
le or

ple peo-
range

, if
ate indi-

e and
n both

n et al.

her

ions of
ts

se. This
ture of

nd

prefab-
A Tale of Two Toolkits: Relating Infrastructure 
and Use in Flexible CSCW Toolkits

Paul Dourish and W. Keith Edwards

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto
CA 94304 USA
{dourish, kedwards}@parc.xerox.com

Abstract. The design of software toolkits embodies a fundamental tension. On the one hand, it aims
to reduce programmer effort by providing prefabricated, reusable software modules encapsulating
common application behaviours. On the other, it seeks to support a range of applications, which neces-
sitates avoiding an overly-restrictive commitment to particular styles of application behaviour. 

We explore this tension in the domain of collaborative applications, which we believe are particularly
subject to problems arising from this tension. Based on an analysis of the basic issues of flexibility in
toolkit design, we explore opportunities for the design of toolkits which avoid application style com-
mitments, with illustrations from two toolkits which we have developed. A comparative analysis of
these two approaches provides insight into the underlying questions and suggests new design opportu-
nities for toolkits that provide a framework for application enhancement and extension.

Keywords: collaborative toolkits, collaboration infrastructure, toolkit design, reuse, specialisation,
tailorability.

1 INTRODUCTION
Flexibility and tailorability—the ability to accommodate individual differences in needs, use, sty

task—are endemic problem in software systems. Most systems are created to be used by multi
ple, in multiple organisations, on multiple computers, at multiple times, and generally in a wide 

of settings that require different forms of support and engagement. Collaborative applications are
anything, subject to even more stringent demands due to the extra requirements to accommod

vidual differences within the same group, as well as the range of ways in which groups organis
engage in their activities. The problems of tailorability have been studied in the context of use, i

single-user and group settings, in investigations such as those of Trigg et al. (1987), MacLea
(1990), Nardi and Miller (1991) or Trigg and Bodker (1994).

We are concerned with flexibility in a different domain, the domain of software toolkit design. How-
ever, we are motivated by just the same concerns that motivated the studies cited above. In ot

words, even though we are going to be talking about software toolkits and discussing quest
application implementation, our concern is with use. In particular, we are concerned with how toolki

can be designed to accommodate the wide range of potential applications and situations in u
is a more complex problem than simply the design of flexible applications, because of the na

toolkits and toolkit design.

Software toolkits ease the implementation of software systems by providing reusable components a

behaviours designed to be applicable in a range of circumstances. Like building houses from 
1



 from

ftware
h can

 a

inter-
erent

hav-
essing

n
 using

oesn’t

—
hen

er
gram-

le
ate the

reated
f those

sign

e one

time, the
t appli-

 toolkit
 which
ricated parts, this makes the application developer’s task simpler (and, with luck, faster) since the
work now focuses on assembling and configuring components rather than on creating them

scratch. As well as reducing effort and speeding application development, this reuse of so
components also offers a common conceptual framework for application development, whic

aid both application designers and users.

The components themselves arise out of common patterns of software structure that occur across

range of applications in a particular domain. So for example, a toolkit for constructing user 
faces provides interface “widgets” such as scroll-bars and buttons which occur in diff

interfaces, and from which interfaces can be constructed, as well as commonly-occurring be
iours such as mouse-tracking, keyboard event processing and so on. A toolkit for image proc

applications might provide common objects such as pixel arrays and color maps and commo
behaviours such as filtering, scaling and rotating image objects. Applications are constructed

these components as building blocks.

The designer of a software toolkit, then, is faced with a complex task. The toolkit designer d

write applications, but writes software to be used in applications; the details of those applications
what they will do, how they will do it, and who will use them—are not available at the time w

the toolkit is being written. There are multiple levels of developers and users. The toolkit design
is developing software that implements a toolkit. The “users” of the toolkit are themselves pro

mers, who then generate applications which themselves have users. In order to provide a valuab
and widely-applicable set of software components, the software toolkit designer must anticip

needs of the application developers by anticipating the sorts of applications which will be c
using the toolkit, and so in turn must anticipate the behaviour and requirements of the users o

applications. The toolkit developer’s conception of the likely applications will influence the de
of the software components provided in the toolkit.

It is from this two-level problem that the fundamental tension of toolkit design arises. On th
hand, the toolkit designer must offer pre-packaged software components, which come with pre-

packaged behaviour and hence pre-packaged expectations of usage patterns. At the same 
toolkit designer’s goal is to produce a set of components that can be used in as many differen

cations as possible, thus making the application developers’s job easier. More specialised
components make the application development task easier, but limit the range of applications

can be developed. The most fundamental issue in toolkit design is to resolve this dilemma.

toolkit
developer

application
developer user

applicationtoolkit

Figure 1: For the toolkit developer, anticipating the needs of application developers means anticipating 
the requirements of as-yet-unformulated applications and the needs of as-yet-unknown users.
2



f the

dressed

 clearly
esign

 them
o-

pecific

es we

cations
roups

First

ches
ents.

l and
tween

body
ents

ighlight

are
of the

 give
ospero

t dwell
e tech-

.

lication

s and
 with

s to the

oolkit
or-

ange of

 a par-
Typically, the two levels of the design problem—the design of the toolkit for the purposes o

application developer, and the design of the applications for the purposes of the user—are ad

independently. Although the needs and requirements of specific applications and their users
play a major role in the design of a toolkit, the decisions about toolkit design and application d

are usually made in isolation. In this paper, we aim to develop an approach which brings
together, and which looks at software toolkit design in terms of the constraints that toolkits intr

duce for the users of applications which might be generated from that toolkit. Our concern is with
an approach to toolkit design that preserves the benefits of reuse but supports application-s

programming and adaptation of the toolkit itself.

We look at this problem particularly in the domain of collaborative systems. Although the issu

raise for toolkit design are general ones, we believe that the demands of collaborative appli
demonstrate them particularly well, not least because of the range of ways in which different g

can engage in superficially similar tasks.

We begin in Sections Two and Three by looking at the problem of flexibility in two domains. 

we explore flexibility in the domain of collaborative infrastructures, and look at the approa
taken by previous work to support a range of applications with a limited set of toolkit compon

Second, we examine flexibility in the context of use—that is, flexibility required by the socia
interaction dynamics of collaboration. Our thesis is that there is a fundamental tension be

these two forms of flexibility, made manifest in the ways in which software infrastructures em
commitments to particular working styles—commitments that may interfere with the requirem

of both application developers and end-users. Section Four introduces a set of issues that h
this tension.

From our discussion of the problem of flexibility we will then consider the ways in which softw
toolkit developers have addressed these problems, and consider toolkit flexibility in terms 

notions of genericity, extensibility, and specificity. We will then outline our approaches, and
illustrations from two systems we have developed—Intermezzo (Edwards, 1996a) and Pr

(Dourish, 1996a). The details of these toolkits have been presented elsewhere, and we will no
on them here. Rather, our intention is to step back and consider the relationship between th

niques that they employ, and to try to learn from their orientation to the problems of flexibility

The design of these toolkits is based on a reconsideration of the boundary between the app

and toolkit. Like conventional toolkits, they offer application programmers common structure
run-time behaviours; but unlike conventional toolkits, they provide application programmers

the means to incorporate their own functionality to specialise those structures and behaviour
needs of specific applications. Although Intermezzo and Prospero take different approaches, the

common elements in their design suggest new opportunities for a model of collaborative t
design which helps bridge the gap between infrastructure and use by creating toolkits that can inc

porate application-specific detail.

2 FLEXIBILITY IN CSCW INFRASTRUCTURE IMPLEMENTATION
The need to support a variety of application behaviours, and to support them across a wide r
potential implementation substrates (e.g. different network topologies and characteristics) has led

collaboration toolkit developers to confront a bewildering array of potential areas of flexibility and
control. The basic entities out of which a collaborative application might be constructed using
3



e of

,

ill be

ble to
 or the

ve sys-
ultiple

ocations
ttern of

 consis-
 to

uences
is-

s
r regu-

h as

ership).
tion

nfra-

rent

al and

over a
aspects

stract

ri-

,
 “inter-

f rela-
ticular toolkit—abstractions such as “shared object” or “workspace”—embody a rang

implementation decisions and options. We refer to this level of system provision as “infrastructure”

since it provides a common level of technological support on top of which applications w
implemented. We consider a number of elements of this infrastructure here.

2.1 Aspects of Infrastructure Flexibility
Data distribution concerns the ways in which the computational representations of data availa
participants (the text in a collaborative writing system, the records in a multi-user database

marks on a shared whiteboard) will be located, found, accessed and moved in a collaborati
tem. For example, a single copy of any data item may be located on a central server, or m

copies may be accessible at each node in the network. Data objects may be stored at fixed l
through the course of a session or collaboration, or may move around according to the pa

access which emerges. Access to this distributed data must be regulated so as to maintain
tency in each user’s view. Such consistency control may be achieved through regulating access

the shared data store, or by requiring clients to obtain locks on data items, or by outlawing seq
of action which might result in inconsistency. Access to the data store may be governed by perm

sion settings, by roles, or by opportunity. Sessions may arise simply through the individual action
of collaborators, or may be set up explicitly, and might be managed on an invitation basis, o

lated by an individual.

Dourish (1995a) outlines three aspects of flexibility in the design of CSCW systems. Static flexibil-

ity refers to the extent to which the system can support a variety of collaborative needs (suc
“synchronous” or “asynchronous” work1). Dynamic flexibility reflects a system’s ability to respond

to the changing circumstances of a collaborative session (such as changes in group memb
Implementation flexibility refers to the ability of a system to operate over a range of implementa

substrates (such as different forms of network or network topology, or different approaches to data
store management). To one extent or another, each of these is a concern for the development of any

toolkit, just as a failure of any, in a toolkit or an application, can itself move from being an i
structure problem to one of use.

2.2 Existing Approaches
To illustrate the ways in which toolkit developers attempt to offer flexibility to support diffe

applications, we will briefly discuss programmer control in three sample systems—Suite, Ov
COLA.

Suite is multi-user application toolkit which focuses on editor-based interfaces implemented 
shared data model (Dewan, 1990; Dewan and Choudhary, 1992). Programmer control over 

of the infrastructure is provided through the coupling mechanism between shared active variables

and interaction variables (Dewan and Choudhary, 1995). Shared active variables are the ab

variables of the shared workspace, available (in one form or another) to the different participants in
a collaborative session, while interaction variables are the local proxies of the shared active va

ables in any one user’s interface. In other words, if three people are editing a form simultaneously
there is one “shared active variable” representing the contents of a particular field, and three

1. We do not believe these terms are unproblematic—hence the “scare quotes”—but use them to refer to a set o
tively well-understood application usage situations recognised in the literature.
4



oupling

Interac-

ces of

ri-

on-
et al.,

ditions
hierar-

g the
 allows

-pack-

 create,
ion.

 on a
s for

llow

forces
een,

e mech-
er-level

nt is a
oupling

terface
mouse

isions
vides

t

f solu-
 been

dpoint
Stud-
action variables”, one in each person’s interface. User interaction happens “at” the interaction

variables, and coordination between users happens “at” the shared active variables. The c

between these variable types, then, is essentially where the multi-user interaction resides. 
tion variables are organised into coupling sets, which are in turn described by coupling attributes

(controlling the degree of sharing of data values, presentation, etc.) and transmission attributes

(controlling the circumstances under which one user’s changes will be reflected in the interfa

others). By allowing programmers to select different attribute parameters for different sets of va
ables, Suite provides the opportunity to manage coupling fluidly for different application needs.

Oval is a “radically tailorable” toolkit for collaborative applications which is derived from a c
siderable body of research into the use of “semi-structured” information systems (Malone 

1995). Oval is named for its four basic components—Objects, Views, Agents and Links—out of
which applications are constructed. Objects are semi-structured records; Views are visualisations of

objects and object collections; Agents are production rules which can be triggered by con
such as Object field values; and Links are connection between objects, to form networks, 

chies, etc. Oval’s radical tailorability is essentially a form of end-user programming, allowin
construction of applications in terms of these basic components, and an environment which

this to be done visually and incrementally. Users essentially combine and configure the pre
aged components (such as particular Views) to create new applications. The “radical” aspect of this

approach is that it applies techniques from traditional tailorable systems and uses them to
essentially, a specialised visual programming language for collaborative application product

COLA (Cooperative Objects in Lightweight Transactions) is a CSCW support platform based
distributed system perspective (Trevor et al., 1995). COLA employs two primary mechanism

achieving flexibility. The first is the use of “object adaptors” (Trevor et al., 1994), which a
objects to present different views and functionality, and to be handled differently from different per-

spectives within the system. The second, and more wide-ranging, is that COLA rigorously en
a distinction between mechanism and policy. This approach is based on a strong separation betw

on the one hand, the fundamental components of a system and their inherent behaviours (th
anisms of the system) and, on the other, the way they are combined in order to create high

interactive behaviours (driven by policy). One common example in user interface developme
scroll-bar; the system can provide mechanisms (such as mouse-sensitive regions and a c

between mouse movement and pane movement), without embodying a commitment to in
policy (such as whether the scroll-bar appears to the left or the right of the contents, which 

buttons operate it, and where the arrow buttons might appear). Similarly, in COLA, policy dec
(concerning how users will work together) are left to the application, and the toolkit simply pro

fundamental mechanisms necessary for the creation of a range of policy-driven instances.

In these and other systems, then, the concerns of flexibility in infrastructure have been a significan

element of the development of collaborative toolkits, and these systems illustrate a range o
tions—parameterisation, customisation and the mechanism/policy separation—which have

employed to address them. 

3 FLEXIBILITY IN COLLABORATIVE APPLICATION USE
The previous section examined the problems inherent in addressing flexibility from the stan
of infrastructure developers; this section explores flexibility in the context of application use. 
5



 of the
ack of

te and
roups

, long
rds the

r, the

le acted
cess on

ircum-
plicitly

s; the

emic
ewhere,

orting
while

 work

hether

 fact,
pend on

g to

 effec-
e by

y. In
 use.
ies of cooperative working have repeatedly emphasised the importance of fluidity and flexibility of

coordination and activity.

Dourish and Bellotti (1992) report on a study of the use of the ShrEdit shared text editor (McGuffin
and Olson, 1992) in cooperative design tasks by small groups in an experimental setting. In com-

parison with a number of other cooperative writing tools of the same period, ShrEdit is highly
unstructured. The group can share any number of textual documents, in which each author has an

individual insertion point, and in which any number of authors can be working concurrently.
ShrEdit employs an implicit locking mechanism, but locks at the level of characters, so that authors

only come into conflict when two of them attempt to place their edit point at exactly the same char-
acter in the document. Changes made by any author are reflected almost immediately in the

windows of the other authors (presuming that their view is scrolled to include the areas where the
others are working), so that they have real-time access to each other’s work.

Dourish and Bellotti’s observations repeatedly emphasise the fluid and self-organising nature
cooperative group activity engaged in by a number of sets of authors. Far from finding the l

structured support for the cooperative writing process problematic, the authors would negotia
manage the structure of their collaborative process in a natural and straightforward way. G

varied in how they did this; some took separate responsibility for different parts of a single
document, some worked largely in their own documents and then integrated their work towa

end of the experimental period, and others would essentially engage in free-for-all activity over the
whole document. Perhaps more importantly, no group worked solely in any one way; rathe

“shared feedback” that the synchronous shared workspace provided to the group as a who
as a resource both for the individuals and for the groups as a whole to manage the group pro

a moment-by-moment basis. This shared context allowed them to respond to the immediate c
stances of their work, build on what they could see each other doing, and negotiate, both ex

and implicitly, the informal division of labour by which their activity was organised.

Beck and Bellotti (1993) report on other experiences of co-authoring, in quite different setting

primary collaboration described was the naturally-occurring collaborative writing of an acad
conference paper by two authors separated by six thousand miles and eight time zones. (Els

Beck (1994) has reported on other studies of collaborative authoring that provide further supp
evidence for the observations made in this study.) A significant finding in this work was that, 

the authors would establish a division of labour and a plan for the coordination of their joint
over the document, this pre-arranged plan would be regularly and unproblematically ignored in the

actual performance of the work. That is, while the authors might divide up responsibility for two
sections of document, they would each, in fact, make contributions to the other’s section, w

to correct typos or to add substantive material relevant to their own sections, as relevant. In
Beck and Bellotti observe, the success of the collaborative process may in many cases de

just this sort of “opportunistic” action that successfully advances the group’s work while failin
uphold the separation of individual activities.

As we can see, the collaborative setting requires a fluid and flexible style of interaction to be
tive. This requirement of flexibility in use is, however, often at odds with the choices mad

toolkit developers in attempting to provide infrastructure flexibility, and discussed previousl
the next section, we explore the tensions between application infrastructure and application
6



te this,

ort in
udies

cific
r sug-

 used;
tudied

 that

ork,
 pri-

ences.

n, or

t
ny user)

weight
ork.

 object,
(since

y, this

 devel-
rency

ntrol for

m-

e com-
hat Kic-
4 THE INTERACTION OF USE AND INFRASTRUCTURE
By definition, collaboration involves the activities of multiple users, the presence of whom affects

the nature of the systems we build. On the systems side, our applications and toolkits must be cog-
nizant of multiple input streams, must address consistency control, and may potentially have to deal

with problems of distribution.

The presence of multiple users also has implications for the social aspects of the systems we create.

A multiuser application becomes a medium for interpersonal exchange, with all of the potential con-
cerns (as well as benefits) which that entails (Bentley and Dourish, 1995). Examples of the more

socially-oriented aspects of collaborative systems that must be addressed include privacy of partic-
ipants, awareness, and support for the rapidly shifting roles of the participants in the collaboration.

So, these concerns, the “social” and the “technical”, are deeply intertwined. However, despi
they are typically explored in isolation; not just in different papers, but in different rooms at confer-

ences. Toolkit designers focus primarily on the range of applications they wish to supp
motivating and evaluating the flexibility of their toolkits. Those engaging in user studies or st

of collaborative work settings typically do this with reference to the facilities provided by spe
applications or the requirements for new ones. In other words, the focus of the toolkit designe

gests that applications can be thought of independently of the situations in which they will be
while those studying collaborative activities suggest, inversely, that applications can be s

independently of the toolkits and infrastructure facilities which give rise to them. We believe
neither position is workable.

Our concern, then, is not with the implications for applications of flexible patterns of group w
nor with the implications for application development of flexible infrastructure. Rather, we are

marily concerned with the direct interaction between use and infrastructure, and its consequ

For example, the decision of a particular toolkit to provide locking, or optimistic serializatio

some other concurrency control mechanism affects the style of use of the applications built with tha
toolkit2. For instance, one way to ensure consistency is to require that any process (and so, a

must hold a lock on a shared object before that object can be modified. However, a heavy
locking mechanism like this can interfere with the ways in which a group will organise their w

For example, if each region (or each pixel) of a shared whiteboard is thought of as a shared
then a heavyweight locking strategy would prevent two users from drawing lines that cross 

they would both have to modify the same region at once, at the point of intersection). Clearl
is an inappropriate degree of structure for a casual, lightweight interaction, but since it is imposed

by the toolkit (which handles shared objects and consistency management), the application
oper has little control3. Greenberg and Marwood (1994) have examined a range of such concur

control techniques and their influence on interaction. 

Consider as a second example a toolkit that uses the notion of roles to establish access co

data objects. In a shared text editor application, these roles might include editor, author, and co

2. We will discuss approaches to consistency control in more detail later.

3. The most likely strategy in this case would be to write the whiteboard application in such a way that each user has a 
private cache which is then updated in the background, so that users don’t have to deal with locks. This is a mor
plex structure that the application requires, but is necessitated by the underlying structure of the toolkit. This is w
zales (1992) called “coding between the lines.”
7



 neces-
uence

a wide
re they

s of

it and

k about

start of

is,
s. The

er inter-
rovide

t so that
oach)

sociated
w con-

eloper
eneric”

ystem;
onent

d

ones.
daries.

ystems,

 ones,

he
, then,

g

mentator. Such roles codify a set of social practices that exist at a certain moment in time, but are

not easily adaptable to new situations and cannot accommodate the moment-to-moment shifting

interactions which characterize so much of interpersonal communication. Previous work by Dewan
et al. (1994) and Neuwirth et al. (1990) has noted such problems.

Both of these examples illustrate how choices in infrastructure design can influence the user inter-
face and multiuser “social interface” of our systems. 

The point of these examples is not to say that certain styles of locking or access control are
sarily bad; rather, they show that any choice of implementation strategy can potentially infl

application functionality and hence usage. Any toolkit designer endeavors to accommodate 
range of applications. But designers of toolkits for collaborative systems must take special ca

not only allow but support the construction of applications that are responsive to the fluid style
interaction required by collaboration.

5 ASPECTS OF FLEXIBILITY
In order to consider the relationship between the functionality and variability offered in a toolk

the requirements of both application developers and end-users, we need some ways to thin
toolkit flexibility. We will consider flexibility here in terms of three concepts—generic, extensible

and specialisable systems.

Generic systems exploit the fundamental aspect of toolkit design that we introduced at the 

the paper. Toolkit components are designed to be applicable in a range of circumstances; that 
they are generic. Designs emphasise common functionality, independent of circumstance

extent to which components are generic varies from case to case. For instance, consider a us
face component that provides a scroll bar. One way to do this (the “scroller” approach) is to p

a component that can be attached to a window, and that can be used to move the viewpor
the window pans over content in a larger workspace. Another way to do it (the “slider” appr

is to provide a component that users can move around and that controls the value of an as
variable. Clearly, the slider approach can be used to create a scrollbar (by moving the windo

tents when the variable changes), although this involves more work by the application dev
than the pre-packaged scrollbar approach; so the slider approach is more generic. In the “g

mode, then, the variability in the system component is how it is connected to the rest of the s
generic components are built to be “plugged in” to systems in a variety of contexts. The comp

itself doesn’t change, but is general enough to apply widely.

The idea of extensible systems refers to the opportunities the toolkit offers programmers to exten

its functionality by incorporating new objects and behaviours as if they were predefined 
Extensible toolkits are ones whose functionality can be extended beyond their original boun

For example, Suite provides not only particular styles of interface coupling, but also the means to
define new ones that can be used in just the same ways as the originals. So, in extensible s

the variability lies in the way that new behaviours can be made available alongside existing
as new parts of the design.

Specialisation refers to the ability to adjust (rather than extend) toolkits structures to meet t
demands of specific applications and specific application requirements. We draw a distinction

between the creation of new objects and behaviours (extensibility) and the modification of existin
8



s a “big”
as

 color,
y

ead to
.

ssues of
rs of

d tech-
nction

m-
rate

 toolkit
oaches

s that
1996a).

ted
esign

ation
based

Dour-
ntrol. It

hich

e needs
ones (specialisation). This distinction is a fine one, but crucial; there are many cases in which exten-

sibility fails because of the internal relationships between components. For example, consider a case

where we wish to modify a collaborative toolkit so make it suitable for use in presentations, and in
particular where we want to give it a shared cursor that is considerably larger than the default. In an

extensible toolkit, we could create a new shared cursor object and make it larger and more promi-
nent, but it would only be available in applications that used our new type of cursor. Existing

applications, or existing components that used cursors, would be unaffected and would still be using
the original cursor. In other words, extensibility creates new functionality, whereas specialisation

augments or refines existing behaviour.

Generic, extensible and specialisable techniques are by no means mutually exclusive routes to flex-

ibility in toolkit design. Instead, they are aspects of flexibility, reflecting particular styles and
approaches. We introduce the terms as a form of characterisation, not as a taxonomy. Toolkits, or

even particular techniques, are not uniformly of one sort or another, but tend to combine aspects of
each. For instance, take the example of the larger shared cursor again. The original cursor object

may have some parameters that could be adjusted to control its appearance. Perhaps it ha
flag that doubles it size. Perhaps it offers four different size settings, or perhaps ten. Perhaps it h

an internal control for adjusting its scale to any size. Perhaps it offers similar controls over its
or its transparency. At what point does this sort of parametric control cease to be a form of genericit

and begin to be a form of specificity? There is no clear dividing line; we use the terms inst
reflect aspects of how the toolkit’s flexibility is offered, rather than as absolute categorisations

The generic, extensible and specialisable approaches give us a framework to consider the i
flexibility in toolkit design. Generic and extensible toolkits provide their users (the develope

applications) with the means to create and incorporate new behaviours. In contrast with fixe
niques, they give the application developer much more control, and begin to blur the disti

between “toolkit” and “application” (or between “toolkit programming” and “application progra
ming”). Specialisation blurs that boundary further, by providing a means to incorpo

understandings about the application requirements and behaviour into the infrastructure the
provides. In the next section, we discuss two toolkits we have developed and show their appr

to specialisation.

6 NEW APPROACHES TO CSCW TOOLKIT FLEXIBILITY
We will illustrate these issues and potential solutions with reference to two particular toolkit
we have designed and implemented: Intermezzo (Edwards, 1996a) and Prospero (Dourish, 

Intermezzo is designed to support the coordination aspects of collaboration: the tasks associa
with rendezvous of participants, awareness, and policy. A principal element in the toolkit's d

is that it reifies the setting in which the collaboration occurs by gathering and exposing inform
about user activity to applications. Further, applications can modify the behavior of the toolkit 

the situational context of the collaboration represented by this activity information. Prospero (
ish, 1996a) deals largely with the areas of distributed data management and consistency co

exploits an architectural approach called “Open Implementation” (Kiczales, 1992; 1996) in w
the abstractions and mechanisms offered by a system (such as a toolkit) can not only be used by its

clients (applications), but can also be examined and manipulated, and hence specialized to th
of particular situations.
9



as a
cations

vides
en an

tself
s it to

 to

nging
ays.

 world
y 

ssum,

 set to
when-

nguage.
n be
While Intermezzo and Prospero were developed independently, and take different approaches to the

problem of toolkit flexibility, they have a number of interesting features in common. First, they are

motivated by many of the same concerns with the interaction of toolkit structure and application
use; and second, they share a common technical concern with flexibility through specialisation

rather than through genericity. This section presents the approaches taken by both systems to pro-
vide flexibility to application writers.

Intermezzo and Prospero have both been described elsewhere. Our goal here is not to provide
another presentation of their structure and use. Instead, we use the two systems to illustrate the spe-

cialisation approach to infrastructure flexibility and customisation, as a stepping stone towards a
fuller discussion of the approach to infrastructure development based on the relationship between

infrastructure and use.

6.1 Example: Flexibility through Awareness in Intermezzo
Intermezzo addresses flexibility by providing an infrastructure by which some of the technical

aspects of collaborative applications can be mediated by input about the social setting in which the
collaboration occurs. For example, a collaborative writing application may need to accommodate

different styles of session management or access control during the course of a collaboration based
on the shifting goals and needs of the participants. To support this form of dynamic flexibility, Inter-

mezzo brings information about the participants of the collaboration, their activities, and their
environment into the realm of the toolkit. This information is made available to applications (mod-

ulo privacy restrictions) in a machine-parsable format. Further, the toolkit itself uses this
information about situational context to regulate its internal operations. 

Intermezzo relies on information about the state of the world that is represented as a database of
objects describing user activity. Representations of activity are hierarchical and allow application-

specific “views” of the world state at any number of semantic levels. Activity information h
structured format and supports links between related objects. In the Intermezzo model, appli

themselves are responsible for maintaining the global view of the world, and the toolkit pro
support (much of it automatic) for publishing and updating this information. For example, wh

Intermezzo-based collaborative writing tool is started, it will publish information describing i
(the tool), its users, and the documents being edited. The format of the published data allow

be searched, updated, and viewed easily by other applications.

The principal way in which Intermezzo provides flexibility to applications is by allowing them

adapt not just their own behaviour, but also the behavior of the toolkit in reaction to the cha
dynamics of the world in which they are run. Applications change toolkit behaviour in two w

The first is by downloading code into the runtime system that runs in response to changes in
state. This downloaded code can be tied to any change in the environment, and can directlaffect

application or toolkit state.

Downloaded code, which is written in an extended version of the Python language (Van Ro

1995), can be directly executed by the runtime system at the time it is transmitted; can be
“fire” when a particular change on a specific object occurs in the activity database; or can fire 

ever the database state achieves a certain “pattern,” as described via a pattern matching la
By associating portions of application code with objects “in the world,” application behavior ca

directed and influenced by changes in situational context.
10



lkit—
ational

h are
how-

scrip-

le, an
r

nd

areness
tions

tween

. Con-

ntially
t views

t
ies of the

 the
ing sent

 of “the

 systems
ms. The

ata to
lients to

t

nity for

nt has
The second way applications can change the behavior of the toolkit is through the use of situation-

ally-based access control (Edwards, 1996b). Intermezzo uses strong, cryptographically-secure

access control throughout. The objects to which access is controlled are not just the objects created
by the application to maintain domain-specific application state, they also include objects used

internally by the toolkit. By constraining access to toolkit functions and data, applications can effect
global changes in the behaviour of the toolkit itself. For example, application code can provide sit-

uational control over inter-application behaviour such as session management through this
technique (Edwards, 1994).

The actual access control settings of various objects—both in the application and in the too
are under the control of a language-based policy system that uses information about the situ

context as an input. Applications use the access control system by writing “policies”—whic
essentially access control templates—and binding them to “roles.” Unlike traditional roles, 

ever, the membership of an Intermezzo role is described by a predicate function, rather than defined

by a membership list. This technique allows applications to be written in terms of general de

tions of user behavior and context, rather than more limiting specific definitions. For examp
application could respond to general description of “the set of people currently in my lab,” rathe

than the more static and restrictive a priori enumeration of the names of specific people often fou
in my lab.

By mediating the systems-oriented aspects of access control, session management, and aw
with input about the context in which a collaboration is occurring, Intermezzo provides applica

with dynamic flexibility—the ability to match and adapt to the changes in a group’s interactions
over time. Intermezzo enables applications to more easily support groups that move fluidly be

various styles of work. 

6.2 Example: Flexible Consistency Control in Prospero
One of Prospero’s major areas of concern is consistency control for collaborative applications

sistency control is the mechanism by which a collaborative system ensures that the pote
simultaneous actions of multiple users over a shared data space do not result in inconsisten

of the data space. For instance, consider a medical system supporting shared access to patien
records. To ensure speedy response, the system might replicate the database, placing cop

patient records at different points in the network. If two users were to simultaneously update
same record, and their changes were to be made to their own copies of the records before be

across the network, then an inconsistency would have arisen, since their respective copies
same” record would display different information.

Since the shared spaces of collaborative systems can be modeled as databases, most CSCW
have looked to the models provided in distributed database design for consistency mechanis

most common mechanisms in database design are forms of “locking,” in which a “lock” for d
be modified is obtained before the changes can be made. The locking mechanism forces c

declare their intent to update records before the updates are actually made, and so provides an
opportunity to avoid inconsistency by having the system refuse to grant locks if the actions migh

conflict with others. If multiple clients simultaneously request “read locks” (locks obtained by cli-
ents which intend to read data), then they can all be granted, because there is no opportu

inconsistency to arise, since read operations will not change the data. However, if one clie
11



econd

lt in

 pre-
ich has

ange of

tential

ntics
ncy.

itation
same

 accept-
,

gged.
avoid-

antics
akes

free of
nism.

 of situ-

of
 opera-

nd then
the par-

parison

l (that
 pro-

ce the
er than

rs spe-
ver a

astruc-

olkit

n to the
already been granted a “write lock” for a piece of data, then no other client will be granted a s

“write lock” until the first client has finished, because two simultaneous writes might resu

inconsistency—a write/write conflict. In many situations, an outstanding write lock might also
vent any further read locks being granted, because the reading client might receive data wh

become out of date.

The database model, with its read and write semantics, is very generic; it supports a wide r

potential collaborative activities. However, drawing on the interaction of use and infrastructure out-
lined above, we can identify a number of problems. Locking out operations because of po

conflicts can interfere with the smooth progress of collaboration; and the read and write sema
are such that many activities look like conflicts even if, in fact, they will not lead to inconsiste

For example, consider two users working on a bibliographical database, which records c
details for publications. Adding two records at once will not lead to conflicts; either they’re the 

record (in which case, they match to the same new record to be added, which should be an
able operation), or they’re different records (in which case, they should both be added). However

to the database substrate, these will look like two write operations, and so a conflict will be fla
In other words, the configuration of the infrastructure, a database storage layer with a conflict 

ance mechanism based on read and write semantics, will interfere with the execution of
collaborative work, forcing users to interleave their activities.

Prospero’s approach is to allow consistency control to be specified in terms of the domain sem
of particular collaborative applications (Dourish, 1996b). The paradox, of course, is that this m

consistency management a toolkit concern, but yet the toolkit, as a general facility, must be 
exactly the type of specific application features from which we want to construct this mecha

The toolkit itself, then, does not operate in terms of pre-defined application semantics (although it
provides a reusable and extensible core set of potential properties applicable in some range

ations). Instead, it provides the framework within which they can be defined. So, the developer 
the bibliographical database example would describe the semantic properties of application

tions (such as the non-destructive writes implied by adding new entries to the database), a
the toolkit can manage consistency in these terms. The toolkit is specialised to the needs of 

ticular implementation.

Prospero uses a pairwise comparison of operation properties, much like the read/write com

model, to decide when sets of operations might conflict. However, using the metalevel contro
is, the mechanism for programmers to modify or augment internal toolkit facilities) allows the

grammer to gain control over this process and cast it in terms of the application specifics. Sin
comparison is done in terms of operations which are meaningful at the application level, rath

simply those meaning at the infrastructure level, the toolkit can support a range of behaviou
cific to each situation, which would be disallowed by a traditional approach implemented o

standard database model. In this way, a link is achieved between the configuration of the infr
ture and the particularities of each particular application.

7 THE DESIGN OF FLEXIBLE CSCW TOOLKITS
Intermezzo and Prospero illustrate two different approaches to achieving flexibility in to

design. However, they share a common set of concerns, and in particular, a common reactio
traditional mechanisms of toolkit flexibility.
12



e

tore can
t then

m, then,
of a tool-

d
we

uctural

r
 some-

olkit
er than

pen to
ing

 of its

lished.
rospero

g

 medi-
ory of

 lan-
ns can

 can
lica-

ence/
 across

) issues
ach

nable
tation

ps this
nd pro-
The standard approach to flexibility in toolkit design (in any domain, not just CSCW) is through

generic design. This approach involves the design of generic toolkit facilities, applicable to the

widest range of applications. For instance, a standard database model, with access control and con-
sistency management based on “read” and “write” access, is highly generic, and can therefore serv

as an infrastructure for a very wide range of CSCW applications. Access to the shared data s
be implemented in terms of read and write operations, in whatever way the application migh

use those reads and writes to support the specific application needs. As a generic mechanis
the traditional approach takes the read/write database model as a useful basis for the design 

kit which can be used to build CSCW applications of all sorts. 

Intermezzo and Prospero take almost the opposite approach to the provision of flexibility in CSCW

toolkits. Their primary concern is with the design of effective, functional CSCW applications, an
so they are concerned with the highly specific behaviours observed in collaborative settings. As 

have explored in this paper, these behaviours depend in crucial ways on the variety of infrastr
configurations within which cooperation takes place. 

The implication, then, is that applications require widely different infrastructure provisions, rathe
than a single highly generic mechanism onto which a variety of application requirements can

how be “mapped”. The question of flexibility in Intermezzo and Prospero, then, is how the to
can be specialised and adapted to the particular needs of a given collaborative situation, rath

how that particular situation can be described in terms of whatever toolkit components hap
be lying around. The latter would argue for an arbitrarily large “vocabulary” of toolkit build

blocks. Instead, we argue for the ability to specialise the toolkit in a “deep” way to the needs
applications. The generic design approach attempts to remove from the infrastructure any depen-

dency on particular contexts of use, but it provides no means for context to be re-estab
Specialisation gives us a way to incorporate context again, and this is what Intermezzo and P

do. In doing this, though, they focus on different concerns.

Intermezzo primarily addresses dynamic flexibility: the ability of applications to track the changin

circumstances in which they are run and adapt their behavior accordingly. The infrastructure
ates its own operation through application-supplied code that takes as input a reposit

information about the application’s context. Architecturally, Intermezzo takes a “programming
guage” approach, providing specialised languages in which the needs of specific applicatio

be described.

Prospero primarily addresses implementation flexibility: the ability of applications to “open up” the

internal constructs of the toolkit and adapt it to their particular requirements. Applications
modify and specialize toolkit-internal constructs, which the toolkit will then use to provide app

tion support. At the same time, it provides novel mechanisms such as the diverg
synchronisation approach to distributed data management (Dourish, 1995b) which generalise

the traditional boundaries of collaborative systems, as a means to address (by reformulating
of static flexibility. Architecturally, Prospero is based on the “Open Implementation” appro

which makes aspects of the toolkit, traditionally only available for “use” by applications, ame
to examination, modification and control. (It is perhaps interesting that the Open Implemen

approach is derived from work in the theory and design of programming languages. Perha
work lends further support to the theory that Computer Science is a bell-shaped curve arou

gramming language design and implementation.)
13



 both

olution
ing”

 of
 users,

oolkit
ces.

e com-
nviable

its to
s to be

s (and

d the
chnical

,
l stud-

r work,
“high-

neric
on and

lication
nd cir-

ships

ting
s—is a

wn how

o were
nt

a-
tion

 in
ialisa-
The different architectures, however, belie a shared underlying technical goal: to let application

code “push semantics” into the toolkit to accomplish particular goals. This goal is motivated by

technical and social or observational needs. Technically, providing such a mechanism is a s
to the perennial problem of flexibility in toolkit design. Socially, semantic features (the “mean

and behavioural consequences of toolkit configurations) are seen to be crucial in the emergence
forms of group behaviour, and so are ineliminably the concern of application developers and

not of toolkit designers, who, by definition, are separated from the situations in which the t
mechanisms will be realised in particular applications and put to use in particular circumstan

8 CONCLUSIONS
The days when CSCW applications were build by hand, from scratch, are long behind us. Not only

is such an approach increasingly technologically impractical (as systems get larger and mor
plex, and as users demand more and more from the applications they use), but it is also i

commercially. Like applications in any other domains, CSCW applications depend on toolk
provide them with standard, reusable approaches to application design and mechanism

deployed. The critical concern for the designer of a CSCW toolkit is the range of behaviour
hence of applications) which can be supported.

The design of toolkits, and the flexibility implied by the range of mechanisms they provide an
range of ways in which they can be combined, has typically been approached purely as a te

problem. However, the radical degrees of flexibility implied and required by collaborative work
and observable in studies of groups working together, undermines this position. Observationa

ies have pointed to the range of ways in which collaborators organise (and reorganise) thei
and these studies illustrate how group behaviour is critically dependent not simply on the 

level” facilities which collaborative applications offer, but also on the “low-level” issues of infra-
structure configuration which lies beneath these applications.

These observations suggest that the problem of toolkit flexibility is not one of providing ge
mechanisms, but rather is one of gaining control over the relationship between the applicati

the infrastructure. Semantic issues cannot be locked inside a toolkit, inaccessibly to the app
designer and the user; rather, the semantics required of the toolkit come from applications a

cumstances of use. In other words, the focus for design should be the three-way relationship
amongst toolkits, applications and use, rather than the traditional pair of two-way relation

(toolkit/application and application/use). In this way, the problem of tailorability—incorpora
local modifications and specialisations to adapt a tool to the needs of a particular set of user

problem not only for interface design, but for the deeper areas of system development.

We have outlined and motivated these problems by appeal to a number of studies, and sho

two toolkits, Intermezzo and Prospero, tackle these problems. Intermezzo and Prosper
designed independently, employ different computational architectures and address differe

domains of concern to the designer of a CSCW toolkit. However, they share a concern with the rel
tionship between application and infrastructure, and with making this accessible so that applica

developers can free themselves from the rigid models which are embodied (and often hidden)
CSCW toolkits. Intermezzo and Prospero both emphasise flexibility through application spec

tion, rather than flexibility through abstraction and genericity.
14



y of

W’95

 for

ser

pace of

rk”, in

tency
The general concern which motivates these two systems, and the mechanisms which they embody,

point the way towards a new model of toolkit design which is grounded not simply in the technical

concerns of generic infrastructure mechanisms, but rather which is based in understandings of how
collaboration works.

Acknowledgments

Prospero was designed and implemented while Paul was employed at the Rank Xerox Research

Centre (formerly EuroPARC) and studying at University College, London; Intermezzo was
designed and implemented while Keith was studying in the College of Computing at Georgia Insti-

tute of Technology. We would like to thank the voices that spoke to us and told us what to say. Some
of these belonged to Beth Mynatt, John Stasko, Dik Bentley, Jon Crowcroft, Beki Grinter, and

Prasun Dewan.

References

Beck, E. and Bellotti, V. (1993): “Informed Opportunism as Strategy”, in Proc. Third European Conference
on Computer-Supported Cooperative Work ECSCW’93 (Milano, Italy), Dordrecht: Kluwer.

Beck, E. (1994): “Practices of Collaboration in Writing and their Support.” D.Phil. thesis, Universit
Sussex (Technical Report CSRP 340, ISSN 1350 3162).

Bentley, R. and Dourish, P. (1995): “ Medium vs. Mechanism: Supporting collaboration through
customisation”, in Proc. European Conference on Computer-Supported Cooperative Work ECSC
(Stockholm, Sweden), Dordrecht: Kluwer.

Crowley, T. Milazzo, P., Baker, E., Forsdick. H. and Tomlinson, R. (1990): “MMConf: An Infrastructure
Building Shared Multimedia Applications”, in Proc. ACM Conference on Computer-Supported Cooperative
Work CSCW’90 (Los Angeles, California), New York: ACM.

Dewan, P. (1990): “A Tour Through the Suite User Interface Software”. In Proc. ACM Symposium on User
Interface Software and Technology UIST’90 (Snowbird, Utah), New York: ACM.

Dewan, P. and Choudhary, R. (1992): “A High-Level and Flexible Framework for Implementing Multi-U
Interfaces”. In Proc. ACM Conference on Computer-Supported Cooperative Work CSCW’92 (Toronto,
Canada), New York: ACM.

Dewan, P., Choudhary, R., and Shen, H. (1994): “An Editing-based Characterization of the Design S
Collaboration Applications,” Journal of Organizational Computing, 4(3), pp. 219-240.

Dewan, P. and Choudhary, R. (1995): “Coupling the User Interfaces of a Multiuser Program”. ACM
Transactions on Computer-Human Interaction, 2(1), 1–39.

Dourish, P. and Bellotti, V. (1992): “Awareness and Coordination in Shared Workspaces”, in Proc. ACM
Conference on Computer-Supported Cooperative Work CSCW’92 (Toronto, Canada), New York: ACM.

Dourish, P. (1995a): “Developing a Reflective Model of Collaborative Systems,” ACM Transactions on
Computer-Human Interaction, 2(1), pp. 40–63.

Dourish, P. (1995b): “The Parting of the Ways: Divergence, Data Management and Collaborative Wo
Proc. European Conference on Computer-Supported Cooperative Work ECSCW’95 (Stockholm, Sweden),
Dordrecht: Kluwer. 

Dourish, P. (1996a): “Open Implementation and Flexibility in a CSCW Toolkit”, PhD dissertation,
Department of Computer Science, University College, London.

Dourish, P. (1996b): “Consistency Guarantees: Exploiting Application Semantics for Consis
Management in a Collaboration Toolkit”, in Proc. ACM Conference on Computer-Supported Cooperative
Work CSCW’96 (Boston, Mass.), New York: ACM.

Edwards, K. (1994): “Session Management in Collaborative Applications,” in Proc. ACM Conference on
Computer-Supported Cooperative Work CSCW’94 (Chapel Hill, North Carolina), New York: ACM.
15



ge of

rrency

Issues

for

and

puter

ware

g”, in

and

ce of
’94

/

Edwards, K. (1996a): “Coordination Infrastructure in Collaborative Systems”, PhD dissertation, Colle
Computing, Georgia Institute of Technology, Atlanta, Georgia.

Edwards, K. (1996b): “Policy and Roles in Collaborative Applications”, in Proc. ACM Conference on
Computer-Supported Cooperative Work CSCW’96 (Boston, Mass.), New York: ACM.

Greenberg, S. and Marwood, D. (1994): “Real-time Groupware as a Distributed System: Concu
Control and its Effect on the Interface”, in Proc. ACM Conference on Computer Supported Cooperative Work
CSCW’94 (Chapel Hill, North Carolina), New York: ACM.

Hill, R., Brinck, T., Rohall, S., Patterson, J., and Wilner, W. (1994): “ The Rendezvous Architecture and
Language for Multi-User Applications”, ACM Transactions on Computer-Human Interaction, 1(2), pp. 81–
125.

Kiczales, G. (1992): “Towards a New Model of Abstraction in the Engineering of Software”, in Proc. IMSA
Workshop on Reflection and Metalevel Architecture, Tokyo, Japan.

Kiczales, G. (1996): “ Beyond the Black Box: Open Implementation”, IEEE Software, pp. 6–11, January.

McGuffin, L. and Olson. G. (1992): “ShrEdit: A Shared Electronic Workspace”, CSMIL Technical Report,
Cognitive Science and Machine Intelligence Laboratory, University of Michigan.

MacLean, A., Carter, K., Moran, T. and Lovstrand, L. (1990): “User-Tailorable Systems: Pressing the 
with Buttons”. In Proc. ACM Conference on Human Factors in Computing Systems CHI’90 (Seattle,
Washington). New York: ACM.

Malone, T., Lai, K.-Y. and Fry, C. (1995): “Experiments with Oval: A Radically Tailorable Tool 
Cooperative Work”. ACM Transactions on Computer-Human Interaction, 13 (2), 175–205.

Nardi, B. and Miller, J. (1991): “Twinkling Lights and nested Loops: Distributed Problem Solving 
Spreadsheet Development”. In Greenberg (ed.), Computer-Supported Cooperative Work and Groupware,
Academic Press.

Neuwirth, C.M., Kaufer, D.S., Chandhok, R., and Morris, J. (1990): “Issues in the Design of Com
Support for Co-authoring and Commenting,” in Proc. ACM Conference on Computer-Supported Cooperative
Work CSCW’90, pp. 183-195, New York: ACM.

Roseman, M. and Greenberg, S. (1996): “Building Real-Time Groupware with GroupKit, a Group
Toolkit”, ACM Transactions on Computer-Human Interaction, 3(1).

Trevor, J., Rodden, T. and Mariani, J. (1994): “The Use of Adapters to Support Cooperative Sharin
Proc. ACM Conference on Computer-Supported Cooperative Work CSCW’94 (Chapel Hill, North Carolina),
New York: ACM.

Trevor, J., Rodden, T. and Blair, G. (1995): “ COLA: A Lightweight Platform for CSCW”, Computer
Supported Cooperative Work, 3, pp. 197–224.

Trigg, R., Moran, T. and Halasz, F. (1987): “Adaptability and Tailorability in Notecards”, in Bullinger 
Shackel (eds.), INTERACT’87, North Holland.

Trigg, R. and Bodker, S. (1994): “From Implementation to Design: Tailoring and the Emergen
Systematization in CSCW”, In Proc. ACM Conference on Computer-Supported Cooperative Work CSCW
(Chapel Hill, North Carolina), pp. 45–54. New York: ACM.

Van Rossum, G. (1995): Python Reference Manual Release 1.3. October 13 (available as http:/
www.python.org/doc/ref/ref.html).
16


	A Tale of Two Toolkits: Relating Infrastructure and Use in Flexible CSCW Toolkits
	Paul Dourish and W. Keith Edwards
	1 Introduction

	Figure 1: For the toolkit developer, anticipating the needs of application developers means antic...
	2 Flexibility in CSCW Infrastructure Implementation
	2.1 Aspects of Infrastructure Flexibility
	2.2 Existing Approaches

	3 Flexibility in Collaborative Application Use
	4 The Interaction of Use and Infrastructure
	5 ASPECTS OF FLEXIBILITY
	6 New Approaches to CSCW Toolkit Flexibility
	6.1 Example: Flexibility through Awareness in Intermezzo
	6.2 Example: Flexible Consistency Control in Prospero

	7 The Design of Flexible CSCW Toolkits
	8 Conclusions
	Acknowledgments
	References



