A Tale of Two Toolkits: Relating Infrastructure
and Use in Flexible CSCW Toolkits

Paul Dourish and W. Keith Edwards

Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto

CA 94304 USA

{ dourish, kedwards} @parc.xerox.com

Abstract. The design of software toolkits embodies a fundamental tension. On the one hand, it aims
to reduce programmer effort by providing prefabricated, reusable software modules encapsulating
common application behaviours. On the other, it seeksto support arange of applications, which neces-
sitates avoiding an overly-restrictive commitment to particular styles of application behaviour.

We explore thistension in the domain of collaborative applications, which we believe are particularly
subject to problems arising from this tension. Based on an analysis of the basic issues of flexibility in
toolkit design, we explore opportunities for the design of toolkits which avoid application style com-
mitments, with illustrations from two toolkits which we have developed. A comparative analysis of
these two approaches provides insight into the underlying questions and suggests new design opportu-
nities for toolkits that provide a framework for application enhancement and extension.

Keywords: collaborative toolkits, collaboration infrastructure, toolkit design, reuse, specialisation,
tailorability.

1 INTRODUCTION

Flexibility and tailorability—the ability to accommodate individual differences in needs, use, style or
task—are endemic problem in software systems. Most systems are created to be used by multiple peo-
ple, in multiple organisations, on multiple computers, at multiple times, and generally in a wide range
of settings that require ffierent forms ofsupport and engagement. Collaborative applications are, if
anything, subject to even more stringent demands due to the extra requirements to accommodate indi-
vidual differences witin the same group, as well as the range of ways in which groups organise and
engage in their activities. The problems of tailorability have been studied in the context of use, in both
single-user and group settings, in investigations such as those of Trigg et al. (1987), MacLean et al.
(1990), Nardi and Miller (1991) or Trigg and Bodker (1994).

We are concerned with flexibility in a f#frent domain, the domain of softwaomkkit design. How-

ever, we are motivated hGyst the same concerns that motivated the studies cited above. In other
words, even though we are going to be talking about software toolkits and discussing questions of
applicationimplementation, our concern is withise. In particular, we are concerned with how toolkits

can be designed to accommodate the wide range of potential applications and situations in use. This
is a more complex problem than simply the design of flexible applications, because of the nature of
toolkits and toolkit design.

Software toolkits ease the implementation of safevystems by providing reusable components and
behaviours designed to be applicable in a range of circumstances. Like building houses from prefab-

toolkit application

< > application < >
developer user

toolkit
developer

Figure 1: For the toolkit developer, anticipating the needs of application developers means anticipating
the requirements of as-yet-unformulated applications and the needs of as-yet-unknown users.
ricated parts, this makes the application develgptask simpler (andyith luck, faster) since the
work now focuses on assembling and configuring components rather than on creating them from
scratch. As well as reducing effort and speeding application development, this reuse of software
components also offers a common conceptual framework for application development, which can
aid both application designers and users.

The components themselves arise out of common patterns oasdftwucture that occur across a
range of applications in a particular domain. So for example, a toolkit for constructing user inter-
faces provides interface “widgets” such as scroll-bars and buttons which occur in different
interfaces, and fronwhich interfaces can be constructed, as well as commonly-occurring behav-
iours such as mouse-tracking, keyboard event processing and so on. A toolkit for image processing
applications might provide common objects such as pixalya and color maps and common
behaviours such as filtering, scaling and rotating image objects. Applications are constructed using
these components as building blocks.

The designer of a software toolkit, then, is faced with a complex task. The toolkit designer doesn't
write applications, but writes software toumed in applications; the details of those applications—
what they will do, how they will do it, and who will use them—are not available at the time when
the toolkit is being written. Tére are mitiple levels of developers and users. The toolkit designer

is developing software that implements a toolkit. The “users” of the toolkit are themselves program-
mers, who then generate applications whiemselves have users. In order to provide a valuable

and widely-applicable set of software components, the software toolkit designer must anticipate the
needs of the application developers by anticipating the sorts of applications which will be created
using the toolkit, and so in turn must anticipate the behaviour and requirements of the users of those
applications. The toolkit developer’s conception of the likely applications will influence the design
of the software components provided in the toolkit.

It is from this two-level problem that the fundamental tension of toolkit design arises. On the one
hand, the toolkit designer must offeregpackaged software c@onents, which come with pre-
packaged behaviour and hence pre-packaged expectations of usage patterns. At the same time, the
toolkit designer’s goal is to produce a set of components that can be used in as many different appli-
cations as possible, thus making the application developers’s job easier. More specialised toolkit
components make the application development task easier, but limit the range of applications which
can be developed. The most fundamental issue in toolkit design is to resolve this dilemma.

Typically, the two levels of the design problem—the design of the toolkit for the purposes of the
application developer, and the design of the applications for the purposes of the user—are addressed
independently. Although the needs and requirements of specific applications and their users clearly
play a major role in the design of a toolkit, the decisions about toolkit design and application design
are usually made in isolation. In this paper, we aim to develop an approach which brings them
together, and which looks at sofivetoolkit design in terms of the constraints that toolkits intro-

duce for the users of applications which might be generated from that toolkit. Germaswith

an approach to toolkit design that preserves the benefits of reuse but supports application-specific
programming and adaptation of the toolkit itself.

We look at this problem particularly in the domain of collaborative systems. Although the issues we
raise for toolkit design are general ones, we believe that the demands of collaborative applications
demonstrate them particularly well, not least because of the range of ways in which different groups
can engage in superficially similar tasks.

We begin in Sections Two and Three by looking at the problem of flexibility in two domains. First
we explore flexibility in the domain of collaborative infrastructures, and look at the approaches
taken by previous work to support a range of applications with a limited set of toolkit components.
Second, we examine flexibility in the context of use—that is, flexibility required by the social and
interaction dynamics of collaboration. Our thesis is that there is a fundamental tension between
these two forms of flexibility, made manifest in the ways in which software infrastructures embody
commitments to particular working styles—commitments that may interfere with the requirements
of both application developers and end-users. Section Four introduces a set of issues that highlight
this tension.

From our discussion of the problem of flexibility we will then consider the ways in which software
toolkit developers have addressed these problems, and consider toolkit flexibility in terms of the
notions of genericity, extensibility, and specificity. We will then outline our approaches, and give
illustrations from two systems we have developed—Intermezzo (Edwards, 1996a) and Prospero
(Dourish, 1996a). The details of these toolkits have been presented elsewhere, and we will not dwell
on them here. Rather, our intention is to step back and consider the relationship between the tech-
niques that they employ, and to try to learn from their orientation to the problems of flexibility.

The design of these toolkits is based on a reconsideration of the boundary between the application
and toolkit. Like conventional toolkits, they offer application programmers common structures and
run-time behaviours; but unlike conventional toolkits, they provide application programmers with
the means to incorporate their own functionality to specialise those structures and behaviours to the
needs of specific applications. Although Intermezzo and Prospero el approaches, the
common elements in their design suggest new opportunities for a model of collaborative toolkit
design which helps bridge the gap betwedragiructure and use by creating toolkits that can incor-
porate application-specific detail.

2 FLEXIBILITY IN CSCW INFRASTRUCTURE IMPLEMENTATION

The need to support a variety of application behaviours, and to support them across a wide range of
potential implementation substrates (e.g. different network topologies aratwratics) has led
collaboration toolkit developers to confront a bewilderingua of potential aeas of flexbility and

control. The basic entities out of which a collaborative application might be constructed using a par-

ticular toolkit—abstractions such as “shared object” or “workspace”—embody a range of
implementation decisions and options. Weré¢o this level ofystem provision as “infrastructure”,
since it provides a common level of technological support on top of which applications will be
implemented. We consider a number of elements of this infrastructure here.

2.1 Aspects of Infrastructure Flexibility

Data distribution concerns the ways in which the computational representations of data available to
participants (the text in a collaborative writing system, the records in a multi-user database or the
marks on a shared whiteboard) will be located, found, accessed and moved in a collaborative sys-
tem. For example, a single copy of any data item may be located on a central server, or multiple
copies may be accessible at each node in the network. Data objects may be stored at fixed locations
through the course of a session or collaboration, or may move around according to the pattern of
access which emerges. Access to this distributed data must be regulated so as to maintain consis-
tency in each user’s view. Sucbnsistency control may be achieved through regulating access to

the shared data store, or by requiring clients to obtain locks on data items, or by outlawing sequences
of action which might result in inconsisten@ccess to the data store may be governed by permis-

sion settings, by roles, or by opportuniBzssions may arise simply through the individual actions

of collaborators, or may be set up explicitly, and might be managed on an invitation basis, or regu-
lated by an individual.

Dourish (1995a) outlines three aspects of flexibility in the design of CSCW sy&tatitsflexibil-

ity refers to the extent tahich the system can support a variety of collaborative needs (such as
“synchronous” or “asynchronous” wark Dynamic flexibility reflects a system’s ability to respond

to the changing circumstances of a collaborative session (such as changes in group membership).
Implementation flexibility refers to the ability of a system to operate over a range of implementation
substrates (such adfgirent forms of nvork or network topology, or fferent approaches to data

store management). To one extent or another, each of these ancfom the development of any

toolkit, just as a failure of any, in a toolkit or an application, can itself move from being an infra-
structure problem to one of use.

2.2 Existing Approaches

To illustrate the ways in which toolkit developers attempt to offer flexibility to support different
applications, we will briefly discuss programmer control in three sample systems—Suite, Oval and
COLA.

Suite is multi-user application toolkit which focuses on editor-based interfaces implemented over a
shared data model (Dewan, 1990; Dewan and Choudhary, 1992). Programmer control over aspects
of the infrastructure is provided through the coupling mechanism besharsu active variables
andinteraction variables (Dewan and Choudhary, 1995). Shared active variables are the abstract
variables of the shared workspace, available (in one form orematithe different participds in

a collaborative session, while interaction varialaesthe local proxies of the shared active vari-
ables in any one user’s interface. In other words, if threplpeare editing a form simultaneously,

there is one “shared active variable” representing the contents of a particular field, and three “inter-

1. We do not believe these terms are unproblematic—hence the “scare quotes”—but use them to refer to a set of rela-
tively well-understood application usage situations recognised in the literature.

action variables”, one in each person’s ifgee. User interain happens “at” the interaction
variables, and coordination between users happens “at” the shared active variables. The coupling
between these variable types, then, is essentially where the multi-user interaction resides. Interac-
tion variables are organised intoupling sets, which are in turn described lopupling attributes
(controlling the degree of sharing of data values, presentation, etctjasmsohission attributes
(controlling the circumstances under which one user’s changes will be reflected in the interfaces of
others). By allowing programmers to selectelifint attribute parameters for different sets of vari-
ables, Suite provides the opportunity to manage coupling fluidly fterdift gplication needs.

Oval is a “radically tailorable” toolkit for collaborative applications which is derived from a con-
siderable body of research into the use of “semi-structured” information systems (Malone et al.,
1995). Oval is named for its four basic componer@biects, Views, Agents and Links—out of

which applications are constructed. Objerts semi-structured records; Views gisualisations of
objects and object collections; Agents are production rules which can be triggered by conditions
such as Object field values; and Links are connection between objects, to form networks, hierar-
chies, etc. Oval's radical tailorability is essentially a form of end-user programming, allowing the
construction of applications in terms of these basic components, and an environment which allows
this to be done visually and incrementally. Users essentially combine and configure the pre-pack-
aged components (such as particular Viewsyd¢ate new pplications. The “radical” aspect of this
approach is that it applies techniques from traditional tailorable systems and uses them to create,
essentially, a specialised visual programming language for collaborative application production.

COLA (Cooperative Objects in Lightweight Transactions) is a CSCW support platform based on a
distributed system perspective (Trevor et al., 1995). COLA employs two primary mechanisms for
achieving flexibility. The first is the use of “object adaptors” (Trevor et al., 1994), which allow
objects to present different views and fuocélity, and to be handled déffently from different per-
spectives within the system. The second, and more wide-ranging, is that COLA rigorously enforces
a distinction betweemechanism andpolicy. This approach is based on a strong separation between,

on the one hand, the fundamental components of a system and their inherent behaviours (the mech-
anisms of the system) and, on the other, the way they are combined in order to create higher-level
interactive behaviours (driven by policy). One common example in user interface developmentis a
scroll-bar; the system can provide mechanisms (such as mouse-sensitive regions and a coupling
between mouse movement and pane movement), without embodying a commitment to interface
policy (such as whether the scroll-bar appears to the left or the right of the contents, which mouse
buttons operate it, and where the arrow buttons might appear). Similarly, in COLA, policy decisions
(concerning how users will work together) are left to the application, and the toolkit simply provides
fundamental mechanisms necessary for the creation of a range of policy-driven instances.

In these and other systems, then, the concerns of flexibilitfrastnucture have been a significant
element of the development of collaborative toolkits, and these systems illustrate a range of solu-
tions—parameterisation, customisation and the mechanism/policy separation—which have been
employed to address them.

3 FLEXIBILITY IN COLLABORATIVE APPLICATION USE
The previous section examined the problems inherent in addressing flexibility from the standpoint
of infrastructure developers; this section explores flexibility in the context of application use. Stud-

ies of cooperative working have repeatedly emphasi sed the importance of fluidity and flexibility of
coordination and activity.

Dourish and Béllotti (1992) report on a study of the use of the ShrEdit shared text editor (McGuffin
and Olson, 1992) in cooperative design tasks by small groups in an experimental setting. In com-
parison with a number of other cooperative writing tools of the same period, ShrEdit is highly
unstructured. The group can share any number of textual documents, in which each author has an
individual insertion point, and in which any number of authors can be working concurrently.
ShrEdit employs an implicit locking mechanism, but locks at the level of characters, so that authors
only come into conflict when two of them attempt to place their edit point at exactly the same char-
acter in the document. Changes made by any author are reflected amost immediately in the
windows of the other authors (presuming that their view is scrolled to include the areas where the
others are working), so that they have real-time access to each other’s work.

Dourish and Bellotti's observations repeatedly emphasise the fluid and self-organising nature of the
cooperative group activity engaged in by a number of sets of authors. Far from finding the lack of
structured support for the cooperative writing process problematic, the authors would negotiate and
manage the structure of their collaborative process in a natural and straightforward way. Groups
varied in how they did this; some took separate responsibility for different parts of a single, long
document, some worked largely in their own documents and then integrated their work towards the
end of the experimental period, and others would essentially englge-iior-all acivity over the

whole document. Perhaps more importantly, no group worked solely in any one way; rather, the
“shared feedback” that the synchronous shared workspace provided to the group as a whole acted
as a resource both for the individuals and for the groups as a whole to manage the group process on
a moment-by-moment basis. This shared context allowed them to respond to the immediate circum-
stances of their work, build on what they could see each other doing, and negotiate, both explicitly
and implicitly, the informal division of labour by which their activity was organised.

Beck and Bellotti (1993) report on other experiences of co-authoring, in quite different settings; the
primary collaboration described was the naturally-occurring collaborative writing of an academic
conference paper by two authors separated by six thousand miles and eight time zones. (Elsewhere,
Beck (1994) has reported on other studies of collaborative authoring that provide further supporting
evidence for the observations made in this study.) A significant finding in this work was that, while
the authors would establish a division of labour and a plan for the coordination of their joint work
over the document, thisg-arranged plawould be regularlyand unproblematically ignored in the

actual performance of the work. That is, while the authoghtrdivide up responsibility for two
sections of document, they would each, in fact, make contributions to the other’s section, whether
to correcttypos or to add substantive material relevant to their own sections, as relevant. In fact,
Beck and Bellotti observe, the success of the collaborative process may in many cases depend on
just this sort of “opportunistic” action that successfully advances the group’s work while failing to
uphold the separation of individual activities.

As we can see, the collaborative setting requires a fluid and flexible style of interaction to be effec-
tive. This requirement of flexibility in use is, however, often at odds with the choices made by
toolkit developers in attempting to provide infrastructure flexibility, and discussed previously. In
the next section, we explore the tensions between application infrastructure and application use.

4 THE INTERACTION OF USE AND INFRASTRUCTURE

By definition, collaboration involves the activities of multiple users, the presence of whom affects
the nature of the systems we build. On the systems side, our applications and toolkits must be cog-
nizant of multipleinput streams, must address consistency control, and may potentially haveto deal
with problems of distribution.

The presence of multiple users also hasimplications for the social aspects of the systems we create.
A multiuser application becomesamedium for interpersonal exchange, with all of the potential con-
cerns (as well as benefits) which that entails (Bentley and Dourish, 1995). Examples of the more
socially-oriented aspects of collaborative systems that must be addressed include privacy of partic-
ipants, awareness, and support for the rapidly shifting roles of the participants in the collaboration.

So, these concerns, the “social” and the “technical”, are deeply intertwined. However, despite this,
they areypically explored in isolation; not just in different papers, but in di#nt rooms at confer-
ences. Toolkit designers focus primarily on the range of applications they wish to support in
motivating and evaluating the flexibility of their toolkits. Those engaging in user studies or studies
of collaborative work settings typically do this with reference to the facilities provided by specific
applications or the requirements for new ones. In other words, the focus of the toolkit designer sug-
gests that applications can be thought of independently of the situations in which they will be used;
while those studying collaborative activities suggest, inversely, that applications can be studied
independently of the toolkits and infrastructure facilities which give rise to them. We believe that
neither position is workable.

Our concern, then, is not with the implications for applications of flexible patterns of group work,
nor with the implications for application development of flexible infrastructure. Rather, we are pri-
marily concerned with the direct interaction between use and infrastructure, and its consequences.

For example, the decision of a particular toolkit to provide locking, or optimistic serialization, or
some other concurrency control mechanism affectstttie of use of the applications built with that
toolkit?. For instance, one way to ensure consistency is to require that any process (and so, any user)
must hold a lock on a shared object before that object can be modified. However, a heavyweight
locking mechanism like this can interfere with the ways in which a group will organise their work.
For example, if each region (or each pixel) of a shared whiteboard is thought of as a shared object,
then a heavyweight locking strategy would prevent two users from drawing lines that cross (since
they would both have to modify the same region at once, at the point of intersection). Clearly, this
is an inappropriate degree of structure for a casual, lightweigdraation, but since it is ippsed

by the toolkit (which handles shared objects and consistency management), the application devel-
oper has little contrdl Greenberg and Marwood (1994) have examined a range of such concurrency
control techniques and their influence on interaction.

Consider as a second example a toolkit that uses the notion of roles to establish access control for
data objects. In a shared text editpplication, these roles might include editor, author, and com-

2. We will discuss approaches to consistency control in more detail |ater.

3. The most likely strategy in this case would be to write the whiteboard application in such away that each user has a

private cache which is then updated in the background, so that users don’'t have to deal with locks. This is a more com-
plex structure that the application requires, but is necessitated by the underlying structure of the toolkit. This is what Kic-
zales (1992) called “coding between the lines.”

mentator. Such roles codify a set of social practices that exist at a certain moment in time, but are
not easily adaptable to new situations and cannot accommodate the moment-to-moment shifting
interactions which characterize so much of interpersonal communication. Previouswork by Dewan
et al. (1994) and Neuwirth et al. (1990) has noted such problems.

Both of these examples illustrate how choices in infrastructure design can influence the user inter-
face and multiuser “social inflace” of our systems.

The point of these examples is not to say that certain styles of locking or access control are neces-
sarily bad; rather, they show that any choice of implementation strategy can potentially influence
application functionality and hence usage. Any toolkit designer endeavors to accommodate a wide
range of applications. But designers of toolkits for collaborative systems must take special care they
not only allow butsupport the construction of applications that are responsive to the fluid styles of
interaction required by collaboration.

5 ASPECTS OF FLEXIBILITY

In order to consider the relationship between the functionality and variability offered in a toolkit and
the requirements of both application developers and end-users, we need some ways to think about
toolkit flexibility. We will consider flexibility here in terms of three conceptgeneric, extensible
andspecialisable systems.

Generic systems exploit the fundamental aspect of toolkit design that we introduced at the start of
the paper. Toolkit componentse designed to bepplicable in a range of circumstances; that is,

they are generic. Designs emphasise common functionality, independent of circumstances. The
extent to which components are generic varies from case to case. For instance, consider a user inter-
face component that provides a scroll bar. One way to do this (the “scroller” approach) is to provide

a component that can be attached to a window, and that can be used to move the viewport so that
the window pans over content in a larger workspace. Another way to do it (the “slider” approach)

is to provide a component that users can move around and that controls the value of an associated
variable. Clearly, the slider approach can be used to create a scrollbar (by moving the window con-
tents when the variable changes), although this involves more work by the application developer
than the pre-packaged scrollbar approach; so the slider approach is more generic. In the “generic”
mode, then, the variability in the system component is how it is connected to the rest of the system;
generic components are built to be “plugged in” to systems in a variety of contexts. The component
itself doesn’'t change, but is general enough to apply widely.

The idea of extensible systemefers to the opptunities the toolkit offers programmers to extend

its functionality by incorporating new objects and behaviours as if they were predefined ones.
Extensible toolkits are ones whose functionality can be extended beyond their original boundaries.
For example, Suite provides not only particular styles @frfate oupling, but also the means to

define new ones that can be used in just the same ways as the originals. So, in extensible systems,
the variability lies in the way that new behaviours can be made available alongside existing ones,
as new parts of the design.

Specialisation refers to the ability amjust (rather than extend) toolkits structures to meet the
demands of specific applications and specific application requirements. We draw a distinction, then,
between the creation of new objects and biehas (extensibility) and the modification of existing

ones (specialisation). Thisdistinction isafine one, but crucial; there are many casesin which exten-
sibility failsbecause of theinternal relationships between components. For example, consider acase
where we wish to modify a collaborative toolkit so make it suitable for use in presentations, and in
particular where we want to give it ashared cursor that is considerably larger than the default. In an
extensible toolkit, we could create a new shared cursor object and make it larger and more promi-
nent, but it would only be available in applications that used our new type of cursor. Existing
applications, or existing components that used cursors, would be unaffected and would still be using
the original cursor. In other words, extensibility creates new functionality, whereas specialisation
augments or refines existing behaviour.

Generic, extensible and specialisable techniques are by no means mutually exclusive routesto flex-

ibility in toolkit design. Instead, they are aspects of flexihility, reflecting particular styles and
approaches. We introduce the terms as a form of characterisation, not as a taxonomy. Toolkits, or

even particular techniques, are not uniformly of one sort or another, but tend to combine aspects of

each. For instance, take the example of the larger shared cursor again. The original cursor object

may have some parameters that could be adjusted to control its appearance. Perhaps it has a “big”
flag that doubles it size. Perhaps it offers foufedént size settigs, or perhaps ten. Perhaps it has

an internal control for adjusting its scale to any size. Perhaps it offers similar controls over its color,
or its transparency. At what point does this sortamémetric ontrol cease to be a form of genericity

and begin to be a form of specificity? There is no clear dividing line; we use the terms instead to
reflect aspects dfow the toolkit’s flexibility is offered, rather than as absolute categorisations.

The generic, extensible and specialisable approaches give us a framework to consider the issues of
flexibility in toolkit design. Generic and extensible toolkits provide their users (the developers of
applications) with the means to create and incorporate new behaviours. In contrast with fixed tech-
niques, they give the application developer much more control, and begin to blur the distinction
between “toolkit” and “application” (or between “toolkit programming” and “application program-
ming”). Specialisation blurs that boundary further, by providing a means to incorporate
understandings about the application requirements and behaviour into the infrastructure the toolkit
provides. In the next section, we discuss two toolkits we have developed and show their approaches
to specialisation.

6 NEW APPROACHES TO CSCW TOOLKIT FLEXIBILITY

We will illustrate these issues and potential solutions with reference to two particular toolkits that
we have designed and implemented: Intermezzo (Edwards, 1996a) and Prospero (Dourish, 1996a).
Intermezzo is designed to support ttoerdination aspects of collaboration: the tasks associated
with rendezvous of participants, awareness, and policy. A principal element in the toolkit's design
is that it reifies the setting in which the collaboration occurs by gathering and exposing information
about user activity to applications. Further, applications can modify the behavior of the toolkit based
the situational context of the collaboration represented by this activity information. Prospero (Dour-
ish, 1996a) deals largely with the areas of distributed data management and consistency control. It
exploits anarchitectural approach called “Open Implementation” (Kiczales, 1992; 1996) in which
the abstractions and mechanisrffered by a system (such asomlkit) can not only be used by its

clients (applications), but can also be examined and manipulated, and hence specialized to the needs
of particular situations.

While Intermezzo and Prospero were developed independently, and take different approachesto the
problem of toolkit flexibility, they have a number of interesting features in common. First, they are
motivated by many of the same concerns with the interaction of toolkit structure and application
use; and second, they share a common technical concern with flexibility through specialisation
rather than through genericity. This section presents the approaches taken by both systems to pro-
vide flexibility to application writers.

Intermezzo and Prospero have both been described elsewhere. Our goal here is not to provide
another presentation of their structure and use. Instead, we use the two systemsto illustrate the spe-
cialisation approach to infrastructure flexibility and customisation, as a stepping stone towards a
fuller discussion of the approach to infrastructure development based on the relationship between
infrastructure and use.

6.1 Example: Flexibility through Awareness in Intermezzo

Intermezzo addresses flexibility by providing an infrastructure by which some of the technical
aspects of collaborative applications can be mediated by input about the social setting in which the
collaboration occurs. For example, a collaborative writing application may need to accommodate
different styles of session management or access control during the course of a collaboration based
onthe shifting goalsand needs of the participants. To support thisform of dynamic flexibility, Inter-
mezzo brings information about the participants of the collaboration, their activities, and their
environment into the realm of the toolkit. Thisinformation is made available to applications (mod-
ulo privacy restrictions) in a machine-parsable format. Further, the toolkit itself uses this
information about situational context to regulate its internal operations.

Intermezzo relies on information about the state of the world that is represented as a database of

objects describing user activity. Representations of activity are hierarchical and allow application-

specific “views” of the world state at any number of semantic levels. Activity information has a
structured format and supports links between related objects. In the Intermezzo model, applications
themselves are responsible for maintaining the global view of the world, and the toolkit provides
support (much of it automatic) for publishing and updating this information. For example, when an
Intermezzo-based collaborative writing tool is started, it will publish information describing itself
(the tool), its users, and the documents being edited. The format of the published data allows it to
be searched, updated, and viewed easily by other applications.

The principal way in which Intermezzo provides flexibility to applications is by allowing them to
adapt not just their own behaviour, but also the behavior of the toolkit in reaction to the changing
dynamics of the world in which they are run. Applications change toolkit behaviour in two ways.
The first is by downloading code into the runtime system that runs in response to changes in world
state. This downloaded code can be tied to any change in the environment, and caraffeettly
application or toolkit state.

Downloaded code, which is written in an extended version of the Python language (Van Rossum,
1995), can be directly executed by the runtime system at the time it is transmitted; can be set to
“fire” when a particular change on a specific object occurs in the activity database; or can fire when-
ever the database state achieves a certain “pattern,” as described via a pattern matching language.
By associating portions of application code with objects “in the world,” application behavior can be
directed and influenced by changes in situational context.

10

The second way applications can change the behavior of the toolkit is through the use of situation-
aly-based access control (Edwards, 1996b). Intermezzo uses strong, cryptographically-secure
access control throughout. The objects to which accessis controlled are not just the objects created
by the application to maintain domain-specific application state, they also include objects used
internally by thetoolkit. By constraining accessto toolkit functions and data, applications caneffect
global changes in the behaviour of the toolkit itself. For example, application code can provide sit-
uational control over inter-application behaviour such as session management through this
technique (Edwards, 1994).

The actual access control settings of various objects—both in the application and in the toolkit—
are under the control of a language-based policy system that uses information about the situational
context as an input. Applications use the access control system by writing “policies™—which are
essentially access control templates—and binding them to “roles.” Unlike traditional roles, how-
ever, the membership of an Intermezzo roldeteribed by a predicate function, rather thdefined

by a membership list. This technique allows applications to be written in terms of general descrip-
tions of user behavior and context, rather than more limiting specific definitions. For example, an
application could respond to genal descripon of “the set of people currently in my lab,” rather

than the more static and restrictavpriori enumeration of the names of specific people often found

in my lab.

By mediating the systems-oriented aspects of access control, session management, and awareness
with input about the context in which a collaboration is occurring, Intermezzo provides applications
with dynamic flexibility—the ability to match and adapt to the changes in a groupésaotions

over time. Intermezzo enables applications to more easily support groups that move fluidly between
various styles of work.

6.2 Example: Flexible Consistency Control in Prospero

One of Prospero’s major areas of concern is consistency control for collaborative applications. Con-
sistency control is the mechanism by which a collaborative system ensures that the potentially
simultaneous actions of multiple users over a shared data space do not result in inconsistent views
of the data space. For instance, consider a medical system suppoatiag abcess to patient
records. To ensure speedy response, the system might replicate the database, placing copies of the
patient records at different pis in the network. If two users were to simultaneously update the
same record, and their changes were to be made to their own copies of the records before being sent
across the network, then an inconsistency would have arisen, since their respective copies of “the
same” recordvould display diferent information.

Since the shared spaces of collaborative systems can be modeled as databases, most CSCW systems
have looked to the models provided in distributed database design for consistency mechanisms. The
most common mechanisms in database design are forms of “locking,” in which a “lock” for data to

be modified is obtained before the changes can be made. The locking mechanism forces clients to
declare their intent to updatecords before the updates are dtyuaade, and so provides an
opportunity to avoid inconsistency by having the systefuse to grant locks if the actions might

conflict with others. If multiple clients simultaneously requesad locks” (locks obtained by cli-

ents which intend to read data), then they can all be granted, because there is no opportunity for
inconsistency to arise, since read operations will not change the data. However, if one client has

11

already been granted a “write lock” for a piece of data, then no other client will be granted a second
“write lock” until the first client has finished, because two simultaneous writes might result in
inconsistency—a write/write conflict. In many situations, an outstanding write lock might also pre-
vent any further read locks being granted, because the reading client might receive data which has
become out of date.

The database model, with its read and write semantics, is very generic; it supports a wide range of
potential collaborative activities. However, drawing on the interaction of usefeastincture out-

lined above, we can identify a number of problems. Locking out operations because of potential
conflicts can interferavith the smooth progress of collaboration; and the read and write semantics
are such that many activities look like conflicts even if, in fact, they will not lead to inconsistency.
For example, consider two users working on a bibliographical database, which records citation
details for publications. Adding two records at once will not lead to conflicts; either they're the same
record (in which case, they match to the same new record to be added, which should be an accept-
able operation), or they're different records (in which case, theyld both be added). However,

to the database substrate, these will look like two write operations, and so a conflict will be flagged.
In other words, the configuration of the infrastructure, a database storage layer with a conflict avoid-
ance mechanism based on read and write semantics, will interfere with theicexemiut
collaborative work, forcing users to interleave their activities.

Prospero’s approach is to allow consistency control to be specified in terms of the domain semantics
of particular collaborative applications (Dourish, 1996b). The paradox, of course, is that this makes
consistency management a toolkit concern, but yet the toolkit, as a general facility, must be free of
exactly the type of specific application features from which we want to construct this mechanism.
The toolkit itself, then, does not emte in terms of pre-defined application satits (although it
provides a reusable and extensible core set of potential properties applicable in some range of situ-
ations). Instead, it provides the framewarikhin which they can be defined. So, the developer of

the bibliographical database example would describe the semantic properties of application opera-
tions (such as the non-destructive writes implied by adding new entries to the database), and then
the toolkit can manage consistency in these terms. The toolkit is specialised to the needs of the par-
ticular implementation.

Prospero uses a pairwise comparison of operation properties, much like the read/write comparison
model, to decide when sets of operations might conflict. However, using the metalevel control (that
is, the mechanism for programmers to modify or augment internal toolkit facilities) allows the pro-
grammer to gain control over this process and cast it in terms of the application specifics. Since the
comparison is done in terms of operations which are meaningful at the application level, rather than
simply those meaning at the infrastructure level, the toolkit can support a range of behaviours spe-
cific to each situation, which would be disallowed by a traditional approach implemented over a
standard database model. In this way, a link is achieved between the configuration of the infrastruc-
ture and the particularities of each particular application.

7 THE DESIGN OF FLEXIBLE CSCW TOOLKITS

Intermezzo and Prospero illustrate two different approaches to achieving flexibility in toolkit
design. However, they share a common set of concerns, and in particular, a common reaction to the
traditional mechanisms of toolkit flexibility.

12

The standard approach to flexibility in toolkit design (in any domain, not just CSCW) is through

generic design. This approach involves the design of generic toolkit facilities, applicable to the

widest range of applications. For instance, a standard database model, with access control and con-

sistency management based ocgeltl” and “write” access, lEghly generic, and can therefore serve

as an infrastructure for a very wide range of CSCW applications. Access to the shared data store can
be implemented in terms of read and write operations, in whatever way the application might then
use those reads and writes to support the specific application needs. As a generic mechanism, then,
the traditional approach takes the read/write database model as a useful basis for the design of a tool-
kit which can be used to build CSCW applications of all sorts.

Intermezzo and Prospero take almostdhgosite approach to the provision of flexibility in CSCW
toolkits. Their primary concern is with the design deefive, functional CSCW applications, and

so they are concerned with the highbgcific behaviours observed in collaborative settings. As we
have explored in this paper, these behaviours depend in crucial ways on the variety of infrastructural
configurations within which cooperation takes place.

The implication, then, is that applications require widelyedéht infrastructure provisions, rather

than a single highly generic mechanism onto which a variety of application requirements can some-
how be “mapped”. The question of flexibility in Intermezzo and Prospero, then, is how the toolkit
can be specialised and adapted to the particular needs of a given collaborative situation, rather than
how that particular situation can be described in terms of whatever toolkit components happen to
be lying around. The latter would argue for an arbitrarily large “vocabulary” of toolkit building
blocks. Instead, we argue for the ability to specialise the toolkit in a “deep” way to the needs of its
applications. The generic design approach attempts to remove fronfrisrircture any depen-

dency on particular contexts of use, but it provides no means for context to be re-established.
Specialisation gives us a way to incorporate context again, and this is what Intermezzo and Prospero
do. In doing this, though, they focus on different concerns.

Intermezzo primarily addressdgnamic flexibility: the ability of applications to track the changing
circumstances in which they are run and adapt their behavior accordingly. The infrastructure medi-
ates its own operation through application-supplied code that takes as input a repository of
information about the application’s context. Architecturally, Intermezzo takes a “programming lan-
guage” approach, providing specialised languages in which the needs of specific applications can
be described.

Prospero primarily addressiesplementation flexibility: the ability of applications to “open up” the
internal constructs of the toolkit and adapt it to their particular requirements. Applications can
modify and specialize toolkit-internal constructs, which the toolkit will then use to provide applica-
tion support. At the same time, it provides novel mechanisms such as the divergence/
synchronisation approach to distributed data management (Dourish, 1995b) which generalise across
the traditional boundaries of collaborative systems, as a means to address (by reformulating) issues
of static flexibility. Architecturally, Prospero is based on the “Open Implementation” approach
which makes aspects of the toolkit, traditionally only available for “use” by applications, amenable
to examination, modification and control. (It is perhaps interesting that the Open Implementation
approach is derived from work in the theory and design of programming languages. Perhaps this
work lends further support to the theory that Computer Science is a bell-shaped curve around pro-
gramming language design and implementation.)

13

The different architectures, however, belie a shared underlying technical goal: to let application

code “push semantics” into the toolkit to accomplish particular goals. This goal is motivated by both
technical and social or observational needs. Technically, providing such a mechanism is a solution
to the perennial problem of flexibility in toolkit design. Socially, semantic features (the “meaning”
and behavioural consequences of toolkit configuratians)een to be crucial in the emergence of
forms of group behaviour, and so are ineliminably the concern of application developers and users,
not of toolkit designers, who, by definition, are separated from the situations in which the toolkit
mechanisms will be realised in particular applications and put to use in particular circumstances.

8 CONCLUSIONS

The days when CSCW applications were build by hand, from sceatdbng behind us. Not only

is such an approach increasingly technologically impractical (as systems get larger and more com-
plex, and as users demand more and more from the applications they use), but it is also inviable
commercially. Like applications in any other domains, CSCW applications depend on toolkits to
provide them with standard, reusable approaches to application design and mechanisms to be
deployed. The critical concern for the designer of a CSCW toolkit is the range of behaviours (and
hence of applications) which can be supported.

The design of toolkits, and the flexibility implied by the range of mechanisms they provide and the
range of ways in which they can be combined, has typically been approached purely as a technical
problem. However, the radical degs of fl«ibility implied and required by collaborative work,

and observable in studies of groups working together, undermines this position. Observational stud-
ies have pointed to the range of ways in which collaborators organise (and reorganise) their work,
and these studies illustrate how group behaviour is critically dependent not simply on the “high-
level” facilities which collaborative applications$fer, but dso on the “low-level” issues of infra-
structure configuration which lies beneath these applications.

These observations suggest that the problem of toolkit flexibility is not one of providing generic
mechanisms, but rather is one of gaining control over the relationship between the application and
the infrastructure. Semantic issues cannot be locked inside a toolkit, inaccessibly to the application
designer and the user; rather, the semantics required of the toolkit come from applications and cir-
cumstances of use. In other words, the focus for design should beréeeniy relfonship
amongst toolkits, applications and use, rather than the traditional pair of two-way relationships
(toolkit/application and application/use). In this way, the problem of tailorability—incorporating
local modifications and specialisations to adapt a tool to the needs of a particular set of users—is a
problem not only for interface dign, but for the deeper areas of system development.

We have outlined and motivated these problems by appeal to a number of studies, and shown how
two toolkits, Intermezzo and Prospero, tackle these problems. Intermezzo and Prospero were
designed independently, employffdient conputational architectures and address different
domains of cocern to the designer of a CSCWlkit. However, they share a concern with the rela-
tionship between application andriastructure, and with making this accessible so that application
developers can free themselves from figedrmodels which are embodied (and often hidden) in
CSCW toolkits. Intermezzo and Prospero both emphasise flexibility through application specialisa-
tion, rather than flexibility through abstraction and genericity.

14

The general concern which motivates these two systems, and the mechanisms which they embody,
point the way towards a new model of toolkit design which is grounded not simply in the technical
concerns of generic infrastructure mechanisms, but rather which is based in understandings of how
collaboration works.

Acknowledgments

Prospero was designed and implemented while Paul was employed at the Rank Xerox Research
Centre (formerly EuroPARC) and studying at University College, London; Intermezzo was
designed and implemented while K eith was studying in the College of Computing at Georgia I nsti-
tute of Technology. We would like to thank the voicesthat spoketo usandtold uswhat to say. Some
of these belonged to Beth Mynatt, John Stasko, Dik Bentley, Jon Crowcroft, Beki Grinter, and
Prasun Dewan.

References

Beck, E. and Bellotti, V. (1993): “Informed Opportunism as StrategyProt. Third European Conference
on Computer-Supported Cooperative Work ECSCWR&iBano, Italy), Dordrecht: Kluwer.

Beck, E. (1994): “Practices of Collaboration in Writing and their Support.” D.Phil. thesis, University of
Sussex (Technical Report CSRP 340, ISSN 1350 3162).

Bentley, R. and Dourish, P. (1995):Medium vs. Mechanism: Supporting collaboration through
customisation”, inProc. European Conference on Computer-Supported Cooperative Work ECSCW’95
(Stockholm, Sweden), Dordrecht: Kluwer.

Crowley, T. Milazzo, P., Baker, E., Forsdick. H. and Tomlinson, R. (1990): “MMConf: An Infrastructure for
Building Shared Multimedia Applications”, iroc. ACM Conference on Computer - Supported Cooperative
Work CSCW’'9(L os Angeles, California), New York: ACM.

Dewan, P. (1990): “A Tour Through the Suite User Interface Softward®rdo. ACM Symposium on User
Interface Software and Technology UIST{@dowbird, Utah), New Y ork: ACM.

Dewan, P. and Choudhary, R. (1992): “A High-Level and Flexible Framework for Implementing Multi-User
Interfaces”. InProc. ACM Conference on Computer-Supported Cooperative Work CSQWogénto,
Canada), New York: ACM.

Dewan, P., Choudhary, R., and Shen, H. (1994): “An Editing-based Characterization of the Design Space of
Collaboration Applications,Journal of Organizational Computing, 4(3), pp. 219-240.

Dewan, P. and Choudhary, R. (1995): “Coupling the User Interfaces of a Multiuser Progr@m”.
Transactions on Computer-Human Interaction, 2(1), 1-39.

Dourish, P. and Bellotti, V. (1992): “Awareness and Coordination in Shared WorkspacBsdcilACM
Conference on Computer-Supported Cooperative Work CSC@neanto, Canada), New Y ork: ACM.

Dourish, P. (1995a): “Developing a Reflective Model of Collaborative SysteA@yl Transactions on
Computer-Human Interaction, 2(1), pp. 40-63.

Dourish, P. (1995b): “The Parting of the Ways: Divergence, Data Management and Collaborative Work”, in
Proc. European Conference on Computer-Supported Cooperative Work ECS&g&olm, Sweden),
Dordrecht: Kluwer.

Dourish, P. (1996a): “Open Implementation and Flexibility in a CSCW ToolkitPhD dissertation,
Department of Computer Science, University College, London.

Dourish, P. (1996b): “Consistency Guarantees: Exploiting Application Semantics for Consistency
Management in a Collaboration Toolkit”, Proc. ACM Conference on Computer-Supported Cooperative
Work CSCW'96Boston, Mass.), New York: ACM.

Edwards, K. (1994): “Session Management in Collaborative ApplicationsPrae. ACM Conference on
Computer-Supported Cooperative Work CSCW'’94 (Chapel Hill, North Carolina), New York: ACM.

15

Edwards, K. (1996a): “Coordination Infrastructure in Collaborative Systems”, PhD dissertation, College of
Computing, Georgia Institute of Technology, Atlanta, Georgia.

Edwards, K. (1996b): “Policy and Roles in Collaborative Applications”Pinc. ACM Conference on
Computer-Supported Cooperative Work CSCWBston, Mass.), New York: ACM.

Greenberg, S. and Marwood, D. (1994): “Real-time Groupware as a Distributed System: Concurrency
Control and its Effect on the Interface”,Pnoc. ACM Conference on Computer Supported Cooperative Work
CSCW'’94(Chapel Hill, North Carolina), New York: ACM.

Hill, R., Brinck, T., Rohall, S., Patterson, J., and Wilner, W. (1994): “ The Rendezvous Architecture and
Language for Multi-User ApplicationsACM Transactions on Computer-Human Interaction, 1(2), pp. 81—
125.

Kiczales, G. (1992): “Towards a New Model of Abstraction in the Engineering of SoftwaRrodnlMSA
Workshop on Reflection and Metalevel Architecture, Tokyo, Japan.

Kiczales, G. (1996): Beyond the Black Box: Open ImplementatiorZEE Software, pp. 6—11, January.

McGuffin, L. and Olson. G. (1992)ShrEdit: A Shared Electronic WorkspaceCSMIL Technical Report,
Cognitive Science and Machine I ntelligence Laboratory, University of Michigan.

MacLean, A., Carter, K., Moran, T. and Lovstrand, L. (1990): “User-Tailorable Systems: Pressing the Issues
with Buttons”. In Proc. ACM Conference on Human Factors in Computing Systems CKB&ftle,
Washington). New Y ork: ACM.

Malone, T., Lai, K.-Y. and Fry, C. (1995): “Experiments with Oval: A Radically Tailorable Tool for
Cooperative Work” ACM Transactions on Computer-Human Interaction, 13 (2), 175-205.

Nardi, B. and Miller, J. (1991): “Twinkling Lights and nested Loops: Distributed Problem Solving and
Spreadsheet Development”. In Greenberg (é&bjnputer-Supported Cooperative Work and Groupware,
Academic Press.

Neuwirth, C.M., Kaufer, D.S., Chandhok, R., and Morris, J. (1990): “Issues in the Design of Computer
Support for Co-authoring and Commenting,’Hroc. ACM Conference on Computer - Supported Cooper ative
Work CSCW'90pp. 183-195, New Y ork: ACM.

Roseman, M. and Greenberg, S. (1996): “Building Real-Time Groupware with GroupKit, a Groupware
Toolkit”, ACM Transactions on Computer-Human Interaction, 3(1).

Trevor, J., Rodden, T. and Mariani, J. (1994): “The Use of Adapters to Support Cooperative Sharing”, in
Proc. ACM Conference on Computer-Supported Cooperative Work CSQ&¥igzel Hill, North Carolina),
New York: ACM.

Trevor, J., Rodden, T. and Blair, G. (1995): “ COLA: A Lightweight Platform for CSCW”Computer
Supported Cooperative Work, 3, pp. 197-224.

Trigg, R., Moran, T. and Halasz, F. (1987): “Adaptability and Tailorability in Notecards”, in Bullinger and
Shackel (eds.JNTERACT'87 North Holland.

Trigg, R. and Bodker, S. (1994): “From Implementation to Design: Tailoring and the Emergence of
Systematization in CSCW”, IARroc. ACM Conference on Computer-Supported Cooperative Work CSCW’'94
(Chapel Hill, North Carolina), pp. 45-54. New York: ACM.

Van Rossum, G. (1995)Python Reference Manual Release 1.3. October 13 (available as http://
www.python.org/doc/ref/ref.html).

16

	A Tale of Two Toolkits: Relating Infrastructure and Use in Flexible CSCW Toolkits
	Paul Dourish and W. Keith Edwards
	1 Introduction

	Figure 1: For the toolkit developer, anticipating the needs of application developers means antic...
	2 Flexibility in CSCW Infrastructure Implementation
	2.1 Aspects of Infrastructure Flexibility
	2.2 Existing Approaches

	3 Flexibility in Collaborative Application Use
	4 The Interaction of Use and Infrastructure
	5 ASPECTS OF FLEXIBILITY
	6 New Approaches to CSCW Toolkit Flexibility
	6.1 Example: Flexibility through Awareness in Intermezzo
	6.2 Example: Flexible Consistency Control in Prospero

	7 The Design of Flexible CSCW Toolkits
	8 Conclusions
	Acknowledgments
	References

