
ical 
 here. 
ols 
ean-

t. They 
ds of 

ork-
 as 
social 
k tech-
ore 

ematic 
 that 
a case 

d from 
g et 
ised, 
urce 
mem-
the 
iduals 
 com-
ntelli-
bers, 
Technical and Social Features of
Categorisation Schemes

Paul Dourish
Dept. Information and Computer Science

University of California Irvine
Irvine CA 92697
jpd@ics.uci.edu

http://www.ics.uci.edu/~jpd

INTRODUCTION

Categorisation is an inherent feature of much individual and collective work. Filing, coding, sort-
ing, collating and comparing inevitably rely on schemes by which items can be categorised. Tech-
nical systems introduce a range of mechanisms for categorisation, from simple file systems to 
intricate database technologies, and these systems are deployed into settings in which categorisa-
tion work is done.

Since categorisation is such a common aspect of many different styles of work, it is not surprising 
that it should feature in reports of the encounters between technology and work practice, and 
indeed it has. For example, Gerson and Star (1986) discuss the importance of negotiating between 
different viewpoints and charactisations of work, Suchman (1994) discusses the way that categori-
sations inherently reflect limited points of view, while Bowker and Star (1999) explore the range 
of uses and concerns reflected in the ostensibly “objective and scientific” taxonomies of med
terms. These studies are sufficiently well known that there is no need to go into their details
Collectively, they draw attention to the way that category schemes are not simply passive to
through which categorisation work takes place, but rather are the outcomes of practices of m
ing-making, and, at the same time, the medium through which those practices are carried ou
are inevitably partial, fluid and subject to ongoing appropriation and revision to meet the nee
diverse individuals and working groups.

Implicitly or explicitly, these observations about the role of categories and categorisation in w
ing practice tend to be formulated as critiques of the technical conception of categorisation,
embodied in information systems. However, if we see the mismatch between technical and 
understandings of categorisation as a technical problem, then it follows that we need to see
nical solutions, and find ways to reorient our technical notion of categorisation, making it a m
appropriate basis for categorisation practice. My goal here is to tease out some of the probl
features of technical conceptions of categorisation, and discuss some potential alternatives
have been explored in various areas of computer science. First, though, I will briefly recount 
study of categorisation in practice which reflects some of the problems that emerge.

EXAMPLE: DOCUMENT CATEGORISATION

Dourish et al. (1999) presents the design of an information management system that emerge
an ethnographic study of document practices conducted by colleagues at Xerox PARC (Trig
al., 1999). One particular focus of this investigation was how members of the group categor
filed and retrieved documents in a central repository that was the primary coordinating reso
for projects with a duration of years. The ethnographic work documented the problems that 
bers encountered in trying to apply a single, organization-wide formal category structure to 
individual and varying needs of each project. In the face of these problems, groups and indiv
would produce their own, customized forms of the category structure which enabled them to
plete their work. However, these customized category structures interfered with the mutual i
gibility of the files, since the details of the coding scheme were available only to group mem
but not to other more distant members of the organization.



tion of 
 

e mul-
the 
t files 
rent 

 docu-
of cat-
 data 
res by 
r new 

s is 
is-

of a 
nher-
 a tech-

and 
 not 
 our 

n the 
 
ata 
al 
 that 
phor in 
ible for 
lity to 
een 
orth. So, 

 pro-
e issues 
e 

per-
ssages 
t that it 
een 

ient 
 han-
int” 
ntirely 
In developing a technical solution to the problems of filing and retrieval in this situation, we 
needed to find a means to support technical categorisation that incorporated these elements of the 
group’s working practices. So, the system needed to support the gradual and continual evolu
category schemes, reflecting the group’s evolving understanding of the relationship between
potential category structures and their own work. At the same time, it also had to support th
tiple perspectives that individuals might take on the files, depending on their relationship to 
project. Thirdly, it had to support the relationship between these different perspectives, so tha
and filing structures would be mutually intelligible despite the different perspectives that diffe
members might have.

Our solution was built on top of Presto, an architecture for fluid document spaces, based on
ment properties as an organising principle. This provided a basis for a much less rigid form 
egorisation than traditional systems would support, and allowed a much looser link between
objects and their assigned categories. However, it still left us to incorporate many other featu
hand, making it clear that, to accommodate working settings of this sort, we need to look fo
technical approaches to categorisation.

TECHNICAL APPROACHES

The reason that accounts of categorisation in practice feature so commonly in CSCW studie
that social categorisation operates so differently from technical categorisation. Indeed, the m
match between social and technical accounts of categorisation is often seen as the source 
range of interactional and practical problems. Where natural categorisational practices are i
ently subjective, fluid, and tailored to the moment and to the task at hand, categorisation as
nical phenomenon is objective, absolute and static.

For the purposes of this position statement, I want to take the mismatch between technical 
social accounts of categorisation as a technical problem. That is, I want to look for solutions
simply by proposing revisions of specific designs, but rather by exploring the basis on which
technical accounts of categorisation are built. In particular, I want to outline two specific 
approaches – subject-oriented programming and predicate classes – which have emerged i
context of object-oriented programming systems. Object-oriented programming (OOP) is an
approach to the development of software systems which essentially combines elements of d
modeling and programming language design into a single framework. In contrast to tradition
imperative programming approaches, which models programs as sequences of instructions
operate over a separate store of data, OOP provides programmers with an alternative meta
which their programs are conceived of as a set of distinct elements or objects, each respons
some piece of the system’s functionality, and encapsulating both data elements and the abi
operate over them. A program’s execution is modeled as the sequence of interactions betw
these objects as they pass data items back and forth, make requests of each other, and so f
building a program in the object-oriented style involves not simply specifying sequences of 
instructions, but also building a category structure by which the various possible objects in a
gram can be represented and related. This makes OOP a natural arena in which to look at th
of technical categorisation, since categorisation in its classical technical form is central to th
enterprise.

Subject-Oriented Programming

As described above, the OOP style links executable code directly to the data over which it o
ates, creating an active data structure called an object. Objects communicate by passing me
back and forth. For instance, one object might send another the message “print” as a reques
print itself on a nearby printer. The critical feature of this arrangement is the separation betw
messages, which describe operations, and the executable code, which performs them. The idea 
here is that each object “knows” how it should be printed. The sender does not tell the recip
how to print itself; it merely sends the message “print,” and the receiver uses its own code to
dle this operation. The result is that many different sorts of objects might understand the “pr
message, but will respond to it in different ways. The object which receives the message is e



nges 
behind 
 target 
e 
g a 
a mes-
by the 
ives 

 Prima-
ve 
epend 
r dif-
 disso-
 

 sort 
 of a 
 the 
 related 
 of 
it is 

efined, 

e of the 
 sup-
rectan-
redicate 
 when-
ociated 
y the 

 circum-
 at the 

ns of 
itional 
, and, 

gu-
 use 
ms, is 
work-

ri-
 doing 
responsible for “deciding” how to respond.

Subject-oriented programming (Harrison and Ossher, 1993) is an OOP approach that challe
the idea that each object is entirely responsible for how it responds to messages. The idea 
subject-oriented programming is that different objects might have different perspectives on a
object; they might require different sorts of responses to their messages. So, for example, th
“print” message might, in fact, require different behaviours when sent by objects representin
printer, a graphical interface, or a plotter. In subject-oriented programming, the response to 
sage (either an invocation of behaviour or access to state information) is determined jointly 
sending object and the receiving object, allowing different objects to have different perspect
on the rest of the system.

How does subject-oriented programming address the problems of categories in interaction?
rily, it introduces a mechanism that allows us to move beyond the typical absolute or objecti
character of technical categorisations, and replace it with a model in which categorisations d
on the different perspectives which might be taken on a data element. To different people, o
ferent aspects of a system, or different tasks, a single entity might appear differently. We can
ciate an object’s category from its identity, allowing objects to play different roles at different
times.

Predicate Classes

In traditional object-oriented programming, the most important thing about an object is what
of object it is – the class of the object. When an object is created, it is created as an “instance”
specific class. In almost all object-oriented programming systems, an object’s class remains
same throughout its lifetime. Each object belongs to exactly one class. While classes can be
via subclass relationships (e.g. “apple” is a “fruit”, and “fruit” is a “food”, so that any instance
“apple” is also a fruit and a food), an object remains associated with one specific class until 
deleted.

Predicate classes (Chambers, 1993) present a different model. When a predicate class is d
the programmer specifies a “predicate” or set of entry conditions for the class. At any given 
moment, any object in the system that meets the entry conditions is regarded as an instanc
class, and any functionality associated with that class will apply to that object. For example,
pose the programmer of graphics application creates a regular class, called “rectangle”, for 
gular shapes, and then creates a predicate subclass of rectangle, called “square”, with the p
“left_side_length = top_side_length”. Users create graphical objects such as rectangles; and
ever the rectangles happen to have adjacent sides of equal length, the extra functionality ass
with squares will automatically apply to them. So, predicate classes is a mechanism whereb
association between an object and a class can be made to be dependent on the immediate
stances or the internal state of the object, rather than being fixed for the lifetime of the object
point where it is created.

So, how do predicate classes address the mismatch between technical and social conceptio
categorisation? Predicate classes reflect a much more fluid notion of categorisation than trad
technical models. They reflect the idea that categorisation is, first, dynamic rather than static
second, a matter of “fitness for purpose” rather than absolute definition.

CONCLUSIONS

The mismatch between technical and social conceptions of categorisation is well known. Ar
ably, this mismatch between, on hand, the fluid, partial and task-specific categorisations we
naturally and, on the other, the fixed and rigid category structures adopted by technical syste
responsible for a range of interactional problems and troubles incorporating technology into 
ing practice.

In this brief position paper, I have shown two approaches, drawn from research into object-o
ented programming, that attempt to make technical categorisation less rigid and absolute. In



 Intel-
’99 

Infor-

ts). 
P-

ered. 

vo-
k 
so, they implicitly adopt some features of everyday natural classification; and so, they hold some 
promise for addressing the observed mismatch. This is not to suggest that adopting an approach 
based on subject-oriented programming, predicate classes or some combination of the two will 
eliminate the problems we see with technical categorisation systems and work practice. The tech-
nical systems will still require designers and users to pre-specify structure rather than letting it 
emerge naturally in the course of the work being carried out. However, these and related 
approaches none the less offer some potential opportunities to see how technical categorisations 
can be made more responsive to the ways in which natural patterns of categorisation emerge.

REFERENCES

Bowker, G. and Star, L. 1999. Sorting Things Out: Classification and its Consequences. Cam-
bridge: MIT Press.

Chambers, C. 1993. Predicate Classes. Proc. European Conference on Object-Oriented Program-
ming ECOOP’93. Berlin: Springer.

Dourish, P., Lamping, J., and Rodden, T. 1999. Building Bridges: Customisation and Mutual
ligibility in Shared Category Management. Proc. ACM Conf. Supporting Group Work GROUP
(Phoenix, AZ). New York: ACM.

Gerson, E. and Star, L. 1986. Analyzing Due Process in the Workplace. ACM Trans. Office 
mation Systems, 4(3), 257–270.

Harrison, W and Ossher, H. 1993. Subject-Oriented Programming (A Critique of Pure Objec
Proc. ACM Conf. Object-Oriented Programming Languages, Systems and Applications OO
SLA’93 (Washington, DC). New York: ACM.

Suchman, L. 1994. Do Categories have Politics? The language/action perspective reconsid
Computer-Supported Cooperative Work, 2(3), pp. 177-190, 1994

Trigg, R., Blomberg, J., and Suchman, L. 1999. Moving Document Collections Online: The E
lution of a Shared Repository. Proc. European Conf. Computer-Supported Cooperative Wor
ECSCW’99 (Copenhagen, Denmark). Dordrecht: Kluwer.


	Technical and Social Features of Categorisation Schemes
	Subject-Oriented Programming
	Predicate Classes

