
per”,
 mul-

 their
ign and

nents

w forms

tion

 store,

mer-
uments

nteract

Presto: An Experimental Architecture for
Fluid Interactive Document Spaces

Paul Dourish, W. Keith Edwards, Anthony LaMarca and Michael Salisbury

Computer Science Laboratory
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto
CA 94304 USA

{dourish, kedwards, lamarca, salisbury}@parc.xerox.com

Published in ACM Transactions on Computer-Human Interaction, 6(2), 133-161, 1999.
Abstract. Traditional document systems use hierarchical filing structures as the basis for organis-
ing, storing and retrieving documents. However, this structure is very limited in comparison with

the rich and varied forms of document interaction and category management in everyday document
use. Presto is a prototype document management system providing rich interaction with documents

through meaningful, user-level document attributes, such as “Word file”, “published pa
“shared with Jim”, “about Presto” or “currently in progress”. Document attributes capture the

tiple different roles that a single document might play, and allow users to rapidly reorganise
document space for the task at hand. They provide a basis for novel document systems des

new approaches to document management and interaction.

In this article, we outline the motivations behind this approach, describe the principal compo

of our implementation, discuss architectural consequences, and show how these support ne
of interaction with large personal document spaces.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques—user

interfaces; H.3.2 [Information Storage and Retrieval]: Information Storage—file organization;

H.3.3 [Information Storage and Retrieval]: Information Search and Retrival; H.5.2 [Information
Interfaces and Presentation]: User Interfaces—interaction styles.

Additional key words and phrases: Document management, attribute/value systems, informa
retrieval, direct manipulation.

1 INTRODUCTION
Much of what we do when sitting in front of computers is document space management. We

file, organise and retrieve information from a variety of electronic document collections. The e
gence of the World Wide Web and the spread of the Internet mean that more and more doc

flow into our document space every day, increasing our need for better tools to visualise and i
with it.
1

ve is the
elves

t space

he file

e seen,

 move
aper

 also as
ller and

i

ng and

rs are
those

e use
anage-

of doc-

n with

e at a
iases is

tends

ut the
ising

e task.

t
nt con-

views

ss com-
g is a
The tools that most of us use every day rely on one fundamental mechanism for organising docu-

ment spaces—the hierarchy. Hierarchies occur in all sorts of document managementtools,

including mail systems, contact managers and web browsers, but perhaps the most pervasi
filesystem. Documents are stored in files that live in directories or folders, which are thems

contained in other directories, creating a hierarchy that provides the structure for documen
interactions. In this model, the difference between files and documents all but disappears; to all

intents and purposes, the file space is the document space.

By implication, the structure of the document space is also mapped onto the structure of t

space. Much of our navigation through the filesystem, in browsers and dialog boxes, can b
in fact, as navigation through semantic structures that have been mapped onto a file hierarchy. When

someone begins a search in the directory titled “Frame documents”, and then progressively
through sub-directories called “Publications”, “Conference papers”, “UIST 98” and “Presto p

drafts”, this movement can be seen not only as a movement from one folder to another, but
a search procedure that exploits features of the documents to progressively focus on a sma

smaller set of potential documents. The structure of the search has been mapped onto the herarchy
provided by the filesystem because that hierarchy is essentially the only mechanism provided to

organise files.

Documents, though, are not files. Documents are organisational entities with social meani

practical consequences, while computer files are computational artifacts whose behaviou
defined technically. Similarly, our requirements for document space organisation differ from

for managing files. We would like to provide a basis for organising documents that reflects th
of documents in working settings, and supports richer document practices for organisation, m

ment and retrieval.

Our current research in the “Placeless Documents” project concerns precisely this question

ument space organisation, and how we can support more natural and fluid forms of interactio
a document space. Examples of the sorts of problems we want to address include:

1. A filesystem provides only a “single-inheritance” structure. Files can only be in one plac
time, and so can occupy only one spot in the semantic structure. The use of links and al

testament to this problem, but at the same time is sufficiently complicated that it often ex
no further than desktop shortcuts.

2. My conception of the structure by which files should be organised changes over time, b
hierarchy is fixed and rigid. Moving individual files around is easy enough, but reorgan

large sets of files is a chore.

3. Not only does the category structure for files change over time, but it is dependent on th

At one moment, searching for a particular document, I might want to organise my documen
space in terms of projects; at the next, according to time; and then, according to docume

tent. Effectively, document retrieval depends on being able to manage multiple different
of my document space fluidly.

4. Since these documents are being stored on a computer, I would like to be able to harne
putational power to help me organise them. If the computer can figure out that somethin

Web document that references three other specific pages, then why should I have to do it?
2

loiting
nships

 Fertig
ding is

f loca-
ments

ed into

tem

1993].
rely on

onally

es (tra-
 some

m with
gful to

gorisa-
hes).
We have developed a system, called Presto, that provides an infrastructure for experimentation with

some of the issues that have arisen in the Placeless Documents project. Placeless is concerned with

a broad range of concerns, and the development of a novel approach to document systems infra-
structure; it is described in more detail elsewhere [Dourish et al., 1999a]. Presto is concerned with

a subset of the Placeless design issues. In particular, Presto has been designed as a platform to
explore new forms of fluid interaction with documents spaces, addressing the sorts of user problems

discussed above.

In what follows, we first outline some motivations for our approach, and describe the basic model

that Presto presents. The main body of the paper will introduce the Presto architecture, and discuss
how it supports attribute-based document interaction, in both legacy and novel applications. Finally,

we will discuss what we have learned from our first set of applications, and discuss some possibil-
ities for the future.

2 MOTIVATION
The work described in this paper is inspired by the rigid, inflexible means provided by filesystem-

based document repositories for managing working documents. The traditional model of hierarchi-
cal directories and (hopefully) mnemonic filenames not only imposes considerable burdens for

filing, searching and retrieval, but also fails to take account of the ways in which everyday docu-
ment work takes place.

Studies of filing and retrieval practices, such as those documented by Barreau and Nardi [1995],
highlight the ways in which traditional mechanisms fail. Barreau and Nardi draw together findings

from a number of studies of how people organise files on PCs, and how they use the desktop and
directory structures. In their investigations, most users do not employ elaborate or deep filing sys-

tems, but rather show a preference for simple structures and “location-based search”, exp
groupings of files (either in folders, or on the computer desktop) to express patterns of relatio

between documents and to aid in retrieval. In their response to Barreau and Nardi’s article,
et al. [1996] defend deep structure and search queries, observing that location-based fin

“nothing more than a user-controlled logical search”. There is, however, one clear feature o
tion-based search which adds to a simple logical search—in a location-based system, the docu

have been subject to some sort of pre-categorisation. Additional structure has been introduc
the space; this structure is exploited in search and retrieval.

Another interesting feature of this location-based structure is that it is exploited perceptually, rather
than cognitively. Moving the burden of retrieval effort from the cognitive to the perceptual sys

has long been the direction taken by information visualisation research [Robertson et al.,
However, although this approach can be highly effective, the information that these systems

is content-based, and extracting this information to find the structure can be computati
expensive.

In Presto, we steer a middle course, between structure-based retrieval with few structure cu
ditional hierarchies) and content-based retrieval with extensive feature extraction (as in

information visualisation approaches). Instead, we tag or annotate documents in our syste
attributes that express attributes of the documents. Our attributes express attributes meanin

the user in their use of the document. They can be added directly by users (like the pre-cate
tion of location-based search) or extracted by software services (like content-based approac
3

IME

. Docu-
e added

in any
s can be

 which
y con-

ture. In
her than

ot
tent is
A critical feature of this attribute-based approach is that it captures the multivalent nature of docu-

ments.1 In everyday working, documents can represent different things to different people, or be

used in different ways at different times, and it can be hard to fit these different uses into a single
structure (even with the help of shortcuts, aliases or symbolic links). Sometimes I might want to

handle a document as an email message, and sometimes I want to handle it is a Presto design doc-
ument; and at the same time, my administrative assistant might want to organise it according to the

budget center to which equipment purchases should be charged. Capturing the multiple features of
documents that may be relevant for their organisation is a critical feature of our approach. The cor-

ollary is that we need to be able to fluidly switch from one view to another, reorganising the
document workspace quickly to reflect the terms and structure relevant to the task in hand.

A broader goal is to understand the relationship between computational and naturalistic approaches
to classification, identity, grouping and membership. For instance, investigations such as those of

Sacks [1992] emphasise membership and categorisation as practical accomplishments and social
actions. That is, the identification of an entity as being such-and-such-a-thing is achieved by some

particular individual and for some particular purposes; for other purposes, such an identification
might be quite incorrect. Inspired by such analytic accounts of the practice of category management,

we are interested in how computational systems can allow for similarly fluid categorisation. This is
part of a wider program of research [Dourish and Button, 1999] and will not directly concern us in

this paper.

2.1 Attribute-Based Document Interaction
In Placeless Documents, and hence in Presto, users conceive of and interact with documents in

terms of document attributes. Attributes are user-level properties of documents, expressed as
key/value pairs. For instance, attributes of a document might include that it is in Framemaker for-

mat, that it is a journal paper, that it is in preparation, that it is intended for TOCHI, and that it is
about Presto. Another document may contain attributes stating that it is an email message from

Doug about meeting times, and that it was read last Tuesday. In other words, document attributes
are intended to capture information that is meaningful to document users and creators. This infor-

mation is captured and recorded as a set of key/value pairs, such as “M
Type=application/msword” or “Sender=terry@parc.xerox.com”.

These document attributes form the basis of interaction with the document space in Presto
ments can be retrieved, indexed and organised according to their attributes. Attributes can b

by users or by Presto services, and can store arbitrary information. A document can conta
number of attributes. Document attributes can be used as the basis of queries, and querie

used to specify “live” document collections with dynamic membership.

In this way, the structure of the document space, and hence the structure of interaction with the doc-

ument space, is based on meaningful properties of documents, rather than the structure in
they were filed. Using document attributes in this way means that interaction is more strongl

nected to the users’ immediate concerns and the task in hand rather than an extrinsic struc
addition, the structure of the document space reflects changes in the state of documents, rat

1. By “multivalent”, we mean that documents have multiple values and play multiple roles concurrently. This is n
quite the same as the “multivalent documents” of Phelps and Wilensky [1996], which are documents whose con
the composition of multiple components.
4

—are

paces.

ument

and to
 set a

ugh to
 by our-

y
ality”

-
hat a

 at all.

r the

el, and
l ele-

e

tity to
ry in a

d, since
 more,

orts of
 restric-

an have
resto

, most

nd most
equire-

ents as

er that
ith
simply their state when they were filed. However, collections still appear inside collections, and

standard filing information—such as document ownership, modification dates, file types, etc.

still preserved by our system, appearing as document attributes maintained by the infrastructure. In
this way, we can recapture more traditional forms of structured interaction with document s

New forms of interaction emerge as a logical extension of traditional practices.

2.2 Design Goals
Presto is our first prototype exploring the use of attributes as a uniform mechanism for doc

interaction. As such, it had two primary goals: to demonstrate the validity of the approach,
provide us with some early design experiences to inform future explorations. In addition, we

number of approximate criteria for success. Our goal was to develop a system efficient eno
hold document sets numbering in the thousands; robust enough for everyday use, at least

selves and a small set of colleagues; and practical and effective enough to be used as a primar
interface to our own document spaces, with the documents that we use every day. This “practic

criterion implied that our system needed to interoperate with the applications that we use on our reg
ular desktop platforms (Solaris and Windows NT). Expressed simply, our position was t

document system that can’t launch Word and fetch Web documents is no document system

At the same time, we decided that a number of issues were explicitly not our concern in Presto,

including document replication and coordination, migration, and security. Our focus fo
moment is on interaction rather than the systems issues.

3 THE PRESTO ARCHITECTURE
Before we discuss the details of our design, let’s consider Presto’s basic architectural mod
how it provides support for novel forms of document interaction. Many of Presto’s architectura

ments are shared with the Placeless Documents system, as outlined earlier; we discuss them her
purely in the context of Presto, and will have more to say about Placeless Documents later.

3.1 The Presto Document Model
Presto provides a uniform document model for documents of all sorts. A document is an en
which attributes can be attached. Attributes are arbitrary name/value pairs. They are arbitra

number of ways. First, there can be arbitrarily many attributes attached to a document; indee
attributes are the primary means of organising and retrieving documents, our principle is “the

the merrier”. Second, attributes can have arbitrary names; users can always add new s
attributes even if the system has never heard of them before, and the system will impose no

tions (other than access control) on who can add attributes, when and how. Third, attributes c
arbitrary values. Although we primarily use simple text string values in our examples here, P

can actually record any structured data item, including runnable code, in attribute values.

Note that the fact that a document may contain content is, essentially, incidental. Of course

documents do, and Presto provides convenient access to whatever that content might be; a
applications are naturally focussed around content. However, content is not an absolute r

ment, and the Presto implementation itself makes use of attributes on “content-less” docum
an associative object storage facility.

Users can add their own personal attributes to the documents of other people. If I like a pap
you wrote, I might mark it as being “interesting”, for my own purposes, without interfering w
5

ink it’s
 “refer-

cuments

cument

ynam-

ith

ment,

.

face to
nce.

 Presto
o data-

e to the
enes so

 legacy
ument

s.

s

 order
d pro-
your interactions, and without everyone else having to see that attribute. (Just because I th
interesting doesn’t mean that everyone else does too.) This is achieved through document

ences”, which are personal reference objects to other documents. References appear as do
themselves, and can have attributes.

Documents can be grouped together into collections; a single document can appear in multiple col-
lections, or in none at all. Document collections are, themselves, documents; the same do

features apply to them. Document collection membership can be defined both statically and d
ically. Collections will be explored in more detail below.

3.2 Core Architecture
The core architecture of the Presto system is shown in figure 1.The centre of the system is thePresto

Document Object Layer. This implements Presto’s document model, providing documents w

document attributes. Collections, which may include dynamic queries, are one type of docu
and so are implemented by this layer. The Document Layer exports two forms of interface. The first

is the “Presto Document” interface, a Java class API for applications that are fully Presto-aware
Presto-specific applications are built to this interface. The second is a standard Java IO-stream inter-

face, for integratable Java applications that do not understand Presto. We use this inter
integrate Java Beans to provide viewing and editing of particular document formats, for insta

For legacy applications that are completely Presto-naïve and may not be written in Java,
implements a Network File System (NFS) server [Sun Microsystems, 1989] so that the Prest

base can also be accessed as a regular filesystem. Applications simply read from and writ
filesystem as they would normally; the NFS interface serves Presto documents behind the sc

that those filesystem operations actually apply to Presto documents. Not only does this allow
applications to use Presto seamlessly, but it also allows Presto to maintain relevant doc

attributes (such as modification dates) for activities that happen in these external application

Background applications are integrated into Presto through the Service component. Presto service

are applications that introduce information into the system, often processing structured files in
to turn content into attributes. For example, a mail service operates on electronic mail files an

Presto document object layer

NFS
server

local WebIMAP

filesystem

networked
filesystem

FIGURE 1: The Presto kernel architecture provides a single point of interaction supporting multiple
application interfaces and multiple repository interfaces.

Presto Apps Java Beans
Legacy Apps

Database
storage

Services

filesystem interface

Presto doc interface
Java IOstreams interface
6

).

resto.

objects
-

an be
t, Presto

ontent is

ternal
 the Web

side file-
 content,

Presto

his con-
ed in

n as a
 in Java

atabase

eak an

 is also

allows
uments.

ter to a
cesses them so that the Presto documents are annotated with details from the email headers as
document attributes. Services can be scheduled to operate periodically (e.g. late at night, or every

five minutes) or to act on specific events (e.g. whenever a document’s contents are changed

In important feature of the Presto design is that document content does not, itself, life in P

Presto stores only the attribute metadata; what Presto calls “documents” are, in fact, internal
that stand for content stored elsewhere. We use the term “repository” to describe a store for docu

ment content. The normal filesystem, for example, is a repository; it stores content that c
associated directly with Presto documents. When an application (or a user) reads a documen

fetches the content from the external repository, so the separation between metadata and c
invisible to Presto users.

The primary benefit of this design is that Presto can integrate content from a variety of ex
repositories. Presto applications can take advantage of documents stored on the Web, since

is one of our supported repositories. What is more, these documents can be processed along
system documents; since Presto insulates users from the mechanisms used to access

documents at the Presto level are handled seamlessly.

The core Presto architecture has two run-time configurations. First, it can be run with the

document object implementation and one or more applications in a single address space. In t
figuration, Presto is essentially a run-time document management library dynamically link

with an application. Second, it can be run with the Presto document object implementatio
server, and Presto applications as clients. This second mode allows Presto applications to run

applets or in network computing environments with a “thin client” architecture. Applications can
be run seamlessly in either configuration; the Presto layer is encapsulated within a Presto d

object which may be local or may, in fact, be a proxy for a remote database kernel and sp
RPC-based protocol to a remote Presto server.

3.3 Network Architecture
The ability to decompose the Presto run-time configuration into client and server components

the basis for a more explicit remote network separation. Recall that our document model
users not only to refer to other users’ documents, but also to record attributes on those doc

This creates the notion of a document reference, comprising a set of attributes and a poin
remote document. As shown in figure 2, a document reference is manipulated as if it were a base

document, and it appears to have all the base document attributes as well as the reference attributes

FIGURE 2: When a user interacts with a document reference, they see a combination of their local attributes
and the base document’s attributes. Keith sees both Mike’s attributes and his own..

Mike’s viewKeith’s view

base document

document reference
7

 inter-

y their
search

ide

f Java
cluding

 uses
tadata),

ss-plat-
he same

n Sun
base

t of the

ticular
 of the

ay

ments
t from

f inter-

tributes
-

ument

enough
that a specific user has added. Using this mechanism, users can add attributes to documents to create

their own structures, express their own interests and manage them according to their own criteria.

Most documents have more users than they do authors, and so our system provides support for each
document user to have their own view.

Document references involve remote connections between document spaces managed by individual
Presto kernels. We also provide a means for queries to cross spaces. In our current approach, we

have extended the query language to allow queries to be expressed in terms of another user’s view
of the document, with their local attributes. Thus, in addition to asking “what documents are

esting?” (which will return documents that have been tagged as interesting either by me or b
author), I can also ask “what documents does Anthony think are interesting” and perform a

which includes local reference attributes in Anthony’s document space. This can be used to prov
a basic form of collaborative filtering [Goldberg et al., 1992; Resnick and Varian, 1997].

3.4 Implementation
At the time of writing, our prototype Presto system comprises approximately 45000 lines o
1.1 code. This includes the core and network components, the NFS server, services (in

email, HTML and Java), two browsers and a Lisp interpreter for scripting. The implementation
JDBC, the Java Database Connection, to talk to any SQL database back-end (for attribute me

and the user interfaces are implemented using Swing, JavaSoft’s implementation of the cro
form Java Foundation Classes. The cross-platform nature of Java means that we can run t

Presto code files on PCs running Windows 95 or NT with a Microsoft Access back-end, and o
workstations running Solaris using either the public-domain MySQL or a commercial data

(Oracle) as our back-end.

The overview presented in this section is intended to set context for the discussions in the res

paper. The following sections will describe the Presto system in more detail, focussing in par
on the relationship between architecture and interaction. We will separate the components

system into two sorts—those aimed primarily at supporting our model of use and interaction, and
those aimed primarily at supporting the integration of the Presto system into conventional everyd

environments. This division, while not absolutely clean, helps to separate the intent behind ele
of the design. Both aspects, however, are critical to supporting the style of interaction we wan

the system.

4 SUPPORT FOR INTERACTION
The basic motivation behind our explorations in Presto is the desire to support a new form o

action with large document spaces. This new approach is based on high level document at
that are meaningful to users and are the primary resource for document typing, organisation, search

ing and retrieval. In this model, document attributes provide a uniform means to express doc
categories, groupings and desired behaviour, as well as to organise and search document

repositories.

This style of interaction places a number of criteria on our design. The first is performance; since

all document activity is managed through attributes, then attribute management must be fast
to support interaction by direct manipulation. The second is coherence; our focus should not simply

be on individual documents, but across sets of documents. A third criterion is perceptual stability;
8

 remote

rs, etc.

n test
ue of an

 speci-
terms

 any
e. Since
although attributes, and hence document collections, are subject to continual change, no-one can use

a system that is constantly changing under their feet.

These criteria are reflected in the design of those elements of our architecture that deal with docu-
ment attributes.

4.1 The Document Layer
The Presto document layer provides a uniform model of documents and their metadata attributes.
Essentially, the document layer has three functions:

1. It unifies access to these various back-end repositories with a single document model. Docu-
ments can be managed uniformly, wherever they are stored;

2. It introduces the document attribute mechanism and provides a means to attach, remove and
search arbitrary document attributes via a single coherent mechanism;

3. It adds a unified document collection service, itself based on document attributes. Since collec-
tions are managed in terms of Presto documents, a single collection can group documents stored

in heterogeneous repositories.

The document layer uses a back-end database service for persistent document metadata storage. In
our implementation, we talk to this database service via JDBC so that our code is independent of

the particular database product being used. While many attribute values are simple strings or string
lists, attribute values are stored as serialised Java objects, so that arbitrarily complicated data struc-

tures can be recorded as document attributes. This is particularly important when document
attributes are used to record application-specific information.

4.2 Document Collections
A document system organised entirely around individual documents would be, at best, tedious to

use. Most interactions in Presto are with documents as elements of document collections. Along
with filesystem documents and Web documents, document collections are implemented as a docu-

ment type, and so they are subject to all the same operations that can be applied to documents
(including having associated attributes, search and retrieval, and themselves being members of

collections).

Presto was designed to act as a bridge between different document worlds — local storage,

document services like the Web, application-specific document management like email folde
As a result, our notion of collection needs to be able to capture the different grouping modalities

that these document worlds offer, from simple directories to search engines.

In our implementation, document collections comprise three elements (each of which can be null).

The first is a query term. Query terms are specified in terms of document attributes. Queries ca
for the presence or absence of particular attributes on a document, can test the specific val

attribute, or can perform type-specific value comparisons (for instance, a wide range of date
fications can be provided, such as “changed within 2 hours” and “modified last week”). Query

in document collections are “live”—the collection contains the matching documents at
moment, so that documents may appear or disappear depending on their immediate stat

these queries are embodied in collections, they are persistent.2
9

id col-
l style

ormu-

s into
o items

rsistent.
ion of

-

; it is a
 “spec-

ct

 built.
 it is a

out

 is one

t space,
system.

r inter-
e query

l or
same

nts) and
ait

e
into an

ments
In addition to the query term, the document collection stores two lists of documents, called the

inclusion and exclusion lists. Documents in the inclusion list are returned as members of the collec-

tion whether or not they match the query. Documents in the exclusion list are not returned as
members of the collection even if they do match the query. When the query is null, the inclusion list

effectively determines the collection contents.

So, the contents of the collection at any moment are the documents in the inclusion list, plus those

matching the query, minus those in the exclusion list. We call these three-part structures “flu
lections”. Our goal with this implementation of document collections was to support a natura

of document organisation and retrieval. A query can be used to create an initial collection, or to
specify the default membership. However, membership can be refined without having to ref

late the query, but by direct manipulation of the document collection contents; dragging item
and out of the collection causes the system to add them to the inclusion and exclusion lists, s

can be added and removed to override the results of the query, and these changes will be pe
Our browser, which will be described in more detail later, also supports the direct manipulat

query terms, so that reformulating the query is a fairly straight-forward operation.

Why introduce this three-part mechanism? Why not simply have manipulations of collection mem

bership result in transformations of the query? There is no technical reason for our approach
design decision based on a number of factors. We will give three here. First, we believe that

ifying exceptions” and “transforming the query” are, conceptually, different operations; our
approach provides both rather than a one-size-fits-all approach. Second, we believe that indire

query transformation breaks the direct manipulation model around which our interfaces are
Third, we believe that the indirect query transformations are very hard to explain to users;

considerable challenge to present a coherent account of the behaviour of such an interface with
requiring a detailed understanding of query syntax, precedence rules and so forth. However, the

design of refined query and collection mechanisms to suit the needs of specific applications
area of ongoing research.

Collections, queries and attributes are the basis of all interactions with the Presto documen
and so the performance of the attribute engine was a key concern in the development of the

Our database engine provides sufficiently crisp performance to support our requirements fo
active response. On a small test database (342 documents, 4911 attributes), evaluating th

“Mail.From=dourish” took 30ms to return 8 documents, while the query “MIME Type=text/htm
MIME Type=text/java and read within 1 month” took 140ms to return 32 documents. The

queries on a large database (2558 documents and 27921 attributes) took 90ms (8 docume
620 ms (300 documents) respectively3. These are fast enough to avoid the “submit the query, aw

the results” model of interaction; instead, the interface can be updated rapidly enough to give th
user a sense of directly exploring the data store. We will see later how this is incorporated

interface.

4.3 Services
A document repository organised in terms of document attributes is only of use if the docu

actually have attributes. There are two sources of attributes on documents.

2. Of course, simple one-time searches are also possible.

3. All times are the mean of 15 runs, and were measured on a 200MHz Pentium Pro workstation.
10

ills and

em can
rocess-

of any

f avail-
allows

anges
rmation

m), at
 added

ted and
 exist-
Firstly, attributes can come from the users. We allow users to attach arbitrary attributes to docu-

ments so that they can create their own structure. Indeed, the basic goal of the system is to allow

users to create their own structures by creating sets of attributes relevant for their tasks and then
using them to organise and retrieve documents.

The value of interaction through Presto comes when there are many attributes for each document.
However, since it would be tiresome to have to tag all documents by hand. So as a second mecha-

nism, we also provide a means for documents to be tagged with attributes automatically. Some
document attributes are generic, such as their type, their length, their creator, the date they were cre-

ated, and so forth, and these are obvious ones for us to maintain directly. Other relevant attributes
might be content-specific. For instance, an email message can be tagged with information about its

header contents; or an HTML file can be tagged with information from its header, or the other doc-
ument links that it contains.

Presto provides a mechanism for processing files and deriving this sort of information. A service is
a piece of code that can be used to analyse files in this way. We provide services for common struc-

tured file types such as email messages and HTML documents, as discussed above. We can also
provide more specialised or complicated services; one example is a Java service which parses Java

source files and can encode information about packages, imports and method definitions in
attributes on the document. We also provide service wrappers for other pieces of software that exist

outside the system. For instance, we have taken the document summarisation tool from a Xerox
product and incorporated it into Presto through the service model, so that the document contents will

be summarised, with key words and sentences made available as document attributes.

The service mechanism is also a route to building application-specific Presto spaces. One example

is a processor that understands the format of the internal database of summer intern applicants to
our research center; each application record document can be tagged with the applicant’s sk

interests, information on their school, degree, topics of interest and so forth. The Presto syst
then be used to analyse and organise the applicants. In this case, all the application-specific p

ing is localised in the service; there is no need for the Presto engine itself to be aware
application details.

Services like these enhance interaction with the document space by increasing the number o
able attributes for any given document. Using services to extract attributes from documents

us to extract content information and encode it in the attribute-centric document structure, bridging
from content-based to structural approaches.

Because we rely on services to provide this link, it is important that they be responsive to ch
in document content. Services can be scheduled to run at various points in order to keep info

up to date. Services might run at a particular time of day (e.g. doing major processing at 4a
particular intervals (e.g. every ten minutes), or on particular events (e.g. when an attribute is

to the document, or when the document is written).

5 SUPPORT FOR INTEGRATION
A practical aspect of the everyday world is that document systems simply have to be integra
extensible. Our system is, after all, intended to provide support for organising and searching
11

r PC’s,
resto

st-pro-
anged

last used

, the

hanism.
in” the
ing document spaces, and existing document spaces employ a wide variety of formats, structures

and applications.

The model of interaction that was our original motivation leads to new forms of document interac-
tion, which will clearly be embodied by new applications, which can take advantage of the sorts of

features Presto has to offer. At the same time, however, the need to support existing applications
was a strong requirement for our system.

In order to accommodate existing data and applications as well as providing for the development of
new ones, Presto offers three application interfaces (API, IOStreams and NFS), and provides a plug-

gable mechanism for integration with content repositories.

5.1 Support for Native Applications: API and IOStreams
The Presto document interface provides access to documents as Java objects. Applications can

make use of this interface by importing the relevant package in their Java code, and coding to the
API we provide for accessing documents, collections and attributes. This is the standard means to

build new Presto-aware applications and to experiment with new interaction models. The supplied
browsers (see below) can be regarded as Presto applications and are built at this level. The Presto

document interface provides Document and Attribute classes, with specialised subclasses support-
ing all the functionality described here (such as collections, access to WWW documents, etc.)

Applications can provide a direct view of Presto documents, perhaps with a content-specific visu-
alisation, or can provide a wholly different interface, using Presto as a attribute-based document

service back-end. (We will discuss applications experience in more detail later.)

Secondly, we provide access to Presto documents through the Java IOStream interface. Presto IOS-

treams subclass the standard Java streams model, and so make Presto functionality available to any
standard Java application. In our implementation, we have made use of this model to incorporate

Java Beans, such as for images and HTML files, that can provide access to document content with-
out the overhead of starting a new application.

5.2 Support for Legacy Applications: NFS
Our third level of access is through a server implementing the NFS protocol. This is a native NFS

server implementation in pure Java (and which runs on top of a pure Java RPC layer). The Presto
NFS server provides access to the Presto document space to any NFS client; we use the server to

allow legacy applications such as Microsoft Word to make use of Presto documents; on ou
Presto simply looks like another disk to these applications, while on our UNIX machines, P

looks like part of the standard network filesystem.

Critically, though, what we achieve through this mechanism is that Presto is directly in the

read/write path for legacy applications. The alternative approach would be to attempt to po
cess files written to a traditional filesystem by applications, such as Word, that could not be ch

to accommodate Presto. By instead providing a filesystem interface directly to these applications,
we can ensure that relevant attributes (such as ones which record when the document was

or modified) are kept up-to-date. Even though the application is written to use a filesystem
Presto database remains up to date, because Presto is the filesystem.

As part of its interface to the Presto database layer, NFS provides access to the query mec
Appropriately formatted directory names are interpreted as queries, which appear to “conta
12

rd et

o

 live in

 other
ents in a

ocu-
 for our

 tool

ism for
e stem

s, and
 it is in

pear in
 able to

s to go
tended

 lost in

s-

mption

 with

e

gh the
sto NFS

 engag-
ise no

ot delete
other

r actually
 within

he orig-
l.

ith
aries

same
documents returned by the query, similarly to the “Semantic File System” approach of Giffo

al. [1991]. However, this is implemented largely for completeness; cd is not intended as a Prest

interface for everyday use.

Although Presto provides this NFS service, Presto is not a storage layer. Documents actually

other repositories. However, using the NFS layer provides uniform access to a variety of
repositories (so that documents available over the Web appear in the same space as docum

networked file system). The combination of this uniformity along with the ability to update d
ment attributes by being in the read and write path makes the NFS service a key component

desired level of integration with familiar applications; without this Presto would be a demo
rather than a working part of our environment.

5.2.1 Mapping The Document System to the File System

Although mapping the Presto document space into a virtual file space is a natural mechan
integrating with legacy applications, it also introduces a number of technical problems. Thes

from the fact that Presto’s document semantics are richer than those of traditional filesystem
in particular, that a document is not uniquely identified by a name and location in Presto, as

a filesystem. In Presto, a document may have multiple names, or no name at all, or may ap
many places, or in none. Applications that use filesystems as their storage layer expect to be

exploit a set of constraints that do not hold in Presto. As a result, our NFS implementation ha
to some lengths to interpret the actions of filesystem applications so as to understand their in

consequences. We will consider two examples here.

Most document systems adopt a two-stage process to save files, so that the file will not be

the case of a write failure (e.g. a disk filling up). So, in order to save file FOO.TXT, an application
might actually save the contents to a file called FOO.TMP. Once that file has been written succes

fully, it may delete the old file named FOO.TXT, and rename FOO.TMP to FOO.TXT. This way, should
the write fail, then the old file contents have not been lost. This procedure relies on the assu

that a file’s name in a given location is the entire source of the document’s identity; a new file
the same name will take the place of the old file.

However, in Presto, document identity is more complicated than that; each newly created document
has a separate identity. What is more, we have probably attached attributes to the document, and w

would like them to be associated with the new document. We want to make it look as thou
document content has been changed, but the document has remained the same. The Pre

server achieves this by essentially detecting the sequence of behaviour that the application is
ing in, and working behind the scenes to restore the filesystem invariants that would otherw

longer apply. When the Presto NFS server receives a request to delete a document, it does n
it, but simply hides it. If another file is written shortly afterwards with the same name, or an

document is given the same name as the document that was recently deleted, the NFS serve
swaps the old document back in, updating its content from the new one. The effect is that,

Presto, the “right thing” seems to have happened; the application has updated the content of t
inal document, even though the application knows nothing about the Presto document mode

A second example concerns ancillary files. Some applications may store ancillary files along w
an original; for instance, a word processor might want to maintain backup files, spelling diction

and linked image files along with the original document, and so it will store them in files in the
13

. The

 fold-

illary
et the

e it

nd work
 on the

ponsible
pplica-

reate a
ique

cument
ment”,

p” or
, then

-
nce this

e virtual

r will
cation

ld the

 data.
ad, our

ferent

owever,
cument

e same

m auto-
tly to

other

vel
ts can

itories,
folder. However, in Presto, “storing in the same folder” is not a straight-forward proposition

original document might not appear in a folder at all, for instance; or it might appear in many

ers, either statically (by inclusion) or dynamically (by query). Clearly, we do not want the anc
files to appear in every collection that might dynamically hold the original document, and y

application will fail if it does not find those files associated with the original document next tim
is run.

This is another case where the Presto NFS server can interpret the application’s behaviour a
to restore the filesystem invariant that the application expects. In this case, the solution relies

fact that users invoke operations on Presto documents, not on filenames, and so Presto is res
for determining the filename that is actually given to the application. When a user runs an a

tion such as a word processor on a Presto document, Presto creates a unique pathname for that
document within the Presto NFS filespace. The filename looks like a normal folder, but in fact the

folder name is tagged with an identifier for the document. This means that all attempts to c
new ancillary file will result in a “new file” request that contains, in the name of the file, the un

tag that identifies the base document. For example, if the user invokes an operation on do
#456, then the filename that the application sees might be something like “/presto/#456/docu

and so the application’s ancillary file requests will be for files such as “/presto/#456/backu
“/presto/#456/dictionary”. Since Presto has included the unique tag “#456” in the path name

the NFS server knows that a new file called “/presto/#456/backup” must be associated with a doc
ument #456, since only an application processing that document could use that path name. O

association has been made, the rest is straightforward. The Presto server records the association
between the files as attributes of the ancillary documents, and makes them appear in the sam

folder. This means that, in future, when an application is run on a document, the virtual folde
be recreated and all the associated ancillary files will appear there, satisfying the appli

requirement even though they do not actually appear in the Presto collections that ho
document.

5.3 Support for External Repositories
Integration with applications is all very well, but we also need to be able to work with existing
In fact, Presto always works with existing data. Presto does not, itself, store content. Inste

document objects record an association with content stored in an external repository.

Internally, Presto maintains a number of different document types that can interact with dif

repositories, such a filesystem documents and web documents. These distinctions are, h
largely invisible to Presto users. The user is not presented with a distinction between one do

type another other; they see a seamless document model in which all documents support th
operations: reading and writing, adding them to collections, setting properties on them, searching

for them and so forth. When a Presto user reads or writes the document’s content, the syste
matically fetches content from whatever underlying repository stores it, and delivers it direc

the application.

The approach allows users to work with their own documents from within Presto easily. An

advantage is that, since the access protocols for different repositories are managed below the le
of the document objects, documents can be mixed fluidly throughout the system. Documen

appear in the same collection despite the fact that they reside in completely different repos
14

at we

uments
space

uments
esign is

cture.
uments

wn how
mework

ur first
ents in

raction

 interac-
learly,

sign of

ts and
res

t

lication

ayer,
uncon-

rticular,

pplica-

ment

ument
tes and

aces
in different servers, or are retrieved via different protocols. Similarly, all documents can be man-

aged using the same uniform attribute operations.

Note that it is documents that are imported into Presto, not repositories. So, Presto is not intended
to operate as a “browser” for the filesystem, or for the World Wide Web. Client programs th

call importers can be used to walk over a document tree and incorporate its contents as doc
in Presto, but a Web document, for example, is not implicitly incorporated into the Presto

simply because we speak HTTP. So, document searches will not scour the web for new doc
that have not already been incorporated into the Presto document space. The goal of our d

to be able to exploit existing content, rather than to provide a new view of an existing infrastru
Mechanisms to incorporate external content more generally is one of the Placeless Doc

project’s current areas of investigation.

6 INTERACTING WITH PRESTO
The previous sections have introduced the major elements of the Presto architecture and sho
they support our design goals. However, Presto was designed as an infrastructure and fra

for experimenting with the interaction aspects of attribute-based document management. O
Presto-based applications, then, are ones which focus on how users can interact with docum

these sorts of spaces. The interface is where the features come together.

Although Presto includes many features that are centred around particular forms of user inte

(such as the collection design and the query mechanism), it is not designed as an integrated
tive system. Rather, it is an infrastructure over which a variety of interfaces can operate. C

each application introduces its own particular interactive demands. However, the basic de
Presto results in a number of common design issues in any user interface. As has been mentioned

in the discussion of legacy application support, for example, a number of traditional constrain
invariants, familiar from filesystem interfaces, no longer hold in a system like Presto. These featu

make themselves felt at the interface as well. In this section, we will discuss a number of issues tha
have arisen in the design of interfaces to the Presto document space, and some solutions that have

been developed.

We are experimenting with a number of different interfaces to Presto. Some of these are app

interfaces, designed for specific applications that make use of Presto as a document storage l
but which are not, themselves, directly interfaces to Presto. Others, however, are relatively

strained browsers for the Presto document space. Here, we will consider one of these in pa
a browser called Vista.

6.1 Vista, a Presto Browser
Vista is a generic browser for Presto document spaces. It is not optimised for any specific a

tion activity; instead, like a traditional PC desktop, it gives a generalised view of the docu
space, supporting organisational tasks and launching other applications.

The goal of Vista was to explore the issues arising in direct manipulation of the Presto doc
space, and in particular, how users could be given a sense of direct interaction with attribu

dynamic collections. Vista uses a combination of dynamic collections and multiple worksp
[Henderson and Card, 1986] to allow users to switch easily between different workspaces config-
15

f doc-

eir size,
hrink

Apple
oal of

 proto-
ents.

s
 always

ve
ured for different tasks, with different representational structures for the same underlying document
corpus.

Just as Presto in general uses attributes as a uniform mechanism for document operations, so Vista
is organised primarily around the use of attributes. Attributes are used to control documents, to clus-

ter and group them, and to search for them.

6.1.1 Elements of the Vista interface

Figure 3 shows Vista in use. The body of the interface is the current workspace; the tabs at the
bottom of the frame move the user to other workspaces. In the workspace area, there are four basic

entities being displayed: documents, attributes, collections and piles.

Documents are displayed as individual entities, and can be moved, deleted and launched. Launching

a document, by double-clicking on it, invokes the relevant application for editing its content. There
is no distinction in the interface between documents whose content resides in different repositories;

they can be handled seamlessly. Double-clicking on a Word document loads its content into word
whether the document is stored on my local disk, a file server, or the Web.

Document collections appear in two forms, opened and closed. Opened, they are displayed as ovals,
showing the documents they contain. Closed, they appear as small icons depicting a “pile” o

uments. Displaying closed collections as piles provides a natural means to give cues as to th
which is particularly useful since fluid collections, backed by dynamic queries, can grow and s

independent of user activity. Our use of piles is inspired by the prototype work done at
[Mander et al., 1992]; the support for “casual organisation” that drove their design is also a g

ours; however, we have not yet implemented some of the richer features of the Apple piles
types, including “messy” and “neat” piles, as well as rippling through piles to search for docum

Finally, individual attributes can also be stored as browser objects, and appear on the dektop
(attributes are presented as triangles labelled with names and values). Although users can

use generic interfaces to add new attributes, Vista allows them to create sets of attributes that li

FIGURE 3: Vista, a prototype Presto browser. In addition to a number of documents, this particular desktop
also contains four closed collections (shown as piles on the left), two opened collections (ovals in the lower

portion of the screen), and a set of predefined attributes (triangles in upper middle).
16

 Doc-
e been

list of
n not

esto” is
ded to

y set.

 of the

ragged
queries

se of
 design

le val-

t manip-
odel

uery
on the desktop. Different attributes can be present in different workspaces, so that the workspaces

can be tuned to different tasks; in one workspace, for example, I might have a set of attributes for
organising my publications, while in another, I keep attributes that are relevant for programming

tasks. Attributes have two roles in the browser interface. The first is that they can be dropped onto
documents to add that particular attribute to the document, as might be expected. The second is that

individual attributes can be used as query terms. Using attributes as query terms provides direct
manipulation of queries, which we will now explore in more detail.

6.1.2 Directly Manipulating Fluid Collections

Recall that in the Presto document model, collections can not only contain specific other documents

(including sub-collections), just like folders and directories in traditional filesystems, but that they
also contain a query component, which specifies dynamic content. So, for any collection, we can

specify a set of query terms which make up the dynamic portion of the collection’s definition.
uments in the system that match the query will be included in the collection (unless they hav

specifically excluded).

Query terms can specified by using a traditional dialog box interface, but also by direct manipula-

tion, through attribute objects. Dragging an attribute onto a query collection adds it to the
query terms for that collection. So, if the attribute is “project = presto”, then that attribute ca

only be added to documents, but can also be dropped onto a collection so that “project = pr
added to the current set of query terms for that collection. Any number of attributes can be ad

a query, providing simple conjunction; dragging them off again removes them from the quer

Attribute icons representing the current set of query terms appear around the circumference

collection object (as shown in figure 4). As these iconic representations of query terms are d
on and off the query object, the query is updated in a separate thread. The result is that

dynamically respond to the manipulation of query terms in real time, giving a very direct sen
the query as a configurable filter on the document space. It was an important element of the

that this direct manipulation of queries provide the sense of directly exploring a set of possib
ues, rather than the more traditional “submit the query, await the results” model; attribute searches

are sufficiently fast that response rarely takes as much as a second. The effect of such direc
ulations is similar to that of UMD’s dynamic queries [Ahlberg et al., 1992], although in our m

we currently only provide for the addition and deletion of query terms, not the modification of q
term parameters.

FIGURE 4: Attributes can be used to control the terms of a dynamic query.
17

 next
ment

not be
 onto a

e result

 to the

 experi-
.

wo col-
cument

m

 docu-
an be

llus-
 screen

e dis-

ultiple
 in the

d forth

work-
r

 work-

s and

ity. For
However, it is important that collections with a query component should still feel to the user like

collections, not queries. The interactive style that this browser tries to capture is grounded in the

manipulation of a document space, rather than the creation and execution of queries. Although the
dynamic response of collections to the addition and deletion of query terms helps to give the sense

of manipulation, we can also use the other components of collections, inclusion and exclusion lists,
to help support the experience of manipulation.

Inclusion and exclusion lists in fluid collections lend them a feeling of stability that is critical to the
interactive feel we are trying to support. So, in addition to the query component that dynamically

maintains the collection contents, direct manipulation controls the use of the inclusion and exclu-
sion lists to modify the results. Dragging a document out of a query collection causes it to be added

to the exclusion list for the collection. This means that it won’t reappear in the collection the
time the query is run (which happens regularly in the background). Similarly, dragging a docu

into a collection means that it should be added to the inclusion list, since it would otherwise
included as an element of the collection. Using this mechanism, users can drop attributes

query window to create the query that expresses their basic set of interests, and then refine th
by adding or removing specific items. The resulting collections feel more like “ real” entities than

dynamically executed queries, but new documents of interest still turn up when they’re added
system.

One of the most radical changes that our attribute-based model introduces to the interactive
ence and to the design of interfaces is that documents can appear in multiple places at the same time

In the model, documents can be members of multiple collections at the same time, and so t
lections can display the same document concurrently. Performing a search that returns a do

that is already displayed on the screen will result in it appearing twice, etc.

While care can be taken in the design of the interface to ensure that this does not become a proble

(e.g. when adding a document to a collection in which it already appears), the notion that a
ment can be in multiple places at once tends to upset our intuitions about what facilities c

added to the interface. For instance, it might be nice to be able to draw lines between icons to i
trate relationships between linked documents; but when any document can appear on the

multiple times, there is no stable and unique notion of “the icon for this document”, and so th
play of relationships quickly turns into a dense and tangled web.

Since it is part of the inherent structure of the domain, Vista allows documents to appear in m
places in a workspace. However, it attempts not to allow a single document to appear twice

same context (that is, on the same background pane, or in the same collection).

6.1.3 An Activity-Based Interface

Vista incorporates a workspace approach similar to Rooms; users can switch back an

between different workspaces, each of which is a persistent view of the document store. Each
space is a different desktop, but provides an interface to the same underlying database; a search, fo

instance, will return the same set of documents no matter which desktop launches it. So, the
space model is not designed to manage different document corpora, but rather different activities

that users might perform with those documents.

Workspaces can be customised to different activities by setting up dynamic collection

attributes that reflect the way documents should be organised to handle the tasks of that activ
18

ly

ble so
another

to docu-
 current

ifferent
y need

ttributes

eight
pping

imply

proach

s
-based

it into

 use of
orking

ncep-

learly,
nd write

p. The
eans to

ammer

ation
pplica-

that the
t onto

oded”

ild an
om a

naging
example, in a “Papers” workspace, a user might have arranged a set of collections that dynamical

select documents according to attributes such as as conference, year, venue and topic; perhaps the

workspace has a couple of collections predefined for common queries, with attributes availa
that new queries can be constructed quickly using the drag and drop approach. Meantime,

workspace might be organised around projects, and set up to allow quick and easy access
ments according to project needs (such as the projects they are associated with, or their

state). Of course, the same documents are available in each workspace; they reflect the d
ways in which a user might want to approach documents based on the different activities the

to perform.

In each workspace, users can create new collections, move documents around, assign new a

or perform queries, using traditional direct manipulation techniques. By providing very lightw
facilities to move from one workspace to another, this provides another way manage overla

organisations for document collections.

6.1.4 Other Approaches

Again, we are exploring a variety of styles of interaction with documents in Presto; Vista is s

one example. Other interfaces have provided different facilities, or have emphasised one ap
or another. One of our design goals was to enable exploration of different interactive design

approaches. In addition to generic “browser” interfaces, we have also developed some application
that incorporate interactive features as part of their exploration of new ways to use attribute

document management.

7 EXPERIENCES WITH APPLICATIONS
We firmly believe that the best way to learn from an experimental artifact like Presto is to put

use, so we have been working with other projects at PARC to explore how they could make
our infrastructure. In another paper, we discuss two specific projects that we have been w

with [Dourish et al., 1999b]. Here, we will focus particularly on lessons learned.

One particular feature of Presto applications so far is that they reflect a duality in Presto’s co

tual design. The duality is that Presto is both a document system and an object system. C
Presto stores documents, groups them together into collections, and allows users to read a

content using their conventional desktop applications such as Word, Powerpoint or Photosho
user experience is of Presto as a document system. On the other hand, it also provides a m

associate arbitrary data directly with documents through the attribute mechanism. The progr
experience is closer to that of a simple object system.

This “object system” perspective results in a new model for application development. Applic
data tends to be stored directly on documents, rather than in separate configuration files or a

tion databases. Once the application data has been moved out onto the documents
application is managing, so application functionality can also be moved out, by mapping i

dynamic collections and queries over document attributes. This results in a model of “expl
applications whose state and behaviour is distributed through the document space.

For example, consider an email application. In a conventional approach, if we wanted to bu
email application, we would write a monolithic system capable of reading mail information fr

server using a protocol like POP or IMAP, presenting the individual messages to users, ma
19

ities
d as doc-

atic
e one

so that
rds, our

n the
cture.

system;

esti-

3] uses
y met-

operate

roach,

nstead
ever,

 that
l of this

) file-
les for

ame
d his

extend

 revised

upport

gines

er, is
ls of
a set of folders, providing search facilities over the message headers, and storing private information

about which messages had been read, replied to, forwarded and so on. When implemented on top

of Presto, however, this takes on a very different feel. Access to an IMAP server can be provided
through Presto’s facility for interacting directly with different document storage repositories. This

makes individual messages directly manipulable as Presto documents. Information about activ
over this messages (such as how they have been filed and processed) can then be recorde

ument attributes. This in turn allows dynamic collections can be defined for autom
categorisation into folders. At the same time, an application-specific service (such as th

already provided in Presto) can annotate the document with information from the headers
email-specific searches can be performed using the generic search mechanism. In other wo

“application” in this case is actually a set of small individual components which bridge betwee
specifics of the application domain and the generic facilities provided by the Presto infrastru

8 RELATED WORK
We have discussed some related work in the course of introducing various aspects of our

however, the relationship between our work and other research deserves further examination.

We have already alluded to work in the domain of information retrieval and visualisation inv

gating user-centered organisation for document spaces. For instance, BEAD [Chalmers, 199
a landscape metaphor in which relative document positions are derived from content similarit

rics. BEAD does not support Presto’s user-imposed structures. Most systems in this domain
on the basis of content.

The Lifestreams system, originally developed at Yale [Freeman and Fertig, 1995], uses a timeline
as the major organisational resource for managing document spaces. Like our app

Lifestreams is inspired by the problems of a standard single-inheritance file hierarchy, and i
seeks to use contextual information to guide document retrieval. Unlike our approach, how

Lifestreams replaces one superordinate aspect of the document (its location in the hierarchy) with
another (its location in the timeline).

The Semantic File System of Gifford et al. [1991] introduces the notion of “virtual directories”
are implemented as dynamic queries on databases of document characteristics. The goa

work was to integrate an associating search/retrieval mechanism into a conventional (UNIX
system. In addition, their query engine supports arbitrary “transducers” to generate data tab

different sorts of files. With the NFS server implementation, Presto essentially provides the s
sort of functionality which was provided by the Semantic File System. However, Gifford an

colleagues were largely concerned with direct integration into a filesystem so that they could
the richness of command line programming interfaces, and so they introduced no interface features

at all other than the file name/query language syntax. In contrast, our concern is with how such an
attribute-based system can be used in day to day work, and with how our interfaces can be

and augmented to deal with it; the fact that Presto acts as a filesystem is simply in order to s
legacy filesystem-based applications, rather than as an end in itself.

DLITE is the Stanford Digital Libraries Integrated Task Environment, a user interface for accessing
digital library resources [Cousins et al., 1996]. DLITE explicitly reifies queries and search en

in order to provide users with direct access to dynamic collections. The goal of DLITE, howev
to provide a unified interface to a variety of search engines, rather than to create new mode
20

 devel-
 users

ne

e and
sto can

 of
plore

ke use

 of intui-
ich is a

8; Bel-
own

ement.
tions

te their

sations
of the

], and

of
e testbed
searching and retrieval. So although queries in DLITE are independent of particular search engines,

they are not integrated with collections as a uniform organisational mechanism as they are in the

Presto interfaces.

Like the developers of DLITE, we have been strongly inspired and influenced by ideas developed

and expressed in various generations of the Self user interface [Chang and Ungar, 1993; Maloney
and Smith, 1995]. In particular, their concern with providing a very concrete interactive experience

is one we share whole-heartedly.

9 DISCUSSION AND DIRECTIONS
Presto is an early prototype, and is still in the process of development. We are currently engaged in
developments in both the infrastructure and the interface.

We are investigating ways of enriching the interactive experience. Further support for working
directly with the documents in the space is critical; this can be supported by incorporating thumbnail

images and intermediate forms of document collections that reveal more details of the documents
themselves. We are interested in adopting other aspects of the Apple piles prototype, such as using

the “messiness” of the pile to convey aspects of the accumulation of documents. We are also
oping mechanisms in Presto to support the creation of “toolsets” for particular tasks, allowing

to create customised sets of queries and attributes, etc. Magic lenses [Bier et al., 1993] provide o
potential vehicle for managing these in an interface.

Similarly, we are trying to understand better the relationship between the Presto infrastructur
applications that might be developed and deployed on top of it. As we have discussed, Pre

serve different roles to applications, some of which challenge our intuitions about the structure
applications. A number of application development efforts are currently under way which ex

this relationship in different ways.

These applications also provide us with an opportunity to understand how people might ma

of an attribute-based document management system. Our design has been driven by a set
tions developed from the literature on the use of both paper and electronic documents, wh

currently active area of research (see, for example, Sellen and Harper, 1997; Adler et al., 199
lotti et al., 1998). Part of our strategy in developing applications for deployment in our

environment is to study the role that document attributes can play in on-line document manag
To this end, we are working with other groups at PARC to jointly develop task-specific applica

based on the Presto infrastructure. In one project, for instance, we are especially interested in how
applications can introduce structure into the attribute value space, and how they can coordina

work through sharing and manipulation of a structure that describes the task-specific categori
of document corpora [Dourish et al., 1999c]. This work draws upon previous investigations

collaborative nature of customisation activity [MacLean et al., 1990; Trigg and Bodker, 1994
current ethnographic investigations of document work practices [Trigg et al., 1999].

In general, our goal is to understand how attribute-based interaction can become a central part
the user experience in managing and organising document spaces. Presto is an infrastructur

directed towards this goal, and so it will continue to develop as we learn more about this new model
of system interaction.
21

for fast
veloped

ument

 that an
respon-

ated
ument

ctions
resto is

ment
s as a

arned a
nship

ons, and
rimary
These goals are being pursued in the context of a larger project, called Placeless Documents, of

which Presto is one component. Presto is essentially a prototype implementation of a subset of the

functionality of Placeless Documents. The most significant features that Placeless Documents adds
to Presto are, first, a more robust and scalable distributed architecture, and, second, active proper-

ties. In contrast to the static attributes provided by Presto, active properties can carry code with them
which will be executed when operations are performed on the documents to which the active prop-

erties are attached. In this way, users of the Placeless Documents infrastructure can use properties
not only to organise and manage files, as described here, but also to customise their behaviour and

configure document services. Extending a Presto-like document management service to support
active properties in addition to static attributes introduces a number of technical challenges; we

describe our approach and current implementation in another paper [Dourish et al., 1999a].

10 CONCLUSIONS
Documents in the real world serve different purposes at different times for different people, but the
systems we provide for people to store and organise electronic documents are typically based on

rigid, uniform hierarchies. In the Placeless Documents project, we have been investigating how a
document storage and management infrastructure can be based on document attributes rather than

on names and locations. In our model, users interact with their document sets in terms of high-level
attributes that capture aspects of the documents that are meaningful for everyday activities, and are

provided and fluidly managed by the users themselves.

Presto is an experimental system that we are using to explore the issues of attribute-based document

management in a system such as Placeless Documents that is organised entirely around attributes.
Presto is not, itself, a document repository; instead, it provides uniform coordinated access to a vari-

ety of repositories such as networked fileservers and the World-Wide Web. Presto provides the
means to organise and search document spaces in terms of document attributes. Attributes play an

intermediate role between traditional structure-based retrieval schemes and more extensive content-
based approaches; using Presto services, relevant aspects of document content can be handled as

attributes, and used as query terms or collection criteria. Presto’s architecture is designed
and fluid access to document spaces organised dynamically around attributes, and it was de

particularly to explore the interactional consequences of an attribute-centric approach.

Presto serves two roles. Its first role is as a proof-of-concept design for attribute-based doc

space management. In this capacity, it has been successful. Presto clearly demonstrates
attribute-oriented mechanism for document sets numbering in the thousands can be made

sive enough to support direct interaction; that the service mechanism integrates system-manipul
and user-manipulated attributes flexibly enough to allow both to be used as part of the doc

space organisation; and that integrating attribute-based queries into enhanced “fluid” colle
gives a concrete but malleable basis for document space organisation and interaction. P

already in use in a number of projects in our laboratory, supporting not only traditional docu
management activities but also more fluid interactive applications. Presto’s second role i

scouting expedition for other attribute-based document systems. In this capacity, we have le
number of valuable lessons, including the value of document/object duality, the relatio

between the document system and filesystems as a mechanism to support legacy applicati
a number of interface design concerns that arise specifically from the use of attributes as the p

means for document interaction.
22

, Doug
also

 of

ple-
92

top”,

ment

nses:

 Inte-
oject

ships

sbury,
roper-

iform

lligi-
Our initial experiences with Presto have been extremely positive, but of course, they are simply the

first step. In collaboration with colleagues, we are currently developing our research program in two

directions. At the infrastructure level, we are working on the development of a second-generation
system in which document attributes can be used to control and manage a wider range of document

activities in a distributed setting. At the same time, we are also considering how to specialise this
form of interaction to particular tasks and particular domains, and developing Presto-based tools for

a range of specific tasks and activities. We hope to use these investigations to ground our investi-
gations of this novel form of document space interaction.

ACKNOWLEDGMENTS

Many other people have contributed to the development of these ideas. We would particularly like

to thank the other members of Placeless Documents group – John Lamping, Karin Petersen
Terry and Jim Thornton – for their significant contributions to the work described here. We

thank our early Presto customers for their forbearance and sense of adventure.

REFERENCES

1. Annette Adler, Anuj Gujar, Beverly Harrison, Kenton O’Hara and Abigail Sellen, “A Diary Study
Work-Related Reading: Design Implications for Digital Reading Devices”, Proc. ACM Conference on
Human Factors in Computing Systems CHI’98 (Los Angeles, California), May 1998.

2. Christopher Ahlberg, Christopher Williamson and Ben Schneiderman, “Dynamic Queries: An Im
mentation and Evaluation”, Proc. ACM Conf. Human Factors in Computing Systems CHI’
(Monterey, CA), May 1992.

3. Deborah Barreau and Bonnie Nardi, “Finding and Reminding: File Organization from the Desk
SIGCHI Bulletin, 27(3), July 1995.

4. Victoria Bellotti, Annette Adler, Sara Bly and Katie Candland, “Papering Over the Cracks: Docu
Practices in the Networked Professional Workplace”, Xerox PARC report, 1998.

5. Eric Bier, Maureen Stone, Ken Pier, William Buxton and Tony DeRose, “Toolglass and Magic Le
The See-Through Interface”, in Proc. SIGGRAPH’93 (Anaheim, CA), August 1993.

6. Matthew Chalmers, “Using a Landscape Metaphor to Represent a Corpus of Documents”, Proc. Euro-
pean Conference on Spatial Information Theory, Elba, September 1993.

7. Bay-Wei Chang and David Ungar, “Animation: From Cartoons to the User Interface”, Proc. ACM Sym-
posium on User Interface Software and Technology UIST’93 (Atlanta, GA), 1993.

8. Steve Cousins, Andreas Paepcke, Terry Winograd, Eric Bier and Ken Pier, “The Digital Library
grated Task Environment”, Technical Report SIDL-WP-1996-0049, Stanford Digital Libraries Pr
(Palo Alto, CA), 1996.

9. Paul Dourish and Graham Button, “On Technomethodology: Drawing Foundational Relation
between Ethnomethdology and Interactive System Design”, Human-Computer Interaction, 13(4), 395–
432, 1999.

10. Paul Dourish, Keith Edwards, Anthony LaMarca, John Lamping, Karin Petersen, Michael Sali
Douglas Terry and James Thornton, “Extending Document Management Systems with Active P
ties”, Xerox PARC report (submitted to ACM Transactions on Information Systems), 1999(a).

11. Paul Dourish, Keith Edwards, Anthony LaMarca and Michael Salisbury, “Using Properties for Un
Interaction in the Presto Document System”, Proc. ACM Symposium on User Interface Software and
Technology UIST’99 (Asheville, NC), 1999(b).

12. Paul Dourish, John Lamping and Tom Rodden, “Building Bridges: Customisation and Mutual Inte
bility in Shared Category Management”, Xerox PARC report, Palo Alto, CA, 1999(c).

13. Scott Fertig, Eric Freeman and David Gelernter, “Finding and Reminding Reconsidered”, SIGCHI Bul-
letin, 28(1), January 1996.
23

ave

Space

nical

tems:
90

ani-

ation

ruction

ltiva-

ctive

hnolo-

nce of

 Evo-
14. Eric Freeman and Scott Fertig, “Lifestreams: Organizing your Electronic Life”, AAAI Fall Symposium:
AI Applications in Knowledge Navigation and Retrieval (Cambridge, MA), November 1995.

15. David Gifford, Pierre Jouvelot, Mark Sheldon and James O’Toole, “Semantic File Systems”, in Proc.
Thirteenth ACM Symposium on Operating Systems Principles (Pacific Grove, CA), October 1991.

16. David Goldberg, David Nichols, Brian Oki and Douglas Terry, “Using Collaborative Filtering to We
an Information Tapestry”, Communications of the ACM, 35(12), December 1992.

17. Austin Henderson and Stuart Card, “Rooms: The Use of Multiple Virtual Workspaces to Reduce
Contention in a Window-Based Graphical Interface”, ACM Transactions on Graphics, 5(3), 211–243,
1986.

18. David Karger and Lynn Andrea Stein, “Haystack: Per-User Information Environments”, Tech
Report, MIT Artificial Intelligence Laboratory (Cambridge, MA), February 1997.

19. Allan MacLean, Kathleen Carter, Thomas Moran and Lennart Lovstrand, “User-Tailorable Sys
Pressing the Issues with Buttons”, Proc. ACM Conf. Human Factors in Computing Systems CHI’
(Seattle, Washington), April 1990.

20. Richard Mander, Gitta Salomon and Yin Yin Wong, “A ‘Pile’ Metaphor for Supporting Casual Org
zation of Information”, Proc. ACM Conf. Human Factors in Computing Systems CHI’92 (Monterey,
CA), May 1992.

21. Tom Malone, “How Do People Organize Their Desks? Implications for the design of office inform
systems”, ACM Transactions on Office Information Systems, 1(1), 99–112, January 1983.

22. John Maloney and Randy Smith, “Directness and Liveness in the Morphic User Interface Const
Environment”, Proc. ACM Symposium on User Interface Software and Technology UIST’95 (Pitts-
burgh, PA), 1995.

23. Thomas Phelps and Robert Wilensky, “Towards Active, Extensible, Networked Documents: Mu
lent Architecture and Applications”, Proc. ACM Conf. Digital Libraries DL’96 (Bethesda, MD), March
1996.

24. Paul Resnick and Hal Varian (eds), Recommender Systems, special issue of Communications of the
ACM, 40(3), 1997.

25. George Robertson, Stuart Card and Jock Mackinlay, “Information Visualization Using 3D Intera
Animation”, Communications of the ACM, 36(4), April 1993.

26. Harvey Sacks, Lectures on Conversation (Jefferson, ed.), Blackwell, Cambridge, MA, 1996.

27. Abigail Sellen and Richard Harper, “Paper as an Analytic Resource for the Design of New Tec
gies”, Proc. ACM Conference on Human Factors in Computing Systems CHI’97 (Atlanta, Georgia),
April 1997.

28. Randy Trigg and Susanne Bodker, “From Implementation to Design: Tailoring and the Emerge
Systematization in CSCW”, Proc. ACM Conference on Computer-Supported Cooperative Work
CSCW’94 (Chapel Hill, North Carolina), October 1994.

29. Randy Trigg, Jeanette Blomberg and Lucy Suchman, “Moving Document Collections Online: The
lution of a Shared Repository”, Proc. European Conference on Computer-Supported Cooperative Work
ECSCW’99 (Copenhagen, Denmark), September 1999.

30. Sun Microsystems, Network File System Protocol Specification (RFC 1049), DDN Network Informa-
tion Center, SRI International (Menlo Park, CA), March 1989.
24

	1 INTRODUCTION
	1. A filesystem provides only a “single-inheritance” structure. Files can only be in one place at...
	2. My conception of the structure by which files should be organised changes over time, but the h...
	3. Not only does the category structure for files change over time, but it is dependent on the ta...
	4. Since these documents are being stored on a computer, I would like to be able to harness compu...

	2 MOTIVATION
	2.1 Attribute-Based Document Interaction
	2.2 Design Goals

	3 THE PRESTO ARCHITECTURE
	3.1 The Presto Document Model
	3.2 Core Architecture

	FIGURE 1: The Presto kernel architecture provides a single point of interaction supporting multip...
	3.3 Network Architecture

	FIGURE 2: When a user interacts with a document reference, they see a combination of their local ...
	3.4 Implementation
	4 SUPPORT FOR INTERACTION
	4.1 The Document Layer
	1. It unifies access to these various back-end repositories with a single document model. Documen...
	2. It introduces the document attribute mechanism and provides a means to attach, remove and sear...
	3. It adds a unified document collection service, itself based on document attributes. Since coll...

	4.2 Document Collections
	4.3 Services

	5 SUPPORT FOR INTEGRATION
	5.1 Support for Native Applications: API and IOStreams
	5.2 Support for Legacy Applications: NFS
	5.2.1 Mapping The Document System to the File System

	5.3 Support for External Repositories

	6 INTERACTING WITH PRESTO
	6.1 Vista, a Presto Browser
	6.1.1 Elements of the Vista interface

	FIGURE 3: Vista, a prototype Presto browser. In addition to a number of documents, this particula...
	6.1.2 Directly Manipulating Fluid Collections

	FIGURE 4: Attributes can be used to control the terms of a dynamic query.
	6.1.3 An Activity-Based Interface
	6.1.4 Other Approaches
	7 EXPERIENCES WITH APPLICATIONS
	8 RELATED WORK
	9 DISCUSSION AND DIRECTIONS
	10 CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	1. Annette Adler, Anuj Gujar, Beverly Harrison, Kenton O’Hara and Abigail Sellen, “A Diary Study ...
	2. Christopher Ahlberg, Christopher Williamson and Ben Schneiderman, “Dynamic Queries: An Impleme...
	3. Deborah Barreau and Bonnie Nardi, “Finding and Reminding: File Organization from the Desktop”,...
	4. Victoria Bellotti, Annette Adler, Sara Bly and Katie Candland, “Papering Over the Cracks: Docu...
	5. Eric Bier, Maureen Stone, Ken Pier, William Buxton and Tony DeRose, “Toolglass and Magic Lense...
	6. Matthew Chalmers, “Using a Landscape Metaphor to Represent a Corpus of Documents”, Proc. Europ...
	7. Bay-Wei Chang and David Ungar, “Animation: From Cartoons to the User Interface”, Proc. ACM Sym...
	8. Steve Cousins, Andreas Paepcke, Terry Winograd, Eric Bier and Ken Pier, “The Digital Library I...
	9. Paul Dourish and Graham Button, “On Technomethodology: Drawing Foundational Relationships betw...
	10. Paul Dourish, Keith Edwards, Anthony LaMarca, John Lamping, Karin Petersen, Michael Salisbury...
	11. Paul Dourish, Keith Edwards, Anthony LaMarca and Michael Salisbury, “Using Properties for Uni...
	12. Paul Dourish, John Lamping and Tom Rodden, “Building Bridges: Customisation and Mutual Intell...
	13. Scott Fertig, Eric Freeman and David Gelernter, “Finding and Reminding Reconsidered”, SIGCHI ...
	14. Eric Freeman and Scott Fertig, “Lifestreams: Organizing your Electronic Life”, AAAI Fall Symp...
	15. David Gifford, Pierre Jouvelot, Mark Sheldon and James O’Toole, “Semantic File Systems”, in P...
	16. David Goldberg, David Nichols, Brian Oki and Douglas Terry, “Using Collaborative Filtering to...
	17. Austin Henderson and Stuart Card, “Rooms: The Use of Multiple Virtual Workspaces to Reduce Sp...
	18. David Karger and Lynn Andrea Stein, “Haystack: Per-User Information Environments”, Technical ...
	19. Allan MacLean, Kathleen Carter, Thomas Moran and Lennart Lovstrand, “User-Tailorable Systems:...
	20. Richard Mander, Gitta Salomon and Yin Yin Wong, “A ‘Pile’ Metaphor for Supporting Casual Orga...
	21. Tom Malone, “How Do People Organize Their Desks? Implications for the design of office inform...
	22. John Maloney and Randy Smith, “Directness and Liveness in the Morphic User Interface Construc...
	23. Thomas Phelps and Robert Wilensky, “Towards Active, Extensible, Networked Documents: Multival...
	24. Paul Resnick and Hal Varian (eds), Recommender Systems, special issue of Communications of th...
	25. George Robertson, Stuart Card and Jock Mackinlay, “Information Visualization Using 3D Interac...
	26. Harvey Sacks, Lectures on Conversation (Jefferson, ed.), Blackwell, Cambridge, MA, 1996.
	27. Abigail Sellen and Richard Harper, “Paper as an Analytic Resource for the Design of New Techn...
	28. Randy Trigg and Susanne Bodker, “From Implementation to Design: Tailoring and the Emergence o...
	29. Randy Trigg, Jeanette Blomberg and Lucy Suchman, “Moving Document Collections Online: The Evo...
	30. Sun Microsystems, Network File System Protocol Specification (RFC 1049), DDN Network Informat...

	Presto: An Experimental Architecture for Fluid Interactive Document Spaces
	Paul Dourish, W. Keith Edwards, Anthony LaMarca and Michael Salisbury

