy than simply a versioning

would support.

4.2.2 Divergence and Operational Transformation

Operational transformation is an alternative technique employed in various collaborative sy
[Ellis and Gibbs, 1989; Beaudouin-Lafon and Karsenty, 1992; Nichols et al., 1995]. Opera

transformation employs a model of multiple streams, and uses a transformation matrix to transform

records of remote operations before applying them locally, using information about the dif

contexts in which the operations arose. So, for example, a remote delete operation might b
formed into a null operation locally if the object was simultaneously deleted by the local user;

insertion might be moved to take account of local activity.

Operational transformation, particularly with its basis in multiple streams, is clearly more similar to

the divergence approach than versioning. An operational transformation approach can be ex
within the divergence framework by recording actions, synchronising frequently and perfor

the transformation as part of the synchronisation process. However, there are two principal differ-
ences between divergence and operational transformation. First, just as versioning approach

typically emphasised asynchronous activity, operational transformation has typically emphasis
13

ment of
 to the

n orders
model

llows
ed and

s might
ntain

gence

iderably
Section

er tech-

area of
g

onal

 the

s

ivid-

hared
s. This

 to all

ich the
synchronous; as will be discussed, Prospero’s model seeks to encompass both. Second, operational

transformation relies upon the transformation matrix to resolve conflicts (easier in the tightly-cou-

pled, synchronous domain); whereas Prospero employs a more general notion of synchronisation
that potentially offers a much wider scale of applicability (including user intervention).

4.2.3 Divergence and Replicated Databases

One area of research in which divergence has been considered is replicated database management.
In a replicated database, multiple copies of all or part of the database are maintained in parallel, in

order to increase availability. Since such a model could also be used as the basis of a collaborative
system, the relationship of database techniques to Prospero’s approach naturally arises.

The primary difference between the two is that Prospero relies on database-external manage
consistency, while database approaches typically attempt to maintain consistency internally

database. What this means is that, while databases might, for instance, seek to find executio
for transactions that increase the opportunities for parallel execution, they do this within a

which still attempts to maintain the consistency of the transaction model itself. Prospero a
inconsistency in the data store, on the basis that the degree to which inconsistency is allow

the means by which it can be resolved are application issues. Traditional database technique
allow parallelism below the level of the transaction model, but generally still attempt to mai

transaction-level consistency. So while they attempt to deal with the problems that diver
raises, they are not able to directly exploit it to support multi-user activity.

The relationship between Prospero’s approach and replicated databases is discussed in cons
more detail later, in the context of the use of consistency guarantees to control divergence (

5).

4.3 Capitalising on Divergence
Divergence-based data management in CSCW offers three particular advantages over oth
niques. First, it is highly scalable, supporting inter-application communication from periods of

milliseconds to periods of weeks or more. Second, it opens up direct CSCW support for an
application use—one I term multi-synchronous—which is supported poorly or not-at-all by existin

approaches. Third, it directly supports common patterns of working activity based on observati
studies that are at odds with the models embodied in most systems today.

4.3.1 Scalability

Scalability refers to graceful operation across some dimension of system design. In particular,

dimension we are interested in here is the pace of interaction [Dix, 1992]; or, more technically, it
relationship to the period of synchronisation.

The period of synchronisation is the regularity with which two streams are synchronised, and hence
the length of time that two streams will remain divergent. When the period is very small, then syn-

chronisation happens frequently, and therefore the degree of divergence is typically very small
before the streams are synchronised and achieve a consistent view of the data store. When ind

uals use a collaborative system with a very small period of synchronisation, their view of the s
workspace is highly consistent, since synchronisation takes place often relative to their action

essentially characterises “real-time” or synchronous groupware, in which users work “simulta-
neously” in some shared space that communicates the effects of each user’s actions

participants “as they happen”. The synchronous element arises from precisely the way in wh
14

f
at take

 hours,
 (well-

s take
ng the

n seen

king at

me
en-

tinction.

er than

ollab-

mon
ollab-

logies
on-

, one at
uthors

n them
ork by

o-
y

stream
d asyn-

a nat-

ceed
ted”

n) in

d
a vari-

n. For
rking
delay between divergence (an action taking place) and synchronisation (the action being propagated

to other participants) is small. This is one end of the “pace of interaction” dimension.

At the other end, synchronisation takes place much less frequently in comparison to the actions o
the users. There is considerably more divergence, arising from different sorts of activities th

place between synchronisation points. When the period of synchronisation is measured in
days or weeks, we approach what is traditionally thought of as “asynchronous” interaction. A

worn) example might be the collaborative authoring of an academic paper, in which author
turns revising drafts of individual sections or of the entire paper over a long period, passi

emerging document between them.

Within the CSCW community, these sorts of asynchronous interactions have generally bee

and presented as being quite different from real-time or synchronous interactions; “synchronous or

asynchronous” has been a distinction made in both design and analysis. However, by loo

them in terms of synchronisation rather than synchrony, We can see them as two aspects of the sa
form of activity, with different periods of synchronisation. Being highly scalable across this dim

sion, the divergence approach provides the basis of a toolkit that generalises across this dis

4.3.2 Multi-Synchronous Applications

In fact, we can exploit a divergence-based view of distributed data management to go furth

standard “synchronous” and “asynchronous” views of collaboration.

Standard techniques attempt to maintain the illusion of a single stream of activity within the c

orative workspace. We know, however, that groups don’t work that way; it’s much more com
to have a whole range of simultaneous activities, possibly on different levels. Consider the c

oratively-authored paper again. In the absence of restrictions introduced by particular techno
or applications, individuals do not rigorously partition their activity in time, with all activity c

centrated in one place at a time; that is, they do not work in the strongly asynchronous style
a time, that many collaborative systems embody. A more familiar scenario would see the a

each take a copy of the current draft on paper (or on their portable computers), and work o
in parallel—at home, in the office, on the plane or wherever. Here we have simultaneous w

a number of individuals and subsequent integration of those separate activities; neither synchr
nous, nor asynchronous, but multi-synchronous work. This sort of working cannot be supported b

traditional asynchronous “baton-passing” approaches, in which there is essentially a single
of activity that passes back and forth between authors. Multi-synchronous applications exten

chronous ones by providing synchronisation for parallel streams in disconnected work.

The divergence model, and in particular the notion of multiple, parallel streams of activity, is

ural approach to supporting this familiar pattern of collaborative work. Working activities pro
in parallel (multiple streams of activity), during which time the participants are “disconnec

(divergence occurs); and periodically their individual efforts will be integrated (synchronisatio
order to achieve a consistent state and progress the activity of the group.

Here, we are concerned with the nature of synchronisation; this is what allows for flexibility, an
will be discussed in more detail subsequently. At this stage, the details of synchronisation in

ety of cases are not of prime importance; examples will be considered in more depth later o
the moment, however, what’s important is to recognise the support for multi-synchronous wo

within this model of distributed data management.
15

erva-

 pre-
as, of

ce of

ctly in
atterns

tech-

ployed
t were

ge of

 data
support

engage

 moti-

e used

emen-

n

rticular

n

ed that
4.3.3 Supporting Opportunistic Work

However, the use of divergence-based data management techniques is not simply a route to support-
ing a different style of working; it’s also a means to more naturally support the other working styles

to which CSCW has traditionally addressed itself.

Consider again the style of working described by Beck and Bellotti [1993]. One of their obs

tions was the way in which collaborative authors would opportunistically step outside the
agreed bounds of their own activity and engage in unexpected activity. Suchman [1987] h

course, made similar telling observations about the improvised, opportunistic emergen
sequences of activity.

However, the notions of a single stream of activity and inconsistency avoidance stand dire
the way of these sorts of behaviours, since they require an early commitment to particular p

of working activity, and then a rigorous adherence to those patterns in the course of carrying out the
work. To support the sort of opportunistic working described by Beck and Bellotti, then, our

nology must relax rules about exclusion and partitioning; exactly the rules that have been em
to maintain the fiction of the single stream of activity. So the same sorts of mechanisms tha

described earlier as supporting multi-synchronous collaboration have, in fact, a wider ran
applicability; they support a more naturalistic means of making asynchronous collaboration work.

Divergence is a direct consequence of these ways of working; and so a model of distributed
management based on a pattern of repeated divergence and synchronisation fits well with

for a wide range of working styles.

Of course, significant consistency issues arise when the system potentially allows users to

in arbitrary activity in this way. The discussion of consistency guarantees in Section 5 will be
vated by the need to maintain control under these circumstances.

4.4 Divergence and Synchronisation in Prospero
Section 6 will deal with the embodiment of these mechanisms in Prospero and how they can b

to create CSCW applications. A brief sketch is provided here to ground this discussion.

The primary focus of this model is on streams of activity; and so these are reified in the impl

tation. Applications create and name streams for the different threads of activity running through a
application (such as for clients, virtual servers, recorders and so forth). Operations on streams allow

them to be associated with sessions, to find each other, and so forth.

Individual actions are also reified as command objects [Berlage, 1994], and are added to pa

streams. When a user engages in some activity, that action creates a command object which is the
added to the stream associated with that user at that moment. When actions are added to specific

streams, divergence occurs since the other streams have not yet seen that action.

Streams contain their own mechanisms for synchronisation. Multiple stream types are provid

will synchronise in different ways and under different circumstances. A metaobject protocol is used
to control the synchronisation process, as well as to modify the conditions under which streams will

be synchronised or the means by which that might be accomplished.
16

el is
enough

such as
ocol by

it the

tions.
con-

s
.

ns

imul-
imistic

 when
use the

e of

s they
re

n, the

.
iew

tems;
ace of

rspective

operate
4.5 Divergence and Synchronisation: Summary
Prospero models activity over distributed data in terms of an ongoing cycle of divergence and syn-

chronisation between parallel streams of activity. The divergence cycle is scalable across time;
rapid synchronisation yields applications which behave like traditional synchronous systems, while

slow synchronisation resembles traditional asynchronous system. At the same time, this pattern of
divergence, by allowing inconsistency to arise and then resolving it later, opens up the opportunity

for applications supporting “multi-synchronous” (parallel but disconnected) work. This mod
general enough to capture a wide range of CSCW application mechanisms, as well as rich

to act as a language in which to specify new ones. The elements of the divergence model,
streams, actions and synchronisation conditions, provide the elements of a metaobject prot

which application programmers can tailor the behaviour of the underlying infrastructure to su
purposes of particular application scenarios.

Examples of programming with the divergence model will be provided in subsequent sec
First, however, I will introduce the second, complementary mechanism provided in Prospero—

sistency guarantees.

5 CONSTRAINING DIVERGENCE: CONSISTENCY GUARANTEES
Prospero’s divergence/synchronisation strategy is an optimistic one. It presumes that simultaneou
actions will probably not result in conflict, but that if conflict does occur, it can be sorted out later

Data locking, on the other hand, is a pessimistic strategy; it presumes that simultaneous operatio
are likely to lead to conflict, and so should be prevented.

Pessimistic strategies guarantee that consistency will be maintained, since they prevent the s
taneous action that would lead to inconsistency in the first place. On the other hand, opt

strategies support more open styles of working, and achieve better interactive performance
the working styles do not lead to inconsistency. Prospero uses an optimistic strategy beca

freedom and flexibility it provides is better suited to the needs of collaborative work. The pric
this freedom is that the toolkit must provide explicit means to maintain consistency.

With any optimistic strategy, the design problem is the detection and resolution of conflicts a
occur. However, the divergence model per se explicitly makes no commitment to either the natu

or the extent of the divergence, which would help us bound this problem. The longer two streams
of activity remain active but unsynchronised, the greater their potential divergence. In tur

greater the divergence, the more complex it becomes to resolve conflicts at synchronisation-time
Indeed, the system may never be able to resolve two arbitrary streams into a single, coherent v

of the data store. Essentially, unconstrained divergence leads to arbitrarily complex synchronisa-
tion. Some form of consistency management has to be introduced to resolve this problem.

5.1 Variable Consistency
The first approach used in Prospero is to distinguish between syntactic and semantic consistency.

Semantic consistency is the traditional form employed in distributed and collaborative sys
syntactic consistency can, however, provide a means for supporting ongoing work in the f

potential conflicts.

Semantic consistency guarantees that the data store contains no inconsistencies from the pe

of the application domain. This means that processing can continue and the application can
17

y look-

y using

t with
d be to

rospero
nue

ta, for

main,
o defer

tion of
onsis-

d

onents,
 With

olkit is

s. The

ial proto-
effectively over the data. Syntactic consistency is a weaker form. It guarantees only that there is a

consistent structure for the data, but that structure might itself hide semantic inconsistencies. Struc-

tural integrity allows certain forms of processing to continue, but there are still inconsistencies from
the perspective of the application domain.

Consider the co-authoring case again, as an example. If two users make different changes to the
same paragraph, an inconsistency arises, and it can be resolved in various ways. To achieve seman-

tic consistency, the system must ensure that there is only one copy of the paragraph which can be
seen by all participants. For minor changes, it may be possible to integrate the changes into a single,

unified paragraph. If one of the authors removed a sentence while the other inserted two words into
a different sentence, then the system could apply both their changes to yield a semantically consis-

tent result. In the face of major changes, though, this may not be possible. If both users deleted the
whole paragraph and wrote a new one, then their changes could not be integrated. In cases like this,

most CSCW systems look to some other mechanism to achieve semantic consistency, such as by
selecting one paragraph rather than the other as the “winner”. The selection might be done b

ing at the extent of the changes, by looking at the times when the changes where applied, b
the users’ “roles” to decide who has control, or even by choosing arbitrarily3.

An alternative approach is to make the data syntactically consistent—structurally sound bu
unresolved inconsistencies. In this example, one way to achieve syntactic consistency woul

wrap the two paragraphs up in a larger structure that presents them both as alternatives. P
calls this approach aggregation. This preserves the work of both authors, allows them to conti

with their work, but leaves an inconsistency to be resolved later.

Different domains provide different means to support syntactic consistency. For numerical da

instance, it might involve introducing approximate values with error bounds. Whatever the do
though, the difference between semantic and syntactic consistency provides an opportunity t

conflict resolution while continuing to allow work.

Prospero allows programmers to deal in terms of different levels of consistency, and so it can

employ this strategy to manage consistency fluidly. As observed, though, the actual realisa
syntactic consistency varies in different settings. The most significant feature of Prospero’s c

tency model is that it operates in terms of application semantics, rather than in terms of a predefine
model.

5.2 Using Application Semantics
The key observation behind the variable consistency approach above is that the toolkit comp
themselves, are not the final arbiters of “consistency”. Consistency is application-relative.

variable consistency, the toolkit can focus on making the data consistent for the purposes at hand

by capitalising on aspects of the application domain and the circumstances in which the to

being used.

However, while using application-specific synchronisation might postpone some of the problems

of unbounded divergence, the basic problem of unbounded inconsistency remains with u

3. One common alternative, of course, is to presume that the users can sort it out and do nothing at all (the “soc
col” approach). Of course, doing “nothing at all” still involves doing something; the question is what level of consis-
tency, if any, is maintained by the system’s response to this circumstance.
18

ro

gence

xisting

s

 all
 to one

rithms

rrency

ecution

ted

imen-

inds of
e vari-

emains

 locking

 as col-
e-form

spero,

 more

es that

 lock is
ich the
same basic technique—exploiting application semantics—can be applied to this problem. Prospe

introduces the notion of application-specific consistency guarantees to control for the diver

process using details of particular circumstances.

This approach has its origins in a generalisation of the locking mechanisms used by many e

CSCW systems.

5.3 Data Locking Approaches
The most widespread traditional mechanism for avoiding inconsistency in CSCW systems idata

locking. In the course of their work, users (implicitly or explicitly) obtain a “lock” for some or
of the data store. Without a lock, no changes can be made; and since a lock is only granted

user at a time, inconsistency cannot arise. Asynchronous interaction and floor-control algo
are special cases of the locking approach that lock the whole data store at once.

As outlined earlier, Greenberg and Marwood [1994] discuss some issues surrounding concu
control in CSCW systems. In particular, they discuss how the choice of concurrency management

strategy can have a significant impact on the styles of interaction that an application can support.
For instance, the temporal properties of concurrency control strategies, such as relative ex

times of actions over shared data, can interfere with interactional requirements in the interface. Sim-
ilarly, approaches that apply a post hoc serialisation on user actions may introduce unexpec

interface behaviours (such as undo-ing actions under the users’ feet).

Locking is a very general approach. Different particular implementations vary along many d

sions, such as in how the locks are requested, obtained, granted and relinquished, what k
operations require locks, and the granularity of data units controlled by a single lock. In thes

ations, the central lock-act-release strategy, supporting a pessimistic concurrency model, r
unchanged4.

As Greenberg and Marwood’s analysis points out, the implications for group interaction mean that
these sorts of strategies are appropriate in some cases, but not others. While the pessimistic

model may be appropriate for some cases where data integrity constraints are strong (such
laborative software development), they impose too high an overhead for many looser or fre

collaborative activities. This makes a strong locking model an inappropriate basis for Pro
since it aims to capture both these sorts of collaborative application.

5.4 Promises and Guarantees
In an attempt to find a more flexible approach than the strict locking mechanism, and one

attuned to the needs of a CSCW toolkit, our starting point is with a generalisation of the traditional
locking process.

5.4.1 Guarantees of Achievable Consistency

We begin by looking at what happens in the lock-act-release cycle. Holding the lock ensur

no other user can act over some piece of data, and so that inconsistency cannot arise. A
obtained through a request specifying some part of the data store (possibly all of it) over wh

4. However, Munson and Dewan [1996] have considered rich type-specific lock-table-based concurrency control in
coordination with a merging strategy. This is a powerful combination that independently yields similar results to the
techniques described here. However, see the discussion later concerning type-specific and application-specific concur-
rency.
19

his

ort
ition

f their

e level
ugh, of

ort for

 lines

a price;

d not
vided

 might

e sys-
user will act. So, locking is essentially a mechanism by which a system component can obtain a

guarantee of achievable consistency in return for a statement of future activity.

This formulation has a number of interesting implications. First, consider the guarantee. Especially
in light of our discussion of variable consistency earlier, there is clearly a range of potential guar-

antees that could be given. Strong locks are all-or-nothing, but when we generalise to guarantees,
we introduce potential variances in the guarantees and in the consistency achievable. The locking

authority5 can determine the level of consistency that can be achieved based on currently-issued
guarantees across the system. Second, the statements (or promises) of future activity are similarly

variable. They may vary in their extent, duration and specificity.

Third, and perhaps most importantly, when we think of this exchange as being less absolute than

the strict locking exchange (an absolute guarantee for an absolute promise), then it opens up the
opportunity for negotiation; an application may make increasingly restrictive promises in exchange

for increasingly strong guarantees of consistency. The promise/guarantee cycle is the basis of the
consistency guarantees approach.

5.4.2 Breaking Promises

Flexible promises and guarantees allow better interleaving of activity than would be possible with
strong locks. Since the locking authority receives more details of future activity, it can make better

decisions about what sorts of actions can be permitted. Since the client applications can accept
weaker guarantees, they can proceed where they would otherwise be blocked.

The promise/guarantee mechanism retains the important predictive element of locking. Applica-
tions still make “up-front” promises about the activities that they will carry out. However, t

predictive aspect interferes with another important criterion for collaborative applications, supp
for opportunistic action. Predictive strategies restrict opportunistic action (which is by defin

unpredictable).

Prospero addresses this problem through a second consistency principle: a client can break a prom-

ise, in which case the locking authority is not held to its guarantee.

This principle allows client applications to engage in activities that step beyond the bounds o

promise. However, should they do this, then the system may no longer be able to achieve th
of consistency assured by the guarantee. The guarantee, then, is potentially void (altho

course, in specific circumstances the guaranteed consistency may still be achievable).

With this principle in place, the consistency guarantee mechanism provides more direct supp

opportunistic working styles. Just as in naturalistic work, stepping outside previously-agreed
is not impossible; but the mechanism provides more effective guarantees when used cooperatively

by both client and server. The system allows for unpredicted action, although users may pay
the system may only be able to achieve syntactic consistency later, for example.

By placing this within the consistency mechanism, we allow for the fact that the user nee
(often, should not) be exposed to this complexity and unpredictability. The facilities are pro

so that they can be appropriately deployed (or not) by an application developer. A developer

5. These discussions emerge naturally in terms of clients and servers, although in fact Prospero uses a peer-to-peer archi-
tecture. I use the term “locking authority” to suggest a “lock server” that may, in fact, be distributed throughout th
tem.
20

ron-

imistic

scribing

diver-
ncy of

se and

owledge

 in data-

anced
ng per-

ocus
rticu-

 provide

stem
arallel

ulating

 inter-
choose not to exploit guarantee negotiation in a particular application, where application require-

ments or usage patterns might make it inappropriate. Safety-critical applications, for instance,

would probably not be appropriate places to use this mechanism. In other cases, an application
developer might want to warn the user when such a situation was likely to occur, so that an informed

decision could be made as appropriate to the particular circumstances. The framework supports
these behaviours, but does not require them. The ability to control optimistic concurrency control

in terms of semantically defined application actions gives us greater control. For example, the
COAST system [Schuckmann et al., 1996] uses optimistic concurrency control, but because their

transaction model is automatically derived from application activity, it has no way to understand
which sorts of inconsistency are problematic and which are not. Consequently, it errs on the side of

safety and implements full ACID6 properties—even though these may well be considerably st
ger properties than are needed (and hence interfere with work when global commits fail).

Essentially, allowing applications to break their promises preserves the advantages of opt
concurrency control, but combining this with a guarantee mechanism allows, first, a greater aware-

ness of the consequences of those actions, and, second, a richer semantic framework for de
styles of application action.

Consistency guarantees in Prospero provide a way to overcome the problem of unbounded
gence; they curb Prospero’s innate optimism. They provide some of the predictable consiste

pessimistic strategies, but in a way that is sensitive to patterns of collaborative work.

5.5 Semantically-Informed Database Management
The variable consistency approach uses knowledge of application semantics to speciali

improve the synchronisation process. In turn, the consistency guarantee mechanism uses kn
of application semantics—and the semantics of particular operations—to increase the opportunities

for concurrency and parallel activity.

Some similar approaches are discussed here that use application semantics and specificity

base processing. Barghouti and Kaiser [1991] give a comprehensive survey of adv
concurrency control techniques. Most of these techniques are aimed at improving processi

formance while maintaining the illusion of individual activity over the database—clearly, a f
quite different from that of collaboration. However, two aspects of database research are pa

larly related to the consistency guarantees approach: semantics-based concurrency and application-

specific conflict resolution.

5.5.1 Semantics-Based Concurrency

Database systems use a transaction model to partition the instruction stream. Transactions

serialisation (ordered execution) and atomicity (all-or-nothing execution). However, if the sy
can detect that there is no conflict between two transactions, then it might execute them in p

or interleaved, without interfering with transactional properties. The interaction-time and response
characteristics of database systems are generally such that delays introduced while calc

appropriate serialisation orders for transaction streams will not have a significant impact on
active performance. However, shared data stores supporting interactive collaborative systems

6. Atomic, Consistent, Isolated and Durable.
21

flicting

of con-

 that the
oes

read
t to par-

e data

hence
lication

 which
ed sets

 oper-
reases

-point
ransac-

pting

ld not

ver, this
 doesn’t

, it pro-
ation

 coded

ntees is
antic

al oper-
des the

ased
require crisp performance, and so it is useful to look at how database research has investigated the

opportunities to increase concurrency in transaction execution.

Traditional database systems detect two principal forms of conflict. A write/write conflict occurs
when two transactions write to the same location in the database. An ordering has to be established

for these transactions to retain the model of atomic, serialised execution. A read/write conflict
occurs when one transaction writes, and the other reads, the same data. Inconsistency can result if

the read falls before the write during simultaneous execution. If conflicting transactions are exe-
cuted concurrently, then the transaction model’s serialisation properties may be lost; so con

transactions must be executed serially.

However, this is a very expensive way to maintain the transaction model, since the analysis

flict is very coarse-grained. In the absence of transaction conflicts, the system can guarantee
transactions can safely be executed in parallel. On the other hand, the presence of a conflict d

not imply that inconsistency will result. For example, consider a transaction that issues a
request but makes no use of that result in its later computation (or does, but the use is robus

ticular changes). It could, quite safely, be executed in parallel with another that writes the sam
item. However, those circumstances would signal a read/write conflict and the potential concur-

rency would be lost. More generally (and more practically), transaction concurrency (and
throughput) could be improved with more detailed access to transaction semantics, or to app

semantics.

Approaches of this sort have been explored by a number of researchers. For instance, Herlihy [1990]

exploits the semantics of operations over abstract data types to produce validation criteria,
are applied before commit-time to validate transaction schedules. His approach uses predefin

of conflicting operations, derived from the data type specifications. Looking at the data type
ations that transactions execute allows a finer-grained view of potential conflicts, and inc

concurrency. Farrag and Oszu [1989] exploit operation semantics by introducing a break
mechanism into transactions, producing transaction schedules in which semantically-safe t

tion interleavings are allowed. Again, the potential for concurrency is increased without disru
transactional properties.

One potential problem with each of these approaches is that they require pre-computation of con-
flicts, compatibilities and safe partial break-points. This implies that these mechanisms cou

be seamlessly integrated into a general-purpose database management system. Howe
doesn’t pose a problem for using semantically-based techniques in Prospero, since Prospero

need to provide a complete general-purpose service independent of any application. Instead
vides a framework within which application-specific semantics can be added by applic

programmers (rather than being known to the system in advance). Particular behaviours are
in Prospero in full knowledge of the relevant semantic structure of application operations.

The other major distinction between this approach and Prospero’s use of consistency guara
that Prospero’s approach is application-specific rather than type-specific. Type-specific sem

consistency such as that described here provides object-level consistency based on individu
ations over those specific objects. However, the consistency guarantees approach provi

application developer with a higher-level, application-specific form of consistency control b
not on the semantics of application types, but on how those application types are used to achieve
22

d
tance,

g slot

in the

nected

n Pros-
ir

n of col-
ected

group

nherent

y guar-

stency

d object

eed to
 appli-

should
application behaviour. So, while concurrency control based on type semantics can be exploited in

collaborative applications (such as in the work of Munson and Dewan [1996]), consistency guaran-

tees are closer in spirit to application-specific approaches than to type-specific ones.

5.5.2 Application-Specific Conflict Resolution

A second approach from database research that is relevant to the consistency guarantees mechanism

is the use of application-specific conflict resolution. Application-specific techniques differ from the
semantic-based techniques above in that they achieve consistency at the level of the application as

a whole rather than the individual object types used to implement it.

The Bayou system, developed at Xerox PARC, provides an example of this approach. Bayou is a

replicated database system for mobile computers, which are frequently active but disconnected
from their peers. In most systems, disconnection is an unusual state, and the systems can normally

be assumed to be connected to each other; but in mobile applications, disconnection is the rule,
rather than the exception.

Bayou provides a mechanism by which client applications can become involved in the resolution of
database update conflict that can occur with replicated, partially-disconnected databases [Demers

et al., 1994]. Bayou write operations can include mergeprocs—segments of code that are interprete
within the database system and provide application-specific management of conflicts. For ins

in a meeting scheduling application, a write (carrying a record of a scheduled meeting) might be
accompanied with code that would shift the meeting to alternative times if the desired meetin

is already booked. Mergeprocs provide a means for application specifics to be exploited with
general database framework. Bayou also provides “session guarantees” [Terry et al., 1994] that give

applications control over the degree of consistency they require for effective operation in specific
circumstances. Clients can trade data consistency for the ability to keep operating in discon

conditions. Both of these techniques are based on an approach similar to that exploited i
pero—allowing clients to become involved in how infrastructure support is configured to the

particular needs. There has been some experience in applying these approaches to the desig
laborative applications [Edwards et al., 1997], although Bayou’s use of a loosely-conn

database layer restricts it to asynchronous applications.

More generally, one focus of research, particularly in databases supporting software development

or CAD/CAM, has been on variants of the transaction model supporting long-duration and
transactions (e.g. [Kaiser, 1994]). These are variants that exploit a general style of interaction, rather

than the specifics of particular applications; however, they do begin to address the needs of i
collaborative applications.

5.6 Programming with Consistency Guarantees
This section has dealt with the generic model for consistency management using consistenc

antees. Before going on to look at specific examples, we need to consider how consi
guarantees are realised in Prospero.

Prospero makes promises and guarantees available to programmers as the primary interface to the
consistency mechanism. As described in the previous section, Prospero uses a comman

model to reify user activities within the programming framework. Promises and guarantees n
deal not with specific commands, but with the semantic properties of those actions within the

cation domain. However, the significant feature of this semantic approach is that Prospero
23

n-

in any

gence
f the

rather
ties that

do

emantic

in, and

d. Once

ce of a
param-

nt their
r its par-

nces of

ding
r bene-

 as she

 class-

hods that
 ensure

s). This

which
olkit).

ibuted

unded
n any
itself be neutral with respect to the application domain, and hence to the semantics of actions there.

Prospero uses a “semantics-free semantics” model to allow programmers to deal in terms of sema

tic properties without making specific commitments to the semantic features that may exist
given domain.

5.6.1 Semantics-Free Semantics

The primary role of the semantic descriptions is to allow coordination between the pre-diver
point (the “promise” phase) and the post-divergence point (“synchronisation”). The efficacy o

approach is dependent on this coordination—actions being described and later recognised—
than on a detailed, structured semantic account of user-level operations. So, while the proper

we would like to base our descriptions on are semantic properties, the descriptions themselves
not have to have semantics. What Prospero needs to provide is a way of referring to semantic prop-

erties, but not a language of semantics. It’s enough to be able to distinguish and recognise s
property foo, without having to give an account of what foo means.

In other words, Prospero needs to offer a naming solution, not a description solution. The applica-
tion programmer names a set of semantic properties relevant to his or her application doma

coordinates activity in terms of those, but the details of those semantics need not be describe
they have been named, they can be used as a basis for coordination.

5.6.2 Class-based Encoding

The mechanism that Prospero uses to accomplish this is class-based encoding. Particular semantic

properties for an application are implemented as classes of command objects. Each instan
command object represents a particular invocation of that command, along with the relevant

eters and contextual information. Command objects inherit from the classes that represe
semantic properties. Each command object then becomes subject to any methods defined fo

ticular semantic properties.

The use of explicit command objects is, in itself, a useful mechanism for representing seque

action and arriving at appropriate mechanisms for resolving conflicts that might arise; but enco
semantic properties in the inheritance structure of the command objects yields two particula

fits when programming with Prospero. First, the mechanism is inherently extensible; the application
developer can create new semantic properties from existing ones within the same mechanism

uses to create application structures and objects (i.e. subclassing and specialisation). Second,
based encoding allows semantically-related behaviours to be defined in a declarative style. Pros-

pero programmers declare the consequences of semantic properties through separable met
apply to classes of semantic property. CLOS’s generic dispatch mechanism can be used to

that the relevant actions (methods) are applied to specific sorts of actions (semantic classe
allows the consistency management mechanism to be created declaratively and iteratively, rather

than forcing the programmer to encode it in one large, monolithic resolution mechanism (
would then, by its nature, be inaccessible to application programmers and locked within the to

5.7 Consistency Guarantees: Summary
While the divergence approach introduced in Section 5 allows us to manage activity over distr

data in ways more appropriate to collaborative work, it presents a problem. Potentially unbo
divergence can create situations in which it is difficult or impossible to resolve inconsistency i

useful way.
24

kage
 pro-

,

ns that

volve

as a set
 user

in each

API that

 they
-

f
gram-

ero

es for
o forms
Consistency guarantees balance this unboundedness by providing a way to constrain divergence.

The mechanism generalises the traditional lock-act-release cycle by casting it not in terms of abso-

lute locks, but rather in terms of variable promises of future activity and guarantees of achievable
consistency. These promises and guarantees are constructed from terms that are meaningful accord-

ing to the semantics of the application domain. Exploiting application semantics allows the
consistency mechanism to be tailored to the particular needs of specific collaborative applications

and settings, and allows programmers to create applications that capitalise upon regularities and pat-
terns in the work being conducted. At the same time, moving away from a basic read/write model

to one that is grounded in the application specifics allows new opportunities for parallel work, and
so supports multi-synchronous and opportunistic working styles.

6 WRITING APPLICATIONS IN PROSPERO
Divergence, synchronisation and consistency guarantees, as outlined above, provide a framework

in which the semantics of applications and their operations can be used to improve concurrency
management for collaborative work. Earlier sections have discussed some specific issues in the rep-

resentation of these mechanisms in the toolkit, and provided some pointers to how programs are
developed. This section gives an overview of the programming interface and experience, as an ori-

entation for the examples in Section 7.

Prospero is implemented in CLOS. Network communication between Prospero peers is performed

using an RPC layer provided by the underlying Common Lisp implementation (the “wire” pac
of CMU Common Lisp). Again, Prospero itself provides no user interface functionality; in the

totype applications, the user interfaces have been implemented using Garnet [Myers et al., 1990]
although another package could have been used.

6.1 Base-Level Programming: Writing Applications
As outlined earlier, writing programs at the base level means creating collaborative applicatio

make use of the features and functionality offered by the Prospero toolkit. All applications in
base level programming.

6.1.1 Streams

To write a collaborative application using Prospero, the programmer organises the system
of streams of activity. Typically, each stream of activity will be associated with one particular

in a session, although this is not required. Application activity creates action objects, which are then
inserted into a particular stream; periodically, the streams are synchronised so that actions

stream can be exchanged and communicated. Figure 1 shows the functions in the Prospero
implement this level of functionality.

The form defaction creates a new sort of action. Actions are defined by the properties that
exhibit (properties being defined by the form defproperty). Actions may have multiple proper

ties. The function create-action creates a new action object; its arguments specify the type o
action performed and the particular details associated with this particular invocation. The pro

mer then uses add-action-to-stream to associate the action with a particular stream. Prosp
provides classes for both “local” and “remote” streams (embodied by the classes local-stream

and remote-stream). Actions can only be added to local streams; remote streams are proxi
streams elsewhere in the system, and are used to specify the details of synchronisation. Tw
25

ided to
etalevel

e; by

efined
ctions

ivity that
hat will

s. This

t all

words,
r a lan-

 in the
of local stream are predefined and provided by the toolkit. Instances of bounded-stream accumu-

late a certain number of actions before they attempt to synchronise themselves with their peers;
instances of explicit-synch-stream will not synchronise until synchronisation is explicitly

performed by a call to synchronise. Both of these stream types are subclasses of the local-
stream class. Applications can make use of these stream types directly, or create new ones through

metalevel customisation.

6.1.2 Promises and Guarantees

Prospero also provides some support for the use of promises and guarantees as the base level; how-
ever, since the full benefits of the consistency guarantee approach require the use of semantic

information about applications, which constitutes metalevel programming, there is less mechanism
of direct use at the base level. However, the basic framework can be used to constrain divergence.

The mechanisms at the base level are primary definitional—that is, mechanisms are prov
define various types of entities, which can subsequently be used to express degrees of m

specialisation. These entities, though, are also part of the base level programming interface. We
have already seen that defaction can be used to define new actions that users can generat

analogy, defpromise defines the promises that can be made. Promises, like actions, can be d
in terms of properties (and also in terms of each other). Conceptually, the distinction is that a

represent specific user actions, while promises are used to describe whole sequences of act
take place between periods of synchronisation. Promises characterise the sorts of actions t

take place (that is, the properties of the set of actions), but not the specific actions themselve
provides an opportunity for richer and less restrictive descriptions.

At the base level, two classes of consistency guarantee are provided, called full-guarantee and
null-guarantee. Essentially, these resemble, respectively, full locks and no locks a

(although, of course, unlike locks, they do not have to be acquired, nor respected). In other
the significance of guarantees is not in the use of predefined ones like these, but that the offe

guage in which to define new sorts of guarantees (and since those new sorts will be rooted
application semantics, they cannot be defined in advance.)

(defproperty property-type [parent-type...])
defines new property type based on named parents

(defaction action-type [property ...])
defines new action object type

(create-action action-type [parameters])
creates an action object of a particular type

(perform-local-action action)
executes an action object in the local context

(add-action-to-stream action stream)
associates an action with a stream object

(synchronise local-stream remote-stream)
synchronises a local stream with a remote one

(with-local-stream stream [body ...])
executes body with a local stream binding

(defpromise promise-type [parent...])
defines a new promise type based on parents

(create-promise promise-type)
creates a promise object

(defguarantee guarantee-type [parent...])
defnes e a new guarantee type based on parents

(create-guarantee guarantee-type)
creates a new guarantee object

(get-guarantee stream promise)
returns guarantee from stream for offered promise

(redeem-guarantee stream guarantee)
returns a guarantee

(with-guarantee stream promise [body ...])
executes body with a guarantee binding

(require-guarantee guarantee-type stream
promise [body ...])

executes body with a guarantee binding of a
particular type

FIGURE 1: Base-level API.
26

e
rpose

le the
ract to

 sys-

ide the

tion of
es and

eans to
er the

t that

se com-
hrough
Figure 1 also shows the API for manipulating the guarantees mechanism at the base level. Guaran-

tees are made in terms of promises, which are defined with defproperty and created with

create-property, just like actions. The function get-guarantee requests a guarantee from a
stream for a particular promise, and redeem-guarantee is used to redeem it later; so calls to these

two functions delimit a sequence of activity carried out under the guarantee. Calling get-guaran-
tee will cause Prospero to send a promise to a stream, which will evaluate the promise, comparing

it to other guarantees that have already been issued, and return the best guarantee that can be given
under the circumstances. The nature of that comparison will be examined in more detail in a

moment, but does not form part of the base level interface. Later, once a sequence of activities have
been carried out under a particular guarantee, the guarantee can be returned using redeem-

guarantee.

For convenience, the form with-guarantee can be used as a shorthand for a common idiomatic

structure; it requests a guarantee, executes a body of code under that guarantee, and then redeems
it. Its partner, require-guarantee, ensures that a particular sort of guarantee be achieved before

the code is executed.

6.2 Metalevel Programming: Customising the Toolkit
Base level programming combines the features of the toolkit to create collaborative programming.

Metalevel programming augments and specialises those features to provide customised support for
particular applications. Metalevel programming allows the toolkit to provide more efficient support

for particular applications, to support applications that would otherwise not be supported, or to
allow forms of collaborative work that cannot be accommodated in the base level framework.

The metalevel is implemented using a metaobject protocol [Kiczales et al., 1991]. A metaobject
protocol is an object-oriented encoding of the reflective link between application and implementa-

tion internals. A view of the implementation is described in object-oriented terms, and then
provided to the application for examination and revision. The metaobject protocol defines not

simply the toolkit’s internal structures, but also a view into how it uses those structures to achiev
its functionality. This then allows the application programmer to inspect behaviours and inte

code, and so become involved in the infrastructure implementation. In other words, whi
metaobjects define the internal structures of the toolkit, the protocol reveals how these inte

achieve visible behaviours.

Customisation is achieved by “inserting” code into the implementation layer. Other reflective

tems such as 3-Lisp have created customised ways of doing this “level-shifting”, but in a metaobject
protocol it can be achieved through subclassing and specialisation. In Prospero, we prov

means to insert programmer code into the components of the toolkit dealing with the crea
objects, the manipulation of streams and synchronisation, as well as the evaluation of promis

granting of guarantees. Creating new sorts of streams and guarantees provides us with a m
do this through standard object-oriented techniques, as well as providing us with control ov

scope of changes (by associating them only with these new classes).

Metalevel programming in Prospero consists in identifying those behaviours in the toolki

should be adjusted, and then creating new streams and classes with new behaviours for the
ponents. Control, then, is achieved through the protocol: the sequence of generic functions t

which the toolkit’s internal behaviours are coordinated.
27

The consequence of this approach is that it is difficult to identify an API for the metalevel in quite
the same way as we could for the base level. Metalevel programming uses just the same program-

ming constructs as programming at the base level, but it uses them in different ways. Rather than
using them to achieve effects directly, it uses them as points of articulation for adjusting internal

behaviour. Of course, we can, in a specific piece of code, identify those lines that constitute meta-
code; lines of code executed in the context of the toolkit rather than that of the application; and we

can identify uses of the toolkit structures that constitute metalevel programming. There are also
some API calls that are used primarily to adjust the behaviour of the toolkit. For instance, the

method compatible-promises is used to determine whether two promises are compatible for
simultaneous execution. This method is used by Prospero in evaluating promises and making a

determination of the level of guarantee that can be offered in response, as part of the remote
response to a call to get-guarantee, as discussed earlier. So, when an application programmer

wishes to specialise the process of granting guarantees, perhaps for newly defined promise types,
this is where control can be exercised.

Figure 2 lists some of the major functions that provide points of articulation for modification of
internal behaviour (in addition to those listed previously as base-level functions). In order to provide

a more detailed exposition of the use of Prospero, the next section illustrates how some simple
sample applications can be constructed.

7 APPLICATION EXAMPLES
This section provides some example applications built using Prospero. As far as possible, the exam-

ples omit details that are not immediately relevant to the topic at hand. So, for instance, internal data
structure representation is not presented, except where it is significant to interaction and synchroni-

sation; similarly, the manipulation of user interface elements, which is typically a significant source
of programming verbiage, is also omitted. The examples are written in CLOS, but the discussion

will emphasise the structure, which can be applied to other implementations.

Three examples are presented here (further complete examples can be found elsewhere [Dourish,

1996]). The first is a simple shared drawing program, and illustrates the use of actions and streams
to create a collaborative application. The second example is a hypertext database editor, and illus-

trates the use of consistency guarantees to manage more complex interaction. The third example is
an extension of the hypertext database editor to accommodate opportunistic work.

(propagate-action-to-stream action
remote-stream ..)

sends action object to remote stream

(check-send-action action remote-stream)

transforms action for transmission

(check-locally-perform-action action
remote-stream)

transforms action for local execution

(synchronise-remote-action action)
handle an incoming action object

(compatible-promises promise1 promise2)
determines compatability level of two simulta-
neous promises

(grant-guarantee promise local-stream)

grants a guarantee for the local stream

(guarantee-for-promise promise-wireform)

determines maximal guarantee for promise

FIGURE 2: Generic functions used to control internal behaviour.
28

d their

ample
g Pros-

rly of

icular

down

isplay.
Since the primary design goal in Prospero is flexibility in support of a wide range of applicability
to specific application settings, it follows that the point to be made with these examples is not that

such-and-such an application can be developed, or that such-and-such a technique can be used in
creating a collaborative application. For most applications that can be created with Prospero, a sim-

ilar application could be created with another toolkit such as those discussed earlier. Instead, the
point to be illustrated is the range of applications that can be developed using this single toolkit

framework. In other words, while standard approaches might be able to support one application or
another, they would typically not support the range of variability found in across the set of examples

presented here.

7.1 Example: Shared Drawing
The first example is a simple multi-user whiteboard application with a replicated architecture. Users
can create simple “scrawl” strokes (captured as “polylines”, or line segment sequences), an

actions are periodically broadcast to other sites. The functionality is extremely simple; this ex
is presented mainly to show how collaboration can be added to a single-user application usin

pero’s base-level functionality.

Figure 3 shows the basic structure of the original, single-user application. (Details, particula

the graphical toolkit, have been omitted where they would distract from the core functionality.) A
window is created, and an “interactor” [Myers, 1990] is associated with it, to handle a part

form of user interaction. This particular interaction is configured to run when the user holds
the mouse button; when it is released, the function add-new-polyline is called with arguments

representing the new object. This function then creates a polyline object and adds it to the d

1: (defun polyline-editor ()
2: (let ((window (create-window “Polyline Editor”)))
3: (add-to-window (create-interactor ‘polyline-interactor
4: :where window
5: :when ‘mouse-down
6: :finish-fn #’add-new-polyline)))))
7:
8: (defun add-new-polyline (interactor points)
9: (add-to-window (create-instance ‘polyline :points points)))

FIGURE 3: Simple polyline editor.

1: (defaction <polyline-action>)
2:
3: (with-local-stream (make-instance ‘<bounded-stream>)
4: (let ((window (create-window “Shared Polyline Editor”)))
5: (add-to-window ...))
6:
7: (defmethod add-new-polyline (interactor points)
8: (let ((pl-action (create-action <polyline-action> points)))
9: (perform-local-action pl-action)))
10:
11: (defmethod perform-local-action ((action <polyline-action>))
12: (add (create-instance ‘polyline (action-params action))
13: window)))

FIGURE 4: Multi-user polyline editing with Prospero base-level support.
29

e

ting the
on by

 it
n pro-

 it to

is

e

l-
 associ-
Figure 4 shows how this program can be turned into a collaborative application using Prospero. The
collaborative application has some minor changes in structure, to accommodate the objects and

functions added by Prospero. Lines making use of Prospero features are highlighted by underlining.

Basic graphical interaction is handled with an interactor, just as before. The difference is in how the

polyline itself is created. Since Prospero operates in terms of command objects that explicitly rep-
resent user actions, this function is now handled indirectly through the creation of an action object.

How do we do this? At line 1, a new sort of action is defined for polyline creation7. The function
add-new-polyline at lines 7–9 now creates an action object of this type, corresponding to th

user’s behaviour, by calling create-action, which creates a new command object encapsula
particular parameters of this user action (the points of the polyline). Then it “applies” this acti

calling the method perform-local-action. This is a method defined by Prospero, although
has no functionality for new sorts of objects defined by applications, and so the applicatio

grammer has to define some behaviour for performing a polyline-action. This is done at lines
11–13 by specialising the generic function specifically for objects of class <polyline-action>.

This new method overrides other applicable methods; it creates the polyline object and adds
the shared workspace. All this happens within the context of an instance of bounded-stream,

defined at line 3.

Why does the application perform its actions indirectly through this action object? The answer

that action objects and the methods defined on them are a point of coordination with Prospero’s
mechanisms for managing collaboration. Figure 5 shows some of the internal8 structure of Prospero

corresponding to the mechanisms used in this example. At lines 1–2, an “after-method”9 is defined
for the generic function perform-local-action. The effect of this is to ensure that, once the

local behaviour has been performed (the behaviour provided by the application developer in figur

7. The use of angle brackets is a common notational convention used in CLOS to denote class objects. Objects that Pros-
pero application developers create such as action types, promises and guarantees are generally actually classes, so that
they can be used as part of method definitions.

8. In other words, this is the implementation code. Application developers would neither supply or see this. It is shown
here for explanation.

9. In addition to normal (“primary”) methods, CLOS provides “before-methods” and “after-methods” which are co
lected and run before and after the primary method for any given generic function. Applications can use them to
ate behaviour with generic functions, without replacing the existing functionality.

1: (defmethod perform-local-action :after ((action <action>))
2: (add-action-to-stream action (current-local-stream)))
3:
4: (defmethod add-action-to-stream ((action <action>) (stream <stream>))
5: (push action (stream-actions stream))
6:
7: (defmethod add-action-to-stream :after (action (stream <bounded-stream>))
8: (if (full-p stream)
9: (synchronise stream (stream-remote stream))))
10:
11: (defmethod synchronise ((stream <bounded-stream>) (stream <remote-stream>))
12: (dolist ((action (reverse (stream-actions stream)))
13: (propagate-action-to-stream action remote)
14: (stream-reset stream))

FIGURE 5: Internal Prospero code implementing bounded streams.
30

.

int they
ctions

he
t

ad to
d.

eloper
n activ-

n Pros-

red, we
es and

s to be
 activ-

re and
es

 these
e write

ing
r match

s

 Figure
 in ital-

 of the

hanism.

at might

en
pected

re that
er them

e know
4), then the method add-action-to-stream will be called to associate this action object with the

currently active local stream.

Since the application developer set the local stream to be a bounded-stream, which is one of Pros-
pero’s pre-defined local stream types, the behaviours shown at lines 4–14 in figure 5 apply

Bounded streams accumulate their actions until a threshold (bound) is reached, at which po
are synchronised (lines 8–9). Synchronisation involves going through the accumulated local a

and sending them to peer streams to be incorporated into the action streams there (lines 12–13). T
application developer, however, does not have to manage any of this behaviour. Bounded sreams

carry their own synchronisation behaviour with them; the application developer has simply h
perform actions indirectly through the command objects to get the collaborative action desire

So, in this case, to turn the application into a collaborative application, the application dev
needed only to add a small number of lines of code, to set up the stream and handle applicatio

ity through command objects.

7.2 Example: Hypertext Database Editing
The previous example provided a simple illustration of the basic use of actions and streams i

pero to create a synchronous replicated drawing application. With those basic concepts cove
can proceed to a more ambitious example, which will illustrate the use of semantic properti

consistency guarantees.

This second example is a hypertext database editor. Nodes are created and edited, and then are

linked together to create a hypertext document. We consider the creation and editing of node
content-based activities, and the manipulation of their links and relationships to be structuring

ities. We can consider these two classes of action to be independent. Changing structu
changing context can be carried out in parallel without conflict, even though both result in chang

to the underlying data store. In a traditional system, there would be no way to distinguish
cases. Any attempt to change stored data would look like a write operation, and since som

operations may result in conflicts, all write operations would have to lock out other users. Us
consistency guarantees, we can incorporate richer semantic information, achieve a bette

between the application and the infrastructure, and increase opportunities for parallel work.

The consistency guarantee mechanism can be used to create a separation between these two form

of access, incorporating this piece of knowledge about the semantic structure of the domain.
6 shows the encoding of these semantic properties in Prospero; metalevel code is highlighted

ics. At this stage the programmer sets up a description of the application domain in terms
semantic properties of actions (lines 1–4), and of the actions and promises10 in terms of these prop-

erties. The properties will subsequently be used to refine the consistency management mec

The programmer sets up four properties in lines 1–4. These describe the different changes th

introduced into the data store by different user actions. The actions of the application are then giv
and inherit the relevant properties (6–10). Promises are defined in terms of the sets of ex

semantic properties for any given period of divergence. Later on, the system will want to ensu
the properties of promises and the properties of the sequences of action that take place und

line up. Promises can be defined dynamically, but in this case we pre-define the ones that w

10. In this example, we use only pre-defined guarantees; otherwise, those would also be set at this point.
31

ures in
it that

also
ing

r the
-

antic

) has
f struc-

tible;
anism,

 per-
will be used. Note that the <structure-change-promise>, which allows for changes to both

components of the database, inherits from the <structure-promise> and the <change-prom-
ise>, so that definitions based on those will also apply to this promise, which combines their

effects.

Creating these semantic structures provides us with an enriched language (a language of domain

semantics) for doing metalevel tailoring. Lines 16–20 show the use of these semantic struct
configuring the behaviour of the consistency control mechanism. These lines inform the toolk

a promise involving structure-change cannot be granted at the same time as another
involving structure-change, and that the same exclusion principle holds for promises involv

content-change. The application developer expresses this by providing new methods fo
metalevel generic function compatible-promises, which tests whether two promises are com

patible. This predicate is used to select the guarantee that will be returned.11 The user’s metacode
will be used by the toolkit in resolving requests for promises, based on the application sem

properties defined earlier. In this way, the toolkit’s internal behaviour (granting guarantees
been specialised to accommodate the specific features of this application (parallel updating o

ture and content).

11. CLOS’s true and false (t and nil) are shorthands for full and null guarantees. By default, promises are compa
overriding the method for these particular sorts of promises denotes exceptions. CLOS’s “generic dispatch” mech
which matches generic function calls to specific methods, ensures that the most specific set of comparisons are
formed.

1: (defproperty <append>)
2: (defproperty <structure-change)
3: (defproperty <content-change>)
4: (defproperty <no-change>)
5:
6: (defaction <create-object-action> <append>)
7: (defaction <find-action> <no-change>)
8: (defaction <set-field-action> <content-change>)
9: (defaction <change-field-action> <content-change>)
10: (defaction <add-link-action> <structure-change>)
11:
12: (defpromise <structure-promise> <structure-change> <no-change>)
13: (defpromise <content-promise> <content-change> <no-change>)
14: (defpromise <structure-content-promise> ‘(<structure-promise> <content-
promise>))
15:
16: (defmethod compatible-promises ((p1 <structure-change>) (p2 <structure-
change>))
17: nil)
18:
19: (defmethod compatible-promises ((p1 <content-change>) (p2 <content-change))
20: nil)

FIGURE 6: Setting properties, actions and promises for hypertext database editing.
32

e spe-
mise

rantee
the user

. Calls

 action

re

ntil a
. In

ase (in a
Next, the code managing the performance of activities is then surrounded by guards that obtain and
resolve guarantees. This is managed through the mechanism in the user interface by which users

change between different editing modes, as shown in figure 7. As before, use of Prospero function-
ality is highlighted by underlining. When the mode is changed through the user interface menu

control, the function ui-set-mode (line 8) is called; it will request a new guarantee based on a
promise constructed from the current edit mode setting (lines 1–6). The call to get-guarantee at

line 6 causes infrastructure’s guarantee mechanism to be invoked, which in turn will exploit th
cialisation that the programmer created at lines 16–20 of figure 6 by configuring the pro

comparison mechanism. The user interface allows work to proceed, reflecting the current gua
status in the user interface. When actions are executed for which the guarantee is not valid,

is informed once through a pop-up menu, and continuously through a status indicator.

Finally, figure 8 show some excerpts from the code that implements the application behaviour

to Prospero behaviour are highlighted by underlining. The methods at lines 1–4 and 6–9create
“after” methods that execute once the application behaviour has run and associate new

objects with the current local stream. The local stream in this example is an instance of explicit-

synch-stream (rather than bounded-stream as in the previous example), supporting a mo

asynchronous style of working. An explicit-synch-stream is not synchronised with its peers u
specific action of type <synchronise> is added to it; this causes synchronisation to take place

this example, it causes the effects that the user has performed to be checked into the datab
remote server stream).

1: (defun request-guarantee ()
2: (let ((promise (case *access-mode*
3: ((:entry) (create-promise <content-promise>))
4: ((:linkage (create-promise <structure-promise>))
5: (t (create-promise <structure-content-promise>)))))
6: (get-guarantee *server-stream* promise)))
7:
8: (defun ui-set-mode (gadget menuitem submenuitem)
9: (declare (ignore gadget menuitem))
10: (setq *access-mode* (intern (string-upcase submenuitem)
11: (find-package “KEYWORD”)))
12: (if *current-guarantee*
13: (redeem-guarantee *server-stream* *current-guarantee*))
14: (setq *current-guarantee* (request-guarantee)))

FIGURE 7: Claiming and redeeming guarantees.

1: (defmethod add-link :after ((from <record>) (to <record>))
2: (let* ((from-id (record-id from)) (to-id (record-id to))
3: (action (create-action <add-link-action> *ident* from-id to-id)))
4: (add-action-to-stream action (current-local-stream))))
5:
6: (defmethod new-record :after ((record <record>))
7: (let* ((id (record-id record)) (type (class-name (class-of record)))
8: (action (create-action <create-object-action> *ident* id type)))
9: (add-action-to-stream action (current-local-stream))))
10:
11: (defmethod checkin ()
12: (add-action-to-stream (create-action <synchronise>)
13: (current-local-stream)))

FIGURE 8: Performing actions in the hypertext database.
33

nous or
nism—

 support
r,

. How

, via the
om-

trict the
cope of

 prom-
at are

e will
hat deals

l

ch that
ction can

nt
e prop-

, then

. For
tc.
So, through the use of metalevel specialisation, the toolkit has been extended to accommodate the

specific semantic features of this domain. The working style to which this application lends itself

would be unavailable to applications created with a toolkit that employed standard, undifferentiated
data storage semantics.

7.3 Example: Accommodating Opportunistic Work
The first example showed the use of Prospero’s streams mechanism to support synchro
“real-time” collaborative interaction. In the second example, however, the same basic mecha

periodically-synchronised streams that accumulate sequences of user actions—was used to
a more asynchronous style of client/server interaction. Suppose, now, that we want to go furthe

and extend this example to incorporate support for opportunistic work as described earlier
would we go about this?

The structure of the example was that a user interface control selected a mode of operation
function set-ui-mode, and that this mode-setting behaviour would control the making of pr

ises and the securing of guarantees. However, this mode is purely advisory; it does not res
sort of actions that users can perform. So, actions can still take place that are outside the s

the promise made (and hence the guarantee granted). Activities like this constitute a broken
ise. This is how opportunistic work becomes manifest to the system, in the form of actions th

performed outside the scope of the granted guarantee12.

The application developer can choose to resolve these situations in different ways, and to place

responsibility for handling them at various parts of the system. In this particular case, w
choose to handle broken promises on the server side. Figure 9 shows the server-side code t

with incoming actions during the synchronisation process. When synchronisation takes pace, a
stream of actions arrives at the server; the method synchronise-action is called to process each

one. First, it looks up the stream that performed the action, and the guarantee under whi
stream has been acting. A guarantee records the promise that was made for it, and so the a

be compared to the promise that was made (line 5) to determine whether or not it is in agreeme
with the action. (This comparison is made on the basis of the properties of the action and th

erties of the promise; recall that they were both specified in terms of properties.) If they match
the action can be performed on this side (via the generic function locally-perform-action).

12. The term “opportunistic work” implies a certain intention on the user’s part. This may not be entirely accurate
instance, similar circumstances could conceivably result from certain sorts of network partition, server failures, e

FIGURE 9: Supporting opportunistic activity.

1: (defmethod synchronise-remote-action (action)
2: (let* ((stream (action-stream action))
3: (promise (promise-for-stream stream *local-stream*)))
4: ;; first check if this action was under a valid promise
5: (if (guaranteed-action action (guarantee-promise promise))
6: (locally-perform-action action)
7: ;; otherwise, try to complete it anyway
8: (if (acceptable-action action)
9: (locally-perform-action action)
10: ;; fail in the last resort
11: (syntactically-locally-perform-action action)))))
34

patible
, Pros-

ich an
ver the

plication

e ahead
 oppor-

to flag
er has

cy.

r

 to
 of syn-

te the
olved;

e incor-

e in the
ibution

es have
y pro-

cialise
s.

ted?

ed how

ialising

rospero.

f inter-
However, we are interested here in the case where this does not take place. This is where the appli-

cation developer can choose to allow promises to be broken, and decide how to handle them. In this

case, the decision is as follows. First, the application determines whether or not there would be any
conflict or error resulting from applying the action even though it is outside the granted promise

(line 8, using acceptable-action). If not, then the action can be performed anyway, and so it is
(line 9). What does it mean for an action to be acceptable in this sense? Clearly, this is an applica-

tion-specific issue. In this case, for example, one acceptable position is, “an action is com
with the current state if it results in the current state”. Other semantics are possible. Certainly

pero does not attempt to encode this. Prospero’s role here is to provide the framework in wh
application developer can encode application semantics, and to provide enough control o

basic structures such as promises, action, streams and guarantees that the specific ap
requirements can be met.

The last case is the complicated one, corresponding to the situation in which the user has gon
and performed an action outside of the stated promise, and a conflict has resulted from this

tunistic behaviour. This is the “failure” case, although this application developer chooses not
a failure, but rather to note the problem and continue. In this case, the application programm

decided to allow syntactic consistency. The programmer has defined a method syntactically-

locally-perform-action, which performs the action but maintains only syntactic consisten

Note that the return value of the function synchronise-action is the return value of whicheve
method was used to perform the action locally, either locally-perform-action or syntacti-

cally-locally-perform-action. The return values of the sequence of invocations
synchronise-action are used to pass information back to the remote stream about the results

chronisation. This supports cases where the application programmer wishes to distribu
responsibility for handling the consequences of opportunistic action between the streams inv

we make no use of it in this example, however.

The mechanisms shown in these three examples highlight how application semantics can b

porated into Prospero by making explicit aspects of the domain semantics and encoding thes
Prospero framework. This in turn provides the resources for Prospero to manage data distr

and consistency management in ways appropriate to the specific applications. The exampl
shown that way that the application developer building an application in Prospero is not onl

vided with the means to combine predefined components but is able to reach in and spe
components for particular application settings, enriching the toolkit with application semantic

8 FLEXIBILITY IN PROSPERO
When we step back from the details, what have the examples in the previous section illustra

First, they have shown how the basic components of the toolkit (streams, actions, promises and
guarantees) can be combined to create collaborative applications. The first application show

we can wrap application behaviour in Prospero structures to create a collaborative application; the
second illustrated the use of metalevel description to enhance application support by spec

toolkit behaviours to the particular needs of specific applications.

Second, they have shown some of the advantages of the particular structures provided in P

Streams have been used to support both fairly synchronous and fairly asynchronous forms o
35

rk. So,

ronous
pplica-

ous

lexibility
ss this

r con-

realise
s, prom-

erations.
ollab-

ratory
applica-

y and
 toolkit

n-
nge of

ed pre-
 about

eptual
ind.

than an

 CSCW
ntrol
action, in the first and second examples respectively. Actions have been used to characterise a range

of application behaviour, and guarantees have been used to give different degrees of feedback to

users about the likely effects of actions.

Third, they have shown how we can use metalevel description to specialise the toolkit to the needs

of specific applications. We showed this through the consistency guarantee mechanism in the
second example, although it can also be applied to creating new sorts of stream structures, and we

showed using two kinds of predefined streams (created, themselves, through metalevel
specialisation).

Fourth, they have shown that the use of this metalevel specialisation allows a single toolkit to sup-
port a wider range of applications that would be possible otherwise. Particular applications

developed in Prospero may resemble ones that could be generated using other toolkits, but Pros-
pero’s novelty is in the range of applications that can be developed from a single framewo

we can use Prospero to create not only fully synchronous applications, but also loosely synch
and asynchronous ones; and applications that rely not only on strong locking, but also on a

tion-specific locking or no locking at all. The reflective framework provides for a perspicu
unification of these approaches.

So, we can step back and ask a more general question. How does Prospero address the f
problems we encounter in designing CSCW toolkits? There are two ways we can addre

question.

One is to consider Prospero, itself, as a CSCW toolkit. Like any toolkit, it provides a particula

ceptual model for the structure of applications, and the objects and mechanisms to
applications organised around this model. Prospero’s model is based around streams, action

ises and guarantees. The choice of these particular mechanisms was motived by two consid
First, these mechanisms reflect a particular set of requirements for supporting fluid, flexible c

orative work, based on the lessons of investigations of collaboration in real-world and labo
settings. These four fundamental structures offered by Prospero emphasise the design of

tions that avoid temporal or structural constraints, which interfere with the performance of
collaborative activity. Second, and more importantly here, they were chosen for their value aspoints

of articulation at the meta-level; they provide a conceptual separation for the areas of flexibilit
control offered to application developers. Streams and divergence are incorporated into the

not only because they offer a natural mapping onto the patterns of collaborative activity we encou
ter in real-world settings, but also because they offer a natural way to talk about the wide ra

behaviours we might want to accommodate. Similarly, promises and guarantees are introduc
cisely because they provide a way of talking not just about what the application does, but also

how the toolkit can go about supporting it, in terms of the application domain. So, the conc
structure of the toolkit is designed specifically with notions of metalevel extensibility in m

(Recall the earlier observation about the metalevel interface as a designed artifact rather
epiphenomenon of the implementation.)

The second way to consider how Prospero addresses the flexibility problems encountered in
toolkit design is in terms of its strategy of providing application developers with metalevel co

over the toolkit’s internal structure.
36

tions
 even

ange
 tool-

lication
can be

 novel

ressive.
CSCW

e of
d not

ever,
nologies

being

n gives
t does

on will
truc-

 Open
 of col-

to the

rative
g and

rk, and
 manage-
Fundamentally, what Prospero does, through the use of Open Implementation, is to repartition the

design problem. Since the use of Open Implementation allows application developers to revisit

internal toolkit design decisions in order to revise them in accordance with the needs of particular
applications and settings, it moves the burden of matching toolkit mechanisms with application

needs to the application developer. This is a considerable benefit to the application developer, who
is not only the person best able to make those decisions anyway, but is also, in conventional settings,

the person who is left somehow to identify what those decisions might be and how they can be
worked around. Meantime, the toolkit designer can focus attention on how to provide the applica-

tion developer with an appropriate set of abstractions for both developing applications and
controlling the toolkit internals. In other words, both the toolkit developer and the application devel-

oper are able to concentrate on those elements of the overall problem that are their particular domain
of expertise; yet at the same time the structure of the system allows their two contributions to be

brought together more fruitfully in the design of any particular application.

9 CONCLUSIONS
In any toolkit design, a primary concern of the developer is flexibility—the range of applica
that the toolkit can support. For interactive and collaborative systems, the problems are

greater, since the applications themselves must also be flexible enough to accommodate the r
of ways in which users and groups engage in their work. The first generation of collaborative

kits focussed largely on the problems of encapsulating common behaviours to ease app
development. A body of recent research has examined the ways in which CSCW toolkits

designed so as to support a wider range of application and working styles.

The research described in this paper contributes to this work in two ways. First, it presents a

architectural technique that can be harnessed to create toolkits that are both flexible and exp
Second, it introduces two particular mechanisms that can be incorporated into the design of

toolkits. The overall goal of a deeper form of toolkit flexibility in support of both a wider rang
possible applications and support for flexibility within those applications has been grounde

simply in technological opportunities but in understandings of how group work proceeds. How
where these observational studies make their mark is in the approaches we use and the tech

we develop in trying to provide computational support for collaborative activity.

In this article, I have exploited an architectural approach—Open Implementation—that is

used in other areas of system design to attack these sorts of problems. Open Implementatio
application programmers metalevel control over the implementation on which they depend. I

this by introducing a separation between a base interface, which specifies how the applicati
use the toolkit infrastructure, and a meta interface, by which the implementation of that infras

ture can be examined and modified. Prospero is a prototype CSCW toolkit based on the
Implementation approach. Prospero illustrates the application of this technique in the domain

laborative working, and shows how it can be used to repartition the toolkit design problem
benefit of both toolkit and application developer.

Prospero also introduces two specific metalevel techniques for the flexible design of collabo
applications. First, the divergence/synchronisation model provides a framework for describin

creating a wide range of access patterns to distributed data, specialised for collaborative wo
scalable across timescales. Second, the consistency guarantees model allows a consistency
37

of the
r man-

antics.
main.

evelop
is pos-

en used
 fre

me that
ones in

lica-
velop

rms of
-

ion as

 ideas.

w range

work.

bridge
 Col-

arch

nter,
r their
ment infrastructure to be specialised according to the semantic properties of the application domain.

These approaches can be applied independently of the Open Implementation architectural approach,

but they lend themselves particularly to this approach since they provide not only descriptive power
but also a means to create new behaviours.

Prospero embodies a new approach to the problems of flexibility in CSCW toolkit design. Rather
than attempting to provide a set of maximally-general structures onto which a programmer can map

application needs and requirements, it instead deals with that mapping through a metalevel inter-
face, which can be used to specialise the behaviour of the base interface (and hence the toolkit’s

internal structures). Metalevel programming capitalises upon the programmer’s knowledge
particular domain being supported. Further, the specific mechanisms provided in Prospero fo

aging collaborative work are ones that operate in terms of the application domain sem
Streams will synchronise according to semantically meaningful actions in the application do

Consistency guarantees go further and use explicit encodings of semantic properties to create spe-
cialised behaviours.

The design goals in the development of Prospero have been two-fold. The first goal was to d
a toolkit that can be used to conveniently capture a wider range of CSCW applications than

sible using traditional techniques. As illustrated in the examples given here, Prospero has be
to develop applications that are synchronous and ones that are asynchronous; some that aree-for-

all and some that use more structured forms of interaction; some that use replicated and so
use centralised data storage; and ones in which synchronisation arises automatically and

which it is explicitly controlled by users. Traditional toolkits cannot capture this range of app
bility to different situations and application demands. The second goal was to illustrate and de

the use of semantic approaches to the creation of collaborative applications. The variety of fo
collaborative activity that we observe in laboratory and real-world settings are testament to the vari

ety of potential forms of collaboration in different settings. Prospero has taken this observat
a basic design premise and provided technological support for the semantically-based differentia-

tion between domains and applications.

Prospero is a prototype system that provides a proof-of-concept implementation of these

Ongoing development of semantically enriched approaches in which the interaction between infra-
structure and use is taken as a primary design directive holds considerable promise for a ne

of collaborative applications that fit more seamlessly with patterns of everyday collaborative

Acknowledgments

This work was conducted while I was employed at the Xerox Research Centre Europe (Cam
Lab, formerly EuroPARC) and studying in the Department of Computer Science at University

lege, London. The first draft of this article was written while I was employed at Apple Rese
Laboratories.

I would particularly like to thank Richard Bentley, Jon Crowcroft, Prasun Dewan, Beki Gri
Rachel Jones, John Lamping and Tom Rodden and the anonymous TOCHI reviewers fo

insights and contributions to the development of the research and this article.

References

Barga, R. and Pu, C. 1996. Reflection on a Legacy Transaction Processing Monitor. In Proc. Reflection ’96.
38

pware

ork

.

e for

nd

f

r

ional

Control
Barghouti, N. and Kaiser, G. 1991. Concurrency Control in Advanced Database Applications. Computing
Surveys, 23(3), pp. 269–317.

Beaudouin-Lafon, M. and Karsenty, A. 1992. Transparency and Awareness in Real-Time Grou
Systems. In Proc. ACM Symposium on User Interface Software and Technology UIST’92. ACM, New York.

Beck, E. and Bellotti, V. 1993. Informed Opportunism as Strategy. In Proc. Third Eruopean Conference on
Computer-Supported Cooperative Work ECSCW’93. Kluwer, Dordrecht.

Bentley, R. and Dourish, P. 1995. Medium versus Mechanism: Supporting Collaboration through
Customisation. In Proc. Fourth European Conference on Computer-Supported Cooperative W
ECSCW’95. Kluwer, Dordrecht.

Berlage, T. 1994. A Selective Undo Mechanism for Graphical User Interfaces Based on Command Objects.
Transactions on Computer-Human Interaction, 1(3), 269–294.

Braun, T. and Diot, C. 1995. Protocol Implementation Using Integrated Layer Processing. In Proc. ACM
SIGCOMM’95. ACM, New York.

Cao, P., Felten, E. and Kai, L. 1994. Implementation and Performance of Application-Controlled File
Caching. In Proc. ACM Symposium on Operating Systems Design and Implementation, pp. 165–178. ACM,
New York.

Clark, D. and Tennenhouse, D. 1990. Architectural Considerations for a New Generation of ProtocolsACM
SIGCOMM Communications Review, 20(4), 200–208. ACM, New York.

Crowley, T., Milazzo, P., Baker, E., Forsdick, H. and Tomlinson, R. 1990. MMConf: An Infrastructur
Building Shared Multimedia Applications. In Proc. ACM Conference on Computer-Supported Cooperative
Work CSCW ’90. ACM, New York.

Demers, A., Petersen, K., Spreitzer, M., Terry, D., Theimer, M. and Welch, B. 1994. The Bayou Architecture:
Support for Data Sharing Among Mobile Users. In Proc. IEEE Workshop on Mobile Computing Systems a
Applications. IEEE.

Dewan, P. and Choudhary, R. 1992. A High-Level and Flexible Framework for Implementing Multiuser User
Interfaces. Transactions on Information Systems, 10(4), 345–380. ACM, New York.

Dix, A. 1992. Pace and Interaction. In People and Computers VII: Proc. of HCI’92. Cambridge University
press: Cambridge.

Dourish, P. 1995. Developing a Reflective Model of Collaborative Systems. Transactions on Computer-
Human Interaction, 2(1), 40–63. ACM, New York.

Dourish, P. 1996. Open Implementation and Flexibility in CSCW Toolkits. PhD Dissertation. Department o
Computer Science, University College, London.

Dourish, P. and Bellotti, V. 1992. Awareness and Coordination in a Shared Workspace. In Proc. ACM Conf.
Computer-Supported Cooperative Work CSCW’92. ACM, New York.

Edwards, K. 1996. Coordination Infrastructure in Collaborative Systems. PhD dissertation. College of
Computing, Georgia Institute of Technology, Atlanta, Georgia.

Edwards, K., Mynatt, E., Petersen, K., Spreitzer, M., Terry, D., and Theimer, M. 1997. Designing and
Implementing Asynchronous Collaborative Applications with Bayou. In Proc. ACM Symposium on Use
Interface Software and Technology UIST’97. ACM, New York.

Ellis, C. and Gibbs, S. 1989. Concurrency Control in a Groupware System. In Proc. ACM
Conf.Manamagement of Data SIGMOD’89. ACM, New York.

Farrag, A.A. and Ozsu, M.T. 1989. Using Semantic Knowledge of Transactions to Increase Concurrency.
Transactions on Database Systems, 14(4), 503–525. ACM, New York.

Gabriel, R., White, J.L. and Bobrow, D. 1991. CLOS: Integrating Object-Oriented and Funct
Programming. Communications of the ACM, 34(9). ACM, New York.

Greenberg, S. and Marwood, D. 1994. Real-time Groupware as a Distributed System: Concurrency
and its Effect on the Interface. In Proc. ACM Conf Computer Supported Coooperative Work CSCW’94. ACM,
New York.
39

ms. In

and

guage

rchel,

 the

Greif, I. and Sarin, S. 1986. Data Sharing in Group Work. In Proc. ACM Conference on Computer-Supported
Cooperative Work CSCW’86. ACM, New York.

Grinter, R. 1996. Supporting Articulation Work Using Software Configuration Management Systems.
Computer Supported Cooperative Work: The Journal of Collaborative Computing, 5(4), 447–465. Kluwer,
Dordrecht.

Haake, A. and Haake, J. 1993. Take CoVer: Exploiting Version Management in Collaborative Syste
Proc. InterCHI’93. ACM, New York.

Harty, K. and Cheriton, D. 1992. Application-Controlled Physical Memory using External Page-Cache
Management. In Proc. ACM Conference on Architectural Support for Programming Languages
Operating Systems ASPLOS V. ACM, New York.

Herlihy, M. 1990. Apologizing Versus Asking Permission: Optimistic Concurrency Control for Abstract Data
Types. Transactions on Database Systems, 15(1), pp. 96–124. ACM, New York.

Hill, R., Brink, T., Rohall, S., Patterson, J. and Wilner, W. 1994. The Rendezvous Architecture and Lan
for Multi-User Applications. Transactions on Computer-Human Interaction, 1(2), pp. 81–125. ACM, New
York.

Kaiser, G. 1994. Cooperative Transactions for Multi-User Environments. In Won Kim (ed.), Modern
Database Management: The Object Model, Interoperability and Beyond. ACM Press, New York.

Kiczales, G. and Rodriguez, L. 1992. Efficient Method Dispatch in PCL. In Proc. ACM Symposium on Lisp
and Functional Programming (Nice, France). ACM, New York.

Kiczales, G. 1992. Towards a New Model of Abstraction in Software Engineering. In Proc. International
Workshop on New Models for Software Architecture: Reflection and Meta-Level Architecture (Tokyo, Japan).

Kiczales, G. 1996. Beyond the Black Box: Open Implementation. IEEE Software, January, 6–11. IEEE.

Kiczales, G., des Rivières, J. and Bobrow, D. 1991. The Art of the Metaobject Protocol. MIT Press,
Cambridge, Mass.

Maeda, C. 1996. A Metaobject Protocol for Accessing File Systems, in Proc. International Symposium on
Object Technologies for Advanced Software ISOTAS’96 .

Munson, J. and Dewan, P. 1994. A Flexible Object Merging Framework. In Proc. ACM Conf. Computer-
Supported Cooperative Work CSCW’94. ACM, New York.

Munson, J. and Dewan, P. 1996. A Concurrency Control Framework for Collaborative Systems. In Proc.
ACM Conf. Computer-Supported Cooperative Work CSCW’96. ACM, New York.

Myers, B. 1990. A New Model for Handing Input. ACM Transactions on Information Systems, 8(3), pp. 289–
320. ACM, New York.

Myers, B., Guise, D., Dannenberg, R., Vander Zanden, B., Kosbie, D., Pervin, E., Micklish, A. and Ma
P. 1990. Garnet: Comprehensive Support for Graphical, Highly-Interactive User Interfaces. IEEE Computer,
23(11). IEEE.

Nichols, D., Curtis, P., Dixon, M., and Lamping, J. 1995. High-Latency, Low-Bandwidth Windowing in
Jupiter Collaboration System. In Proc. ACM Symposium on User Interface Software and Technology
UIST’95. ACM, New York.

O’Malley, S. and Peterson, L. 1992. A Dynamic Network Architecture. Transactions on Computer Systems,
10(2). ACM, New York.

Rao, R. 1991. Implementational Reflection in Silica. In Proc. European Conference on Object-Oriented
Programming ECOOP’91. Springer-Verlag.

van Reneese, R., Birman, K. and Maffeis, S. 1996. Horus: A Flexible Group Communication System.
Communications of the ACM, 39(4), 76–83. ACM, New York.

des Rivières, J. and Smith, B. 1984. The Implementation of Procedurally Reflective Languages. InProc.
ACM Conference on Lisp and Functional Programming, 331–347. ACM, New York.

Roseman, M. and Greenberg, S. 1993. Building Flexible Groupware Through Open Protocols. In Proc. ACM
Conference on Organisational Computing Systems COOCS’93. ACM, New York.
40

ronous
’96

g

d

Roseman, M. and Greenberg, S. 1996. Building Real-Time Groupware with GroupKit, a Groupware Toolkit.
Transactions on Computer-Human Interaction, 3(1). ACM, New York.

Schuckmann, C., Kirchner, L., Schümmer, J. and Haake, J. 1996. Designing Object-Oriented Synch
Groupware with COAST. In Proc. ACM Conference on Computer-Supported Cooperative Work CSCW.
ACM, New York.

Shen, H. and Dewan, P. 1992. Access Control for Collaborative Environments. In Proc. ACM Conference on
Computer-Supported Cooperative Work CSCW’92. ACM, New York.

Smith, B. 1984. Reflection and Semantics in LISP. In Proc. ACM Symposium on Principles of Programmin
Languages POPL. ACM, New York.

Stroud, R. and Wu, Z. 1995. Using Metaobject Protocols to Implement Atomic Data Types. In Proc.
European Conference on Object-Oriented Programming ECOOP’95. Springer-Verlag.

Suchman, L. 1987. Plans and Situated Actions. Cambridge University Press, Cambridge.

Terry, D., Demers, A., Petersen, K., Sprietzer, M., Theimer, M. and Welch, B. 1994. Session Guarantees for
Weakly Consistent Replicated Data. In Proc. International Conference on Parallel and Distribute
Information Systems.
41

	1 Introduction
	2 Fluid Use and Static Infrastructure
	2.1 Elements of CSCW Infrastructure
	2.2 Flexibility in Cooperative Work
	2.3 Varieties of Technical Flexibility
	2.4 Flexibility in CSCW Toolkits
	2.5 Summary

	3 Open Implementation
	3.1 Open Implementation Analysis
	3.2 Reflection and the OI Solution
	3.3 An Open Implementation Strategy for CSCW

	4 Divergence and Synchronisation
	4.1 Inconsistency Avoidance and Streams of Activity
	4.2 Divergence and Synchronisation
	4.2.1 Divergence and Versioning
	4.2.2 Divergence and Operational Transformation
	4.2.3 Divergence and Replicated Databases

	4.3 Capitalising on Divergence
	4.3.1 Scalability
	4.3.2 Multi-Synchronous Applications
	4.3.3 Supporting Opportunistic Work

	4.4 Divergence and Synchronisation in Prospero
	4.5 Divergence and Synchronisation: Summary

	5 Constraining Divergence: CONsistency Guarantees
	5.1 Variable Consistency
	5.2 Using Application Semantics
	5.3 Data Locking Approaches
	5.4 Promises and Guarantees
	5.4.1 Guarantees of Achievable Consistency
	5.4.2 Breaking Promises

	5.5 Semantically-Informed Database Management
	5.5.1 Semantics-Based Concurrency
	5.5.2 Application-Specific Conflict Resolution

	5.6 Programming with Consistency Guarantees
	5.6.1 Semantics-Free Semantics
	5.6.2 Class-based Encoding

	5.7 Consistency Guarantees: Summary

	6 writing Applications in prospero
	6.1 Base-Level Programming: Writing Applications
	6.1.1 Streams
	6.1.2 Promises and Guarantees

	6.2 Metalevel Programming: Customising the Toolkit

	7 Application examples
	7.1 Example: Shared Drawing
	1: (defun polyline-editor ()
	2: (let ((window (create-window “Polyline Editor”)))
	3: (add-to-window (create-interactor ‘polyline-interactor
	4: :where window
	5: :when ‘mouse-down
	6: :finish-fn #’add-new-polyline)))))
	7:
	8: (defun add-new-polyline (interactor points)
	9: (add-to-window (create-instance ‘polyline :points points)))
	1: (defmethod perform-local-action :after ((action <action>))
	2: (add-action-to-stream action (current-local-stream)))
	3:
	4: (defmethod add-action-to-stream ((action <action>) (stream <stream>))
	5: (push action (stream-actions stream))
	6:
	7: (defmethod add-action-to-stream :after (action (stream <bounded-stream>))
	8: (if (full-p stream)
	9: (synchronise stream (stream-remote stream))))
	10:
	11: (defmethod synchronise ((stream <bounded-stream>) (stream <remote-stream>))
	12: (dolist ((action (reverse (stream-actions stream)))
	13: (propagate-action-to-stream action remote)
	14: (stream-reset stream))

	7.2 Example: Hypertext Database Editing
	1: (defproperty <append>)
	2: (defproperty <structure-change)
	3: (defproperty <content-change>)
	4: (defproperty <no-change>)
	5:
	6: (defaction <create-object-action> <append>)
	7: (defaction <find-action> <no-change>)
	8: (defaction <set-field-action> <content-change>)
	9: (defaction <change-field-action> <content-change>)
	10: (defaction <add-link-action> <structure-change>)
	11:
	12: (defpromise <structure-promise> <structure-change> <no-change>)
	13: (defpromise <content-promise> <content-change> <no-change>)
	14: (defpromise <structure-content-promise> ‘(<structure-promise> <content- promise>))
	15:
	16: (defmethod compatible-promises ((p1 <structure-change>) (p2 <structure- change>))
	17: nil)
	18:
	19: (defmethod compatible-promises ((p1 <content-change>) (p2 <content-change))
	20: nil)
	1: (defun request-guarantee ()
	2: (let ((promise (case *access-mode*
	3: ((:entry) (create-promise <content-promise>))
	4: ((:linkage (create-promise <structure-promise>))
	5: (t (create-promise <structure-content-promise>)))))
	6: (get-guarantee *server-stream* promise)))
	7:
	8: (defun ui-set-mode (gadget menuitem submenuitem)
	9: (declare (ignore gadget menuitem))
	10: (setq *access-mode* (intern (string-upcase submenuitem)
	11: (find-package “KEYWORD”)))
	12: (if *current-guarantee*
	13: (redeem-guarantee *server-stream* *current-guarantee*))
	14: (setq *current-guarantee* (request-guarantee)))
	1: (defmethod add-link :after ((from <record>) (to <record>))
	2: (let* ((from-id (record-id from)) (to-id (record-id to))
	3: ����(action (create-action <add-link-action> *ident* from-id to-id)))
	4: (add-action-to-stream action (current-local-stream))))
	5:
	6: (defmethod new-record :after ((record <record>))
	7: (let* ((id (record-id record)) (type (class-name (class-of record)))
	8: ����(action (create-action <create-object-action> *ident* id type)))
	9: (add-action-to-stream action (current-local-stream))))
	10:
	11: (defmethod checkin ()
	12: (add-action-to-stream (create-action <synchronise>)
	13: (current-local-stream)))

	7.3 Example: Accommodating Opportunistic Work
	1: (defmethod synchronise-remote-action (action)
	2: (let* ((stream (action-stream action))
	3: ����(promise (promise-for-stream stream *local-stream*)))
	4: ;; first check if this action was under a valid promise
	5: (if (guaranteed-action action (guarantee-promise promise))
	6: (locally-perform-action action)
	7: ��;; otherwise, try to complete it anyway
	8: ��(if (acceptable-action action)
	9: ���(locally-perform-action action)
	10: ;; fail in the last resort
	11: (syntactically-locally-perform-action action)))))

	8 Flexibility in Prospero
	9 Conclusions
	Acknowledgments
	References

	Using Metalevel Techniques in a Flexible Toolkit for CSCW Applications
	Paul Dourish
	Xerox Palo Alto Research Center 3333 Coyote Hill Road Palo Alto CA 94304 USA dourish@parc.xerox.com

