
eans
Taking the Work out of Workflow: 
Mechanisms for Document-Centered 
Collaboration

Anthony LaMarca, W. Keith Edwards, Paul Dourish, John Lamping, 
Ian Smith and Jim Thornton

Xerox Palo Alto Research Center, USA
lamarca@parc.xerox.com

Abstract: There are two aspects to technical support for collaborative activity; support for
content work and support for coordination. The design of CSCW systems must typically
address both of these, combining them in a collaborative application. This approach, how-
ever, suffers from a variety of well-known problems, not least the compatibility between
collaborative and single-user applications, working styles and practices. In this paper, we
describe an alternative approach that makes coordination and collaborative functionality
an aspect of the collaborative artifact rather than a collaborative application. We present
an infrastructure and a series of application examples to illustrate the idea of document-
centered collaboration, in which coordination and collaboration are separated from and
independent of applications.

Introduction

Most computer applications focus on the manipulation of content. They gather
information from the user, record it, control access to it, organize it, act on it, and
present it on demand. Content includes user-readable forms of information, such as
is handled by a word processor, presentation package or software development
environment, as well as internal machine-readable forms such as database records,
index structures and object code formats.

Collaborative applications add a second concern to this focus on content: a con-
cern with coordination. Schmidt and Bannon (1992) draw on the work of Anselm
Strauss to argue that the central focus in CSCW is “articulation work”—the m



etc.”

tion, a
re of
SCW
; this
tools,
t appli-
nt of
 shar-

ontent
n col-
e free
 from

eans
lated,

criti-
ation.

ontent

ly be
tand
plica-

t even
abase
ssump-
d by
other
it is in

r con-
 and
itself.
en we
by which people “divide, allocate, coordinate, schedule, mesh, interrelate, 
their concerted activities.

Since CSCW systems must be able to deal with both content and coordina
fundamental question for the development of CSCW technologies is the natu
the relationship between the two. It has been a troublesome one. Some C
applications have attempted to take on the entire problem single-handedly
approach has led to the development of collaborative text editors, drawing 
and so on. Other systems have focussed on the coordination aspects and lef
cation development alone; this approach has led to the developme
collaboration harnesses and run-time frameworks for transparent application
ing. Each of these approaches has problems, as we will discuss.

In this paper, we present a new approach to the relationship between the c
and coordination facets of collaborative systems. In our approach, we focus o
laboration as a feature of the artifact rather than the application. In doing so, w
ourselves from a set of restrictions on the interoperability of content that come
an application focus. Our model adopts electronic documents as the primary m
of content exchange. Electronic documents can be opened, read, manipu
changed, clustered and sorted with a variety of familiar tools; but they also, 
cally, carry their semantics with them, rather than delegating them to an applic

Applications, Content, and Encodings

Applications manage content. They store, represent, render and manipulate c
in a wide variety of formats.

Often, this content is encoded in application-specific ways, so that it can on
used or interpreted by specific applications imbued with the ability to unders
the meaning of that particular encoding. The content types used by these ap
tions may not be shareable with other applications, and indeed, they may no
be readily exposed to other applications at all. For example, a custom dat
application, such as an insurance claims processing tool, makes semantics a
tions about the validity of the information it will store and use. The data store
this application will not be understandable by other applications. In fact, these 
applications would likely be unable to even access the information, stored as 
a custom database rather than a simple file.

In other words, applications contain encodings and representations of thei
tent that are tailored to their specific needs, and the ability to interpret
manipulate these representations is encapsulated within the application 
Although this approach is successful most of the time, it presents problem wh
attempt to extend the functionality of the application into new areas.



ditor.
man-
dina-

ontent
ngle,
ted
bora-

ch has
ployed

appli-
 of the
itally
d will
laying
 from
 this

ges to
d can
 inte-

rdina-

tion

our
ing,
t. This
Content and Coordination

On top of their concern with content, collaborative applications must also be con-
cerned with support for the coordination of activities between individuals. A vari-
ety of mechanisms have been introduced to support coordination, such as the use
of awareness within a shared workspace (Dourish and Bellotti, 1992) or the use of
explicit representations of conversational action as a basis for managing patterns
of interaction (Winograd and Flores, 1986). Support for coordination has been a
primary research focus with CSCW. However, this has often been to the detriment
of support for content in prototype collaborative tools; often, the latest research
prototype shared text editor may well be shared, but isn’t a very good text e
The problem is how to combine application features—the interpretation and 
agement of specialised content—with new features for collaboration and coor
tion.

There have been two common approaches to the relationship between c
and coordination in shared applications. The first is to combine them in a si
monolithic application, in which the needs of collaboration can be fully integra
with the manipulation and presentation of content; the second is to use a colla
tion harness to share single-user applications. Although the second approa
proved useful in specific scenarios, such as remote presentations, most de
systems use the first approach.

Take a workflow application as an example. As discussed above, such an 
cation will have an innate understanding both of the content and the process
workflow. When a user updates one bit of content in the system—say, by dig
“signing” an expense request—the system notices this change in state an
move the process along to its next logical state. This change may involve disp
forms on other users’ screens or in their work inboxes, removing documents
the queues of other participants, and so on. The workflow tool is able to do
because it is tightly integrated with the content it manages, can detect chan
that information (because changes come through the application itself), an
dynamically update the information on users’ screens. The downside of this
gration is that the workflow tool must take on all the responsibilities.

Document-Centered Collaboration

We have been exploring a new approach to the integration of content and coo
tion in collaborative systems. We call our approach document-centered collabora-
tion. In our approach, we move coordination functionality out of the applica
and onto the documents themselves.

To achieve this, we exploit a novel document infrastructure which gives to doc-
uments the resources to maintain application integrity. As we will explain, in 
infrastructure, all operations on a document, including reading, writing, mov
and deleting, can be observed by active code associated with the documen



e and

re the
e read,
tly see
es the
ents

iddle-
ment
 like a
. The
ight
cute
 appli-
tronic
.
st, it
ocu-

ought
kflow.

king
t can
ntically
e on
l ways
red

lop-
 that
nding

Docu-
 is an
s rad-
ries

xperi-
active code can then take appropriate action, such as making notifications, perform-
ing the operation itself, or vetoing the operation. This ability to associate
computation with content gives the ability to tightly bind application semantics in
with the content that those semantics constrain. At the same time, by using active
code to exploit knowledge about the external state of the world, documents can, in
effect, become “situationally aware” and be responsive to changes in their us
in their users. 

We believe that such a system can offer a novel approach to workflow, whe
state of the workflow process is exposed as a set of documents that can b
written, or operated on using standard, existing tools. Users need never direc
or use a workflow tool. Instead, computation attached to the documents enforc
coordination conventions of a workflow process, while still allowing the docum
to be used in all the same ways as conventional electronic documents. 

To enable the construction of these active documents, we have built a m
ware layer that sits between ordinary applications and existing docu
repositories such as file systems. To general purpose applications, it can look
file system, and to file systems, it can look like a general purpose application
infrastructure can also maintain “extra” information about the documents that m
not be provided by the underlying repository, and provides the ability to exe
arbitrary code when documents are accessed. By sitting between files and the
cations that use them, the infrastructure can add new capabilities to elec
documents, while allowing existing applications to continue to work with them

We believe that this approach will have a number of tangible benefits. Fir
does not force a choice between doing workflow and using a favorite set of d
ment-based applications such as word processors and the like; workflow is br
to these applications, rather than creating standalone applications to do wor
Coordination and the interpretation of content have been separated.

Second, we can still use all of the existing tools that are available for wor
with documents. Indeed, the ability to bind computation into document conten
ensure that these general-purpose tools operate on our documents in sema
constrained ways that do not violate the requirements that workflow may plac
them. Essentially, we enable the documents to be used in standard, genera
without corrupting workflow semantics; new, constrained functionality is laye
on top of existing document functionality.

Third, for designers of workflow processes, we allow a rapid pace of deve
ment. A workflow process builder just has to write the pieces of computation
are attached to documents to implement the workflow process; not the surrou
tools and interfaces for mediating and visualizing the workflow process.

The work described here has been done in the context of the Placeless 
ments Project at Xerox PARC (Dourish et al., 1999). Placeless Documents
effort to build a “next generation” document management system that provide
ical extensibility, as well as smooth integration with existing document reposito
and tools. We shall describe the Placeless substrate on which our workflow e



ar-
rative
 and
roach
antics
 How-
ey are

sing
using
, and
ple to
asking
bers
h will

rosoft
d can
 seam-
ng the

nality
cture
 and
Our
ments were founded, as well as investigate three separate collaborative applications
we have built using our document-centered model. 

Comparison with Existing Approaches

The relationship between content and coordination functionality is a fundamental
issue in the design of CSCW systems. One approach has been to embed collabora-
tive functionality in new tools. Users have been offered new sorts of drawing tools
(e.g. Brinck and Hill, 1993), new sorts of spreadsheets (e.g. Palmer and Cormack,
1998), new sorts of presentation tools (e.g. Isaacs et al., 1994), etc., incorporating
functionality for information sharing and collaboration. However, it has been regu-
larly observed (e.g. Bullen and Bennett, 1990; Olson and Teasley, 1996) that the
introduction of new tools for simple, everyday tasks has been a barrier to the intro-
duction of collaborative tools. Even in the case of single-user systems, Johnson
and Nardi (1996) attest to the inertia surrounding the adoption of new tools, even
when the new applications are tailored to specific domain needs.

Another approach to this problem is the development of “collaboration-transp
ent” systems, and harnesses to make existing tools support collabo
functionality. Examples include Matrix (Jeffay et al., 1992), DistView (Prakash
Shim, 1994) and JAM (Begole et al., 1997) The collaboration transparent app
suffers from the problem that, since the applications are unchanged, their sem
cannot be revised to incorporate the needs and effects of collaborative use.
ever, it has the advantage that users can carry on using the tools with which th
familiar and in which they have an often significant investment.

Although collaboration transparency allows group members to carry on u
existing single-user tools, another problem arises in that they may not all be 
the same single-user tools. People use different incompatible software systems
even incompatible versions of the same software system; and forcing peo
upgrade their system to use your new collaborative system is no better than 
them to switch to a new word processor. What is more, if different group mem
like to use different word processors, then a collaboration-transparent approac
not be sufficient to let them work on a paper together.

Our approach is to focus not on applications, but on artifacts—in this case, doc-
uments. Our goal is to design a system in which one user can use Mic
FrontPage on a PC, another can use Adobe PageMill on a Mac, while a thir
uses Netscape Composer on a UNIX machine, and yet they can all three work
lessly on the same web documents. We achieve collaboration by augmenti
documents themselves.

Coordination languages have been used to separate application functio
from that supporting collaboration, and so move coordination into the infrastru
Examples include Linda (Gelernter, 1985) in the domain of parallel systems
DCWPL (Cortes and Mishra, 1996) in the domain of collaborative ones. 



 Like
ates a
ument
operate
rcep-
t we
hose

tools
lica-
ing
 as we

truc-
In the
ch by
Docu-
ates in
ntial

of the
echa-
iew of

rchical
n be

iting.
in the

stem
ed on

dget;
approach differs, though, in that our artifacts themselves take on an active role in
managing coordination.

Perhaps the closest related approach is that of Olsen et al. (1998), who explore
the use of collaboration and coordination through “surface representations.”
us, they want to move beyond the model in which each application encapsul
fixed semantic interpretation of data that is kept separate from the actual doc
contents. Their approach is to abandon encoded semantics and, instead, to 
at the level of “human-consumable surface representations,” or the simple pe
tible graphical patterns in application displays. Our approach is similar in tha
do not rely on semantics in the application, but different in that we move t
semantics closer to the document itself rather than its representation.

Abbott and Sarin (1994) suggested that the next generation of workflow 
would be “simply another invisible capability that permeates all (or most) app
tions.” By decoupling collaboration functionality from the application, and mak
it a middleware component, our approach has brought us closer to this model,
will demonstrate.

We will begin by introducing the Placeless Documents system, a new infras
ture for document management which provides the basis for our approach. 
main body of the paper, we will introduce and illustrate the use of our approa
describing three example systems that have been built on top of Placeless 
ments, and which serve to explain how the document-centered approach oper
practice. Finally, we will consider how this approach relates to current and pote
future practice in the development of collaboration technologies.

The Placeless Documents Project

This section presents an overview of our system. We begin with a discussion 
basic facilities of the Placeless architecture, and look in particular at the m
nisms in Placeless that were necessary to build our document-centered v
workflow.

Overview of Placeless Documents

Traditional document management systems and filesystems present a hiera
organization to their users: documents are contained in folders; folders ca
nested within other folders. This structure, while easy to understand, is lim
For example, should an Excel document for a project’s budget be contained 
Excel folder, the budget folder, or the project’s folder?

The goal of the Placeless Documents project is to build a more flexible sy
for organizing a document space. In the Placeless model, organization is bas
properties that convey information about context of use: the document is a bu



s and
d
r than

 user’s

ltiple
ument

hich it
access
such
ent

abil-
form
e con-
e they
m; we
r par-

 design
impor-

s and
ment

flow
er of
 and
might
ces,
onic
e inter-
it’s shared with my workgroup, and so on. Properties are metadata that can describe
and annotate the document and can facilitate its use in various settings.

Active Properties

While many systems support the association of extensible metadata with file
documents, properties in Placeless can be active entities that can augment an
extend the behavior of the documents they are attached to. That is, rathe
being simple inert tags, extensionally used to describe already-extant states of the
document, properties can also be live code fragments that can implement the
desired intentions about the state of the document.

These active properties can affect the behavior of the document in mu
ways: they can add new operations to a document as well as govern how a doc
interacts with other documents and the document management system in w
exists. For example, in Placeless, active properties are used to implement 
control, to handle reading and writing of document content from repositories (
properties are called “bit providers”), and to perform notifications of docum
changes to interested parties.

It is these active properties, particularly the bit providers, which provide the 
ity to associate computation with content. Since property code can per
arbitrary actions when it is invoked, properties can return results based on th
text of their use, and the state of the document management system at the tim
are invoked. Active properties are the heart of the Placeless Document Syste
shall see how they are used to implement document-centered workflow in ou
ticular examples.

Distribution and Compatibility

Placeless Documents was architected to be a robust distributed system. Our
allows users to access document collections across the network and, more 
tantly, to serve document collections where they see fit.

The attributes of the Placeless system described above—active propertie
robust distribution—enable the construction of novel applications and docu
services. To be truly useful, however, the system must also work with existing doc-
ument- and file-based applications. This is crucial to our desire to support work
using arbitrary off-the-shelf applications. To this end, we architected a numb
“shims” which map from existing document- and file-management interfaces
protocols into the concepts provided by Placeless. Examples of such shims 
include file system interfaces, HTTP, FTP, IMAP and POP3 protocol interfa
WebDAV, and so on. Existing applications “expect” to access files and electr
documents through these comment interfaces, and so Placeless provides thes
faces to its documents.



less
less,

ot find

of as a
ting
that
ces.

nism,
s, we

 to be
grate
 can
ccessi-
s in
cribed
rs to

neral-

e
s sub-
ee’s
ubmit
ck for
ction

g two
truc-
For example, we have built a Network File System (NFS) server layer atop
Placeless. This layer lets existing applications—including such tools as Word and
Powerpoint—which are only written to understand files, work with live Place
documents. Existing applications do not have to change to work with Place
although there is a loss of power since many of the Placeless concepts do n
an easy expression in a more traditional file system model.

For the purposes of this paper, the Placeless infrastructure can be thought 
middleware layer—essentially a multiplexor—capable of reusing or genera
content from varied sources, creating a uniform notion of “documents” from 
content, and then exposing the resulting documents via a multiplicity of interfa
By exposing arbitrary entities as documents through the bit provider mecha
and then making these documents widely available through arbitrary interface
gain great leverage from existing tools and applications.

We have presented an architectural foundation that can allow computation
tightly bound in with document content. The Placeless system can not only inte
existing sources of information from filesystems and web repositories, but
expose all of its documents through interfaces that make those documents a
ble through existing applications. Now, we will present three experiment
workflow that we have built around the Placeless system. The systems des
here provide a document-centered approach to workflow that allow their use
break away from closed, specialized applications, and bring the power of ge
purpose computing tools to workflow processes.

A Simple Example: Travel Approval

The first and simplest of our applications is called Maui and manages a corporat
travel approval process. The actual process description is simple: employee
mit trip itineraries for approval, which requires consent from both the employ
manager and department head. It was our goal to allow employees to easily s
trip requests, check on trip status as well give managers an easy way to che
and access travel requests requiring their attention. The rest of this se
describes how we implemented this in a document-centered style by buildin
new active properties on top of our flexible property-based document infras
ture.

User’s View

In Maui, users can construct their itineraries any way they wish and are free to
choose the application and document format of their choice. As an example a user
might write a note in FrameMaker, or submit an Excel spreadsheet with detailed
cost information, or simply scan in a paper copy of a conference invitation. This



ip has
il noti-

ocu-
. The
 an
an run
aker)
tents

raries
rdina-

cally
.

ent
w the
 with a
e to

tem
n the
tem
mpo-

.
starts
g the
ed in
Marca,
o the
tever
erves
is is
differs significantly from traditional workflow systems where relevant data must
be manipulated with proprietary integrated tools.

To enter this new itinerary into the travel approval process, users open a standard
document browser (like the Windows explorer) and drag the itinerary document
onto the trip status document. The trip status document is special in that it serves as
a central point of coordination for the approval process. Once an itinerary has been
dragged onto the trip status document, the approval process in underway, and the
employee’s task is done, short of checking on the status of the trip. When a tr
been approved or denied by the relevant people, the employee is sent an ema
fication of the result.

As well as serving as a drop target for new trip itineraries, the trip status d
ment contains content that summarizes the state of the user’s travel plans
content is in HTML format and contains a summary of all of the trips for which
employee has submitted requests (see Figure 1). In this way, an employee c
any application that understands HTML (such as Netscape, Word, or FrameM
and view this document to check on the status of their pending trips. The con
of the trip status document also help managers by giving them a list of the itine
that require their attention. The trip status document serves as a nexus of coo
tion for those both taking trips and approving trips; and its content is dynami
updated as the states of the pending and processed travel approvals change

The actual approval or denial of a trip is performed on the itinerary docum
itself. When a manager opens a travel itinerary that requires their vote they vie
document as usual, but something else happens as well: they are presented
Yes/No voting box, created by an active property, which allows them to decid
approve or deny the trip. 

Note how the arrangement differs from classic workflow: users in our sys
never explicitly run any workflow software. In this case, a manager would ope
document in whatever way they normally would to view or edit it, and the sys
augments their normal interaction to include access to the user interface co
nents needed to drive the workflow process.

How It Works

Maui is made up of two new active properties. The first is the StatusBitProvider,
which is attached to the trip status document. This property has two functions
First, it listens for drops of other documents and, when it receives them, 
those documents in the travel approval process. It does this by determinin
user’s manager and department head from organizational information stor
other documents that represent the users of the system (Edwards and La
1999), and attaching copies of the second property, described below, t
dropped document. The dropped document becomes—in addition to wha
other roles it is performing—a trip request. Second, the StatusBitProvider s
up the HTML content which summarizes the state of the user’s trips. Th



ion is
create
e of
d the
 can
 docu-
stand-
ed by

ween
 prop-
largely a straightforward task of querying for travel documents and formatting the
results in HTML; since the bit provider is invoked whenever content is required, it
can dynamically generate new information based on the state of the world at the
time it is invoked.

The second new property is the Approve/DenyProperty, which is what managers
interact with when casting their votes on a trip. This property can determine if the
user currently viewing the document it is attached to is a manager who’s decis
needed for this particular travel request. When appropriate, the property can 
and display a GUI component with a Yes/No button for voting. Clicking on on
these buttons will record the manager’s vote on the document and sen
employee notification if appropriate. Applications which are “Placeless-aware”
check for the existence of these components and display them alongside the
ment content. But the Approve/Deny property can also create a separate, 
alone GUI control panel that would appear whenever a travel request is view
any application.

The knowledge and state of our travel approval process is distributed bet
these two properties. The status bit provider knows how to add and configure

Figure 1: The Travel Status Document



 man-
e will

rs and

of dif-
as our
cant

 prop-
erties

ess,
orting
n is in
 letters

t an
f arbi-
mber
hosen
 the
neral
 and
itative
ccep-

 of the
erties in order to turn an ordinary document into a pending itinerary, but does not
understand how votes are applied. Any one instance of the Approve/Deny property
knows about a single manager’s vote, but knows nothing about how any other
agers voted. In the next section we describe a more complex process, and w
see that the distribution of knowledge and state increases as more behavio
users are included in the process.

Managing a Complex Process: Hiring Support

Here at our research lab we have a hiring process which involves a number 
ferent steps and people. We chose to implement a hiring process application 
second document-centered workflow application as it potentially offers signifi

benefits to us and also tests our model of interaction.1 As with the travel approval
application, we have implemented this on top of Placeless Documents using
erties to hold both the logic and state of the process; the collection of prop
that comprise the hiring application is called Carlos.

The Hiring Process

An illustration of the hiring process in Carlos is shown in Figure 2. In this proc
candidates submit their application in the form of a resume and a set of supp
documents such as articles and papers. Upon determining that the applicatio
order, reference letters are requested for the candidate. Once at least three
have been received for the candidate, the materials are reviewed by the screening
committee. It is the job of the screening committee to decide whether or no
interview should be scheduled. In Carlos, the screening committee can be o
trary size, but we designed our policy for a small group where every me
votes. If an interview is approved, the candidate is contacted and a date is c
for the interview through traditional administrative procedures. At this point,
candidate is brought in for the interview and the process moves into the ge
voting stage and all members of the lab are invited to submit a hiring proxy
vote on the candidate as described below. In Carlos, there are no rigid quant
rules governing the number of votes that must be cast or what the rejection/a
tance thresholds are. Rather, votes and statistics accumulate for the review
lab manager who makes the final hiring decision.

The User’s View

In Carlos, users interact with a number of different document types throughout the
hiring process. Some of these documents exist on a per-candidate basis and some

1. The process we describe is similar to, but not the same as the one we use in our lab. We have made changes
to the process in order to both simplify and illustrate interesting things in the system.



r to

rence
ts onto
ument
hoice.
d user
andi-
are shared. The most important shared document is the hiring status document
which contains a live up-to-date summary of the status of all of the candidates in
the system. A user, using any tool that understands HTML content, can open the
status document and be apprised of where any candidate is in the process (See Fig-
ure 3). In this overview users can view candidate letters, jump to supporting docu-
ments, and see compilations of both screening and hiring votes that have been cast.

The status document also serves as the mechanism for adding new candidates to
the system. A candidate can be entered into the hiring process by dragging a link to
their resume onto the hiring status document. We again see the departure from tra-
ditional workflow: in Carlos resume documents can be composed in any application
and can be saved in any format. This is especially useful in the hiring process where
resumes and letters arrive in a number of different forms including PostScript,
simple ASCII, and TIFF images from scanned paper documents.

Upon dragging a resume onto the status document, a new candidate document is
created. This document serves three important functions. First, it contains HTML
content that gives a detailed view of a candidate’s status. The content is simila
that given in the hiring status document, but provides greater detail.

The candidate document also functions as the mechanism for adding refe
letters and supporting documents for a candidate. When users drag documen
a candidate document, they are presented with a choice of what type of doc
is being dropped (letter or supporting document); the system records their c
Transitions between states in the hiring process take place automatically an
intervention is not required; upon dropping the third reference letter onto a c

Figure 2: The Hiring Process



g for

 votes
, votes

 they
ening
docu-
UI to
ening
, can-

y half
 some
 flex-
oice

nt. Our
date, for instance, the candidate’s status is automatically changed from “waitin
letters” to “requiring screening decision.”

Finally, the candidate document is used to cast both screening and hiring
in the system. In Carlos, a vote is not just a simple yes/no or a number. Rather
in our system have a quantitative portion plus a related document called the proxy.
This gives users of our system considerably more flexibility to express what
are thinking and why they voted the way they did. To cast a vote for either scre
or hiring, users compose their proxy however they desire and then drag this 
ment onto the candidate. At this point, the user is presented with a small G
allow them to enter the quantitative portion of the vote. In the case of a scre
vote, the quantitative portion is a simple yes or no, in the case of a hiring vote
didates are judged on a scale from 1 to 7.

In our research lab, hiring votes are often cast in a number of ways. Roughl
the people in the lab attend a formal hiring meeting to discuss the candidate,
people send in email proxies, while others leave voice mail proxies. Due to its
ibility, our system can accommodate proxies in all of these forms. Email and v
mail are easy turned into documents and attached to the candidate docume

Figure 3: The Hiring Status Document



 prop-
ce as
tatus
rs to
 there

ss a
nt is
or

e. The

ndi-
ents,

eds to
sitions
wait-
the to

ent.
 proxy
way,

ol to

work-
on of

me
 peo-
 the
 toward
digital video infrastructure makes it possible to record the entire hiring meeting and
break it into different documents, each containing an individual’s proxy.

Since Carlos is not a centralized application, but rather a set of coordinated
erties, we make an effort to provide the user with as coherent an experien
possible. It is for this reason that we chose HTML as the format for the overall s
and candidate documents. The hyperlinking in HTML makes it easy for use
smoothly move from the overall status to a single candidate’s status and from
to one of the candidate’s letters or proxies. 

How It Works

Like our travel approval application, the functionality of Carlos is divided acro
number of active properties. The functionality for the overall status docume
provided by the HiringStatusBitProvider which both provides up-to-date status f
all of the candidates and can create new candidate documents given a resum
bulk of the logic for the hiring process lives in the CandidateBitProvider. Like the
status bit provider, it knows how to produce HTML content describing the ca
date’s status. It also understands how to receive drops of supporting docum
reference letters and both screening and hiring votes. To do these things, it ne
understand the various states of the hiring process and how and when tran
take place. As an example, this property knows that if a candidate is in the “
ing for letters” state and has a third letter dropped on it, it should advance to 
“requiring screening decision” state. Finally, Carlos uses the RelatedDocument-
Property which gives a document the ability to refer to another relevant docum
Carlos adds this property to every supporting document, reference letter and
vote and configures it to point at the relevant candidate document. In this 
users can quickly jump across linked clusters of related documents.

Extending the Document Focus to Other Domains: 
Software Engineering

The final application we have built using our document-centered model is a to
support the software development process, called Shamus. Software development,
since it is such a fluid and often chaotic process, needs strong support from 
flow tools. These tools try to provide clean task boundaries and separati
responsibilities that can enhance the software development process.

Software development is a collaborative process and has many of the sa
attributes of more “traditional” workflow processes: the task is shared by many
ple, all of whom have different, but perhaps overlapping, responsibilities for
result; the shared artifact (the code) moves from state to state as it progresses
readiness. 



f the
s that
ork-
d
 the

 pro-
s of the

model
fold.
o-
nt

in col-
 out,

, or

f travel
ple.

 of
 who

pport

dying
erties
ch as
ctly.
ocess
 it also
 use
odels

urce
t they
y.

 code
ro-
 to a
One factor that complicates the software process greatly is the presence of mul-
tiple versions of the artifact—each developer may have his or her own copy o
software that differs from that of the others. This divergence is one of the thing
distinguishes software development from more traditional workflow. In most w
flow situations, there is one “version” of the artifact—either the travel is approve
or it isn’t; the candidate is being interviewed or not. The different participants in
workflow share what is a more-or-less fully consistent view of the state of the
cess. Contrast this to software where the developers have their own snapshot
code state that may vary widely from one another.

We wanted to see if we could expand the reach of our document-centered 
into the extremely fluid domain of software engineering. Our goals were two-
First, we wanted to support awareness of the overall state of the development pr
cess. Second, we wanted to support automation of the subtasks in the developme
process.

Providing a true and useful sense of awareness is typically a hard problem 
laborative development—I may know that you have a piece of code checked
but I have no way of knowing at a finer granularity what you are doing with it
even if you’re actually changing it at all. Workflow systems are designed to provide
awareness in the context of the task at hand: a manager is aware of the state o
approvals in terms that “make sense” for the travel approval task, for exam
Unfortunately, software engineers typically have only very coarse forms
machine-supported awareness available to them—only at the level of knowing
has an individual file checked out, for instance. We believed that we could su
better facilities for fine-grained and task-focused awareness in our model.

We also wished to explore automation of the development process by embo
individual tasks as active properties attached to program content. These prop
would serve to off-load some of the cumbersome chores of development, su
running tests, generating documentation, and ensuring that builds finish corre

Shamus provides a collection of properties to support the development pr
by enhancing awareness and automation. With its document-centered focus,
brings with it the benefits that accrue in our other applications—the ability to
the tools at hand to operate on content, and the unification of disparate task m
into a single document metaphor.

What Shamus Does

The Shamus “application” is actually a collection of properties attached to so
code files. These properties control the behavior of the files, and ensure tha
interact with one another to support the development process in a smooth wa

As mentioned, one of the common awareness problems in collaborative
development is knowing who is working in which source files. Typically the p
cess of reconciling working versions is done when users “check in” the code
centralized repository that represents the true view of the project.



less of
sers are
it can
 task
lasses
 if they
gard-
pping
vide

e dis-
ed by

ment.
mpile
 docu-
gram
t com-
Our desire was to lessen the potentially cumbersome and error-prone process of
reconciling changes at check-in time by providing awareness of the changes others
are making in the code base in real-time. The system shows details about where
others are working in the code snapshots they have currently in use—regard
whether this code has been checked in. The system also understands that u
working with program files and knows the basic structure of source code so 
provide awareness information in a way that is semantically meaningful for the
at hand. In our Java example, the system shows which methods in which c
have been changed by users. This form of awareness can allow users to know
are working in a portion of the code that another user is—or has—worked in re
less of check-in status. The system doesn’t prevent users from making overla
changes—that is what the weightier check-in process is for—but it can pro
information about what colleagues are doing.

Figure 4 shows an example of a Java source file being edited by a user. Th
play provides fine-grained information identifying areas that have been chang
other users, even though those changes may not have been checked in yet.

Shamus also supports the automation of common tasks in software develop
Another set of active properties attached to source files can automatically co
and run the programs defined by the source files, and automatically generate
mentation. Refer again to Figure 4. Shamus will automatically compile the pro
and generate documentation when the code is changed. The properties tha

Figure 4: Shamus supports collaborative development



n-
n of
ing

hout
 build
 new
ts.
ment
d new
aying
devel-
e the

 docu-
ovide
 can
uto-
e IDE.
d the

to code
-
These
e con-

sions
. Since
ey will

nature
es.
these

 
, by

ocess
 com-
om the
prise Shamus can generate new user interface components that will be presented to
the user. Here we see a number of “views” that can display the up-to-date docume
tation for the currently-edited source file, and look at the state of a compilatio
the file. An extra control is enabled if the code compiled without errors, allow
the user to easily run the application.

All of these tasks happen automatically without user intervention, and wit
requiring user attention to the results. These steps are typically a part of the
process that is automated by Makefiles or other build tools. Shamus allows
build tasks to be added incrementally and attached directly to code documen

We should note that many of our developers work in integrated develop
environments (IDEs). While the properties that comprise Shamus cannot ad
UI components to these applications, or change their innate controls for displ
code, they can still assist in the development process. For example, all of the 
opers can remain aware of what the IDE-using developer is doing, becaus
active properties that detect changes are still live and noticing updates to the
ment, even though it is being edited in an IDE. Second, the properties that pr
new UI components for controlling Shamus and displaying conflicting updates
pop up as stand-alone windows next to the IDE’s windows. And finally, the a
mation aspects of Shamus are still active, even though the user is running th
Documentation and object files are being generated in the background, an
results of these operations are available as separate Placeless documents. 

How Shamus Works

The awareness aspects of Shamus are driven through a property attached 
source files, called the CodeAwarenessProperty. This property awakens periodi
cally and computes hash code signatures of the text of individual methods. 
signatures are stored on the document as properties identifying the state of th
tent in terms of the source code structure.

With the signatures computed, the property performs a query to find all ver
of the same source file that are in use by other Placeless Documents users
these documents also have the CodeAwarenessProperty attached to them, th
have up-to-date lists of their signatures attached to them as well. These sig
lists can be compared to see if users are making potentially conflicting chang

The CodeAwarenessProperty can provide a UI widget which presents 
potential conflicts. 

The automation tasks are implemented by a separate property, called theCom-
pilerProperty. This property performs its tasks whenever new content is written
invoking external tools to do their jobs. The CompilerProperty will run the javac
compiler to compile Java code when needed, and the javadoc documentation gen-
eration system. The property captures the output of the external compilation pr
and creates a new Placeless document for it. The object files that result from
pilation are imported into Placeless, as are the error and warning messages fr



l
can,
tions).
erates

y the
ains.

rative
 of the
 users
sting

ork-
hed
sing
f gen-
ents.
 the

ble

eral-
s pro-
tasks
in our
 bal-
task at

with
ed to
e of

ies.
aviors

flow
mpli-
ample
ile col-
compiler. The javadoc-generated HTML documentation is also imported into
Placeless. 

These properties expose these derived documents as “views” of the origina
source, which are directly available from property-provided UI controls (they 
of course, also be accessed through a browser or via query from other applica
When the compilation executes successfully, the CompilerProperty also gen
a “run” control that applications can use to invoke the code.

Our experiment with Shamus has convinced us that the facilities provided b
Placeless Documents system are applicable to a range of application dom
Shamus provides support for two of the most time-consuming tasks in collabo
development—coordination with peer developers, and automation of aspects
build process. Shamus adds value to the development process while allowing
to use the tools they are comfortable with. It enhances the functionality of exi
tools without getting in the way of commonly-used development processes.

Conclusions and Future Directions

Our work has examined a model of workflow which separates monolithic w
flow applications into individual component behaviors which can be attac
directly to the content which is at the heart of many work activities. By expo
the state of a workflow process as a document, we can leverage the wealth o
eral-purpose document management tools that already exist in our environm
Via the integration of computation and content, we hope to move closer to
model envisioned by Abbott and Sarin (1998) of workflow being an “invisi
capability that permeates” all applications.

The ability to use these tools comes with a price, however—by using gen
purpose tools we lose the tight semantic binding that specialized application
vide. Custom, stand-alone workflow tools can embody the semantics of the 
they manage in ways that general-purpose tools cannot. This is a tension 
work: in the design of the workflow processes in our model, we must strike a
ance between the use of general tools and the specific requirements of the 
hand. Managing this balance effectively is a direction for future research.

In addition to the pragmatic benefits of allowing standard tools to integrate 
workflow practice in a novel way, our model of active content also can be us
provide more fluid expressions of workflow tasks. For example, a single piec
content can participate in multiple workflows via a “layering” of active propert
New behaviors can easily be added to documents without disrupting the beh
already in place.

While our primary focus has been on enabling the types of tasks that work
applications have typically managed, we believe that our infrastructure has i
cations and uses for other types of tasks as well. The software engineering ex
presented in this paper is one of these—it represents a class of task that, wh



nt”
ech-

h. We
e can

ctive
tasks.
celess
Java
s quite
vides
t ser-
hion. 
s and
n for
ied to
f this
new
 these
novel
d to

lec-
tion
and
 learn

Terry,
irectly

Next
 Hill,

licated
nff,

iew
’93
laborative, is very different from the rigorously structured and “globally consiste
views that traditional workflow processes enhance. The same active property m
anisms that support workflow can be used by this task to great benefit, thoug
believe that the foundation provided by the Placeless Documents infrastructur
support the construction of “applications”—or more accurately, clusters of a
property sets—for a range of document organization, management, and use 

The systems described in this paper have been implemented atop the Pla
Document system. While Placeless itself is approximately 100,000 lines of 
code, the amount of code needed to implement the active properties we use i
small—on the order of 300 lines of code each. We believe that Placeless pro
an excellent substrate for constructing and experimenting with new documen
vices and tools, as it allows easy development of behavior in a piecemeal fas

This paper is primarily an exposition of the “systems” aspects of Placeles
how they can be applied to novel applications; indeed, our original motivatio
doing this work was to see if the facilities provided by Placeless could be appl
a demanding domain such as workflow. We believe that the primary value o
work is in the collection of systems concepts that allow the construction of 
forms of document-based interaction, more than any particular expressions of
systems concepts in actual workflow examples. Our desire is to put forward a 
model of workflow and a description of the infrastructure that would be require
support this model.

We are currently investigating new applications for Placeless, including e
tronic mail, general-purpose organizational tools, and new “vertical” applica
domains including more workflow examples. We plan to continue to refine 
extend our infrastructure throughout the next year based on the lessons we
from these applications.

Acknowledgments

The Placeless Documents project at PARC is a large effort that has benefited from the involvement
and support of many people. In particular, we’d like to thank Karin Petersen and Douglas B. 
both of whom contributed to the Placeless design and implementation, but were not d
involved in the workflow applications described here.

References
Abbott, K. and Sarin, S. (1994). Experiences with Workflow Management: Issues for the 

Generation. Proc. ACM Conf. Computer-Supported Cooperative Work CSCW’94 (Chapel
NC). New York: ACM.

Begole, J., Struble, C., and Smith, R. (1997). Transparent Sharing of Java Applets: A Rep
Approach. Proc. ACM Symp. User Interface Software and Techology UIST’97 (Ba
Alberta). New York: ACM.

Brinck, T. and Hill, R. (1993). Building Shared Graphical Editors Using the Abstraction-Link-V
Architecture. Proc. European Conf. Computer-Supported Cooperative Work ECSCW
(Milano, Italy). Dordrecht: Kluwer.



ACM
ork:

ative
A).

. ACM
ork:

. and
ties.”

ment

ages

n of
ork

tions
ork

ased
ork

es for
an

n via
ork

irtual
ton,

dsheet.
ew

ive
ative

ork.

on for
Bullen, C. and Bennett, J. (1990). Learning from Users’ Experiences with Groupware. Proc. 
Conf. Computer-Supported Cooperative Work CSCW’90 (Los Angeles, CA). New Y
ACM.

Cortes, M. and Mishra, P. (1996). DCWPL: A Programming Langauge for Describing Collabor
Work. Proc. ACM Conf. Computer-Supported Cooperative Work CSCW’96 (Boston, M
New York: ACM.

Dourish, P. and Bellotti, V. (1992). Awareness and Coordination in Shared Workspaces. Proc
Conf. Computer-Supported Cooperative Work CSCW’92 (Toronto, Ontario). New Y
ACM.

Dourish, P., Edwards, K., LaMarca, A., Lamping, J., Petersen, K., Salisbury, M., Terry, D
Thonton, J. (1999). “Extending Document Management Systems with Active Proper
Submitted, Transactions on Information Systems.

Edwards, K., LaMarca, A. (1999). “Balancing Generality and Specificity in Document Manage
Systems.” Submitted, Interact’99.

Gelernter, D. (1985). Generative Communication in Linda. ACM Trans. Programming Lanagu
and Systems, 7(1), 80-112.

Grudin, J. (1988). Why Groupware Applications Fail: Problems in the Design and Evaluatio
Organizational Interfaces. Proc. ACM Conf. Computer-Supported Cooperative W
CSCW’88 (Portland, OR). New York: ACM.

Isaacs, E., Morris, T. and Rodriguez, T. (1994). A Forum for Supporting Interactive Presenta
to Distributed Audiences. Proc. ACM Conf. Computer-Supported Cooperative W
CSCW’94 (Chapel Hill, NC). New York: ACM.

Jeffay, K., Lin, J., Menges, J., Smith, F. and Smith, J. (1992). Architecture of the Artifact-B
Collaboration System Matrix. Proc. ACM Conf. Computer-Supported Cooperative W
CSCW’92 (Toronto, Ontario). New York: ACM.

Johnson, J. and Nardi, B. (1996). Creating Presentation Slides: A Study of User preferenc
Task-Specific versus Generic Application Software. ACM Trans. Computer-Hum
Interaction, 3(1), 38-65.

Olsen, D., Hudson, S., Phelps, M., Heiner, J., and Verratti, T. (1998). Ubiquitous Collaboratio
Surface Representations. Proc. ACM. Conf. Computer-Supported Cooperative W
CSCW’98 (Seattle, WA). New York: ACM.

Olson, J. and Teasley, S. (1996). Groupware in the Wild: Lessons Learned from a Year of V
Collocation. Proc. ACM Conf. Computer-Supported Cooperative Work CSCW’96 (Bos
MA). New York: ACM. 

Palmer, C. and Cormack, G. (1998). Operation Transforms for a Distributed Shared Sprea
Proc. ACM Conf. Computer-Supported Cooperative Work CSCW’98 (Seattle, WA). N
York: ACM.

Prakash, A. and Shim, H. (1994). DistView: Support for Building Efficient Collaborat
Applications using Replicated Objects. Proc. ACM Conf. Computer-Supported Cooper
Work CSCW’94 (Chapel Hill, NC). New York: ACM. 

Schmidt, K. and Bannon, L. (1992). Taking CSCW Seriously: Supporting Articulation W
Computer-Supported Cooperative Work, 1(1-2), 7-40.

Winograd, T. and Flores, F. (1986). Understanding Computers and Cognition: A new foundati
design. Norwood, NJ: Ablex.


	Taking the Work out of Workflow: Mechanisms for Document-Centered Collaboration
	Anthony LaMarca, W. Keith Edwards, Paul Dourish, John Lamping, Ian Smith and Jim Thornton
	Introduction
	Applications, Content, and Encodings
	Content and Coordination
	Document-Centered Collaboration

	Comparison with Existing Approaches
	The Placeless Documents Project
	Overview of Placeless Documents
	Active Properties
	Distribution and Compatibility

	A Simple Example: Travel Approval
	User’s View
	Figure 1: The Travel Status Document

	How It Works

	Managing a Complex Process: Hiring Support
	The Hiring Process
	Figure 2: The Hiring Process

	The User’s View
	Figure 3: The Hiring Status Document

	How It Works

	Extending the Document Focus to Other Domains: Software Engineering
	What Shamus Does
	Figure 4: Shamus supports collaborative development

	How Shamus Works

	Conclusions and Future Directions
	Acknowledgments
	References



