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Abstract. Users need know nothing of the internals of distributed ap-
plications that are performing well. However, when performance flags or
fails, a depiction of system behavior from the user’s point of view can be
invaluable. We describe a robust architecture and a suite of presentation
and visualization tools that give users a clearer view of what is going on.
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1 Introduction

Ideally, users should not have to concern themselves with the internal workings of
an application. But most modern personal computer applications are composed
from distributed networks of computation, many systems working together to
cause the effects the user sees. As complexity and geographic scope increase, it
becomes increasingly difficult to answer the questions: “What’s happening here?”
and “What should or can I do in response?” Current systems typically try to
mask faults and performance slowdowns, but leave the user hanging helplessly
when they do not fully succeed.

System administrators possess all manner of tools to reveal the behavior of
hardware and software systems. The information these tools present is gener-
ally focused on the individual components of the system (disks, servers, routers,
processes, etc.), and on measures that evaluate the overall health of the environ-
ment, rather than end-to-end user applications, distributed services, and the like.
Moreover, the information provided by these tools is typically detailed technical
information, such as dropped packet counts, throughput characteristics, CPU
load and so forth. We believe that the behavioral information that these tools
measure could be of considerable value to end users as well. If presented in a
focused context and in a way users can comprehend, such information can go
far in distributed settings to explain the relationship between system action and
the user’s immediate tasks.
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Consider a commonplace example: ordering books online from home. At some
point, the process abruptly stops cold. What caused the failure? The local ma-
chine, the modem, the phone line, the ISP or backbone router, or the vendor’s
server? How can an end user understand enough of what is going on to make an
informed decision about how to proceed or which customer support line to call?
(Depending on the nature of a problem, system administrators may be either
unaware of it or unconcerned about the severity of an isolated anomaly, unless
alerted by a well-informed user.)

Although particularly noticeable, failures are not necessarily the most valu-
able behaviors to unravel for users. In particular, properly-functioning but over-
loaded systems can mimic actual failures, but the most appropriate user response
(wait out the rendering of a web page, select a less loaded printer or file mirror
site, or simply come back later) is entirely different. If accurate completion es-
timates can be obtained, a user can make even better decisions. In other words,
it is lamentable but true that users continually need to understand system be-
havior and adjust their own activity to match it. How can we develop systems
and tools that can supply these kinds of insights to end users?

This is the question we have addressed in our “Systems Health” project.
Its goal is to create an infrastructure for collecting, processing, distributing and
presenting to end users information about the ongoing “health” of individual dis-
tributed applications: their current status, their overall performance, historical
patterns of activity, and their likely future state.

This goal presents a number of challenges. Traditional monitoring tools show
“vertical” slices through the system, showing one component in considerable
detail and “drilling down” to see more specifics. They collect information that
both notifies administrators of an individual problem and provides them with
enough information to solve it.

Our concerns are somewhat different. End users need specific, relevant, con-
textualized information about the components they are actually using and how
these components combine to accomplish their tasks. As we have discussed, there
may not actually be a “problem” to be solved; the goal may instead be simply
to assess the system’s state, providing the user with options. For example, a user
is likely to be more interested in locating an alternate functioning printer than
in knowing how to restore a failed printer to operation.

Making sense of the current state of a system often requires access to histor-
ical information. Often, the only way to adequately assess some information is
in terms of its variations over time.

In a distributed application, the needed information does not reside in one
place. To characterize the behavior of a user’s ”job” may require gathering re-
mote server performance information, end-to-end network congestion informa-
tion, and data about local workstation activities, then presenting the information
in a form that does not directly match the system’s actual structure.

The last thing a user needs is diagnostic tools whose robustness is inferior to
the systems they are evaluating. Since many health components will of necessity
operate on the same equipment as the observed systems, It is critical that these



components operate with minimal impact on the underlying applications, that
they fail significantly less often, and that they continue to operate even when
major parts of the system have failed.

In summary, our system must possess a number of characteristics:

1. User-centered. Our primary concern is to give information relevant to the
needs of a system’s end users and expressed in terms they understand.

2. End-to-end. Most real work tasks involve a variety of components throughout
the system. We must describe all those components acting in concert.

3. Adjustable. Users need ways to take different routes through this information,
and the system must respond to changes in user concerns. Gathering the
needed data should be an automatic consequence of user interest.

4. Historical. Since some situations can only be understood in context, we need
to be able to provide information about the past as well as the present.

5. Robust. The system is intended to help users understand problems that may
disturb their work. It is critical that those problems do not also interfere
with the functioning of the health system. We refer to this criterion as “fail
last/fail least”; it drives a considerable amount of our design.

2 Related work

Software tools to monitor system and application behavior developed in a rather
ad hoc fashion, as commands to extract information collected by the modules
that make up a software system. The introduction of the “/proc” virtual filesys-
tem in Eighth Edition UNIX [8] was an early attempt to systematize access to
active system information.

SNMP, the Simple Network Management Protocol, introduced a coherent
mechanism for structuring and accessing management information across a net-
work [13]. SNMP tools remotely query and control hierarchical stores of manage-
ment information (Management Information Bases, or MIBs). SNMP underlies
many integrated tools for distributed system monitoring and management, such
as Unicenter [2]; recent enhancements extend to the inner workings of host sys-
tems, services and processes. Similar mechanisms, now operating under the um-
brella of the Desktop Management Task Force [3] include Web-Based Enterprise
Management, the Desktop Management Interface, and Windows Management
Instrumentation. Simpler, if less ambitious, freeware or shareware systems in-
clude Big Brother [9] and Pulsar [5], designed to monitor an enterprise and
inform administrators of problematic conditions. NetMedic [7] does cater to the
end user, using passive analysis of Internet traffic to provide explanations for
some performance mysteries of Web browsing.

Planet MBone [10] is a research effort to provide visualizations of diagnostic
information, simplifying understanding of the Internet’s multicast infrastructure.
Similarly, software visualization (e.g. [14]) and algorithm animation [1] proto-
types apply graphical techniques to provide diagnostic views of the structure
and behavior of software systems.



Dourish [4] has argued the value of visualizations as an aspect of normal in-
teraction with software systems, to provide “accounts” of their operation similar
to the physical embodiments of everyday objects. Here, a view into a program’s
behavior is not provided for debugging, but rather to support the ongoing man-
agement of user activity. One implication of this perspective is that a system’s
account of its current behavior should meaningfully reflect the user’s tasks rather
the system’s structure, echoing our end-to-end “horizontal slice” approach.

3 Architecture

Our health system must satisfy both the interactional needs of the system and
the need to provide explanations to end-users. The architecture we have designed
to meet these requirements is three-tiered. At the top, a variety of health appli-
cations both collect and display information about the system’s health. In the
middle is the Health Blackboard System, the abstract model to which applica-
tions are written; the blackboard is in turn supported by the Health Repository,
a storage layer tailored to our specific needs.

3.1 Health Blackboard System

Our architecture begins with a relatively conventional agent/database approach.
A common information store, the blackboard, acts as an indirect, persistent com-
munication channel among any number of individual processing elements, or
agents. Agents produce or consume information by writing to or reading from
the blackboard. Our architecture (Fig. 1) is built around three different sorts of
agents: gatherers, hunters and transducers.

hunter
Blackboardgatherer

Fig. 1. Hunter and gatherer processes add, remove health data from a blackboard

Gatherer agents are responsible for gathering different pieces of information
from the distributed environment and keeping it up-to-date, by adding or re-
placing items on the blackboard. Running on or near the computers where the



information is generated, gatherers enter onto the blackboard information from
a variety of sources: SNMP interfaces, application management interfaces, or
system-specific performance queries, allowing the remainder of the system to be
independent of the precise collection mechanisms. Proxy gatherers can be de-
ployed to gather data, using other protocols, from hosts that are not able to
fully participate in our architecture, and record the results in the blackboard.

Hunters are the components within presentation applications by which in-
formation flows out of the system again. Hunter agents consult the blackboard
for health information to process and present in some sort of visualization to a
user. They function either by searching explicitly for the desired information or
by scheduling notification events for new information matching their interests.

Transducers act both as hunters and as gatherers. A transducer is created
to process or summarize raw data into items of greater value to the user. It
extracts relevant items from the blackboard, adding new items representing the
higher-level account of the system’s behavior.

Permanently deployed gatherers monitor specific system components on each
participating host, in order to maintain a historical record of base level perfor-
mance information. Most, however, are created when the information they gather
is needed. When a hunter asks for information about, say, a particular server
load, a Gatherer Factory process on the server host creates a gatherer for that
information; the hunter either waits for the first results or schedules future no-
tifications. The blackboard will request the removal of a non-persistent gatherer
when there is no longer any hunter interested in that information.

Thus, health data enters the system via gatherers, flows via the blackboard
through some number of transducers before playing a part in the reports of one
or more hunters. (Data representing the load on a network link might be used to
generate reports for the many applications that make use of that particular link.)
Multiple timestamped items may be inserted concerning the same measured
quantity in order to produce a historical record, where needed. Throughout the
process, the blackboard controls the dynamics of the system, presents a uniform
model for the collection and management of health information, and connects
information providers with information seekers.

Our blackboard is implemented as a tuple-space, not unlike that provided
by the widely available JavaSpaces [6]. For consistent interoperation between
hunters and gatherers, we employ a conventional structure for tuples. Each data
object is accompanied by the host, system, subsystem and component that gen-
erated it, a timestamp, a name and optional parameters. The data can be any
serializable Java object, permitting the system to store and manage information
from a wide range of sources, information whose form may change over time.

As a simple example, consider a hunter that maintains a server’s load average
graph. The hunter initially indicates its interest in this information by putting
onto the blackboard a request tuple of the form <server1, system, cpu, *,
load, *>, thus registering its interest. Any matching tuple is delivered imme-
diately to the hunter; otherwise, the blackboard directs the GathererFactory
on server1 to create a new instance of the LoadGatherer class which is regis-



tered as a supplier of cpu load data. The new gatherer periodically adds server
load records to the blackboard, generating events that will waken any waiting
hunters, including the original one, which now can extract the load information
and present it to the user. If the LoadGatherer instance cannot directly generate
the information, it may serve as a transducer, recursively extracting additional
blackboard tuples to produce its result. Should this hunter go away or become
unreachable, the blackboard will delete the pattern record. Periodically, another
process garbage-collects gatherers whose information is no longer needed.

This example highlights several aspects of our approach. The blackboard sep-
arates the collection of information (gatherers) from the routing of information
to interested processes (hunters). This indirection allows us to interpose other
agents that process low-level records into higher-level information by combining
information on the blackboard. It also allows us to limit the network traffic and
processor load involved in collecting and collating information. Finally, health
system components persist in the system only while they are needed.

We have stated that historical information is often of considerable importance
in understanding the state of a system. Retaining data records for extended pe-
riods can provide the same vital function that conventional system logs achieve,
with the added advantage that the resulting tuples can be organized through
various structured queries. In our current prototype, historical records can be
retained by adding multiple timestamped tuples matching the same search spec-
ification to the blackboard. Further, through an extensible “hints” mechanism,
clients can specify degrees of liveness of the information they require, “time to
live” hints for information that is added, and so forth. While this does not yet
address all the historical requirements, it provides enough flexibility to allow
basic management of the temporality of near-live data.

3.2 Health Repository

Although the Blackboard abstraction can be supported by very simple, central-
ized, in-memory information stores, our robustness requirements create addi-
tional criteria for a storage layer. First, health information must be available
with low overhead. Since not only error states but also ongoing performance
information must be presented to the user on a continuing basis, we must avoid
server bottlenecks and the overhead of synchronous network requests to fetch
and store data. Second, the health system must not itself appear to fail as a
consequence of other problems. For example, in the case of a network partition,
the system must continue to function as best it can. Third, logging requirements
argue for storage of diagnostic information beyond the capacities of individual
workstations or application servers. Finally, health reports from a large enter-
prise could overwhelm a centralized server.

These criteria suggest the use of a replicated data store. By storing health in-
formation in persistent, replicated repositories, gatherers may collect and report
their findings to local replicas, confident that the data will eventually reach those
that need it, even in the face of network congestion or partitioning. Similarly,
hunters can report the latest information they were able to receive; they can use



discontinuities in timestamps to identify the approximate point of failure along
a broken network path. We can present the appearance of a system with very
low probability of total failure.

But a fully replicated store will also not scale. This argues for partial repli-
cation, where information is replicated only where needed, according to the pat-
terns of information requests. Ideally, local replicas should be readily available
both to the gatherers that create the information and to the hunters that use
it. Furthermore, for information that is of longer term value, long-lived replicas
should be retained by servers charged with maintaining historical data. Addi-
tional replicas can be designated for further protection against information loss.
This approach implies that some amount of data inconsistency can be tolerated,
if necessary, in order to keep functioning. For system health information, we need
data to be accurate when possible, but slightly out of date information is better
than none and can be tolerated when the latest values are unavailable.

Based on these considerations, we chose to adapt the Bayou system [17] as
our repository layer. Bayou is a weakly-consistent replicated database, developed
originally to support ubiquitous computing environments, where mobile devices
routinely experience unpredictable connectivity. Bayou provides mechanisms for
dealing with network disconnection and carrying on processing, including session
guarantees (customizable degrees of consistency management) and mergeprocs
(application specific code to resolve conflicts after reconnection) [16].

Bayou’s replication supports our requirements for high availability. Its weak
consistency adequately supports continued operation in the face of temporary
failures and network partitions. However, its fully general algorithm for resolv-
ing update conflicts is more heavyweight than we need. Health information has
specific dynamic patterns of information generation and modification, which we
can exploit in designing a replication update scheme. We developed a variant of
the original implementation, enhanced for rapid (sub-second) dissemination of
updates to all replicas, to underlie our blackboard abstraction.

3.3 Infrastructure Implementation

We have built both sorts of gatherers. Simple permanent gatherers use system
tools such as SNMP probes or such as the Unix commands vmstat, iostat, netstat
or ps to extract host-level statistics. More sophisticated ones address common
concerns. For instance, we use a version of the Unix df command, modified to
report information about NFS connections with gingerly probes that do not
cause an NFS wait if a server is dead. We have also built very specific gatherers,
launched as needed to monitor locally produced applications, such as a large
infrastructure for managing scanned documents.

The Health System is written almost entirely in Java. Added to the approx-
imately 12000 lines of Java code, a few thousand lines of C is used in data
extractors. The system employs both a basic centralized repository for testing
purposes, and our Bayou-based replicated repository. The Bayou port, written
in java, uses MySQL as its relational database component. A designed approach
to partial replication awaits implementation.



4 A Web-Based Approach: Checkup

We turn now to a description of the most extensive application we have devel-
oped to demonstrate the health architecture, a web application called Checkup.
Checkup provides a coherent interface to a wide range of information, replacing
the bag of complex software tools that a user might employ on different platforms
to determine what is going on.

Figure 2 excerpts snippets from four dynamically-generated Checkup pages1,
beginning with the root page for the host AlicesHost, then progressing through
the (bold-faced) links to additional views. The root page (Fig. 2, panel 1) is a
top-level view of that host’s overall state, wrapping the output of such standard
Unix performance tools as pstat, vmstat, and fs into HTML presentations. This
page includes links that, when invoked dynamically, produce more detailed per-
formance analyses. For instance, following the ”mounted file server” links will
dynamically create root pages for those related hosts. Similarly, clicking a ”per-
process” link creates the page of (Fig. 2, panel 2), a table listing attributes of
all running processes sorted into a user-specified order. A link from each process
yields a detailed account of that process’s performance and resource use: names,
open local and remote files, and open network connections (not shown). Finally,
one can invoke a net path analysis tool (Fig. 2, panel 3), by clicking on one of
the open connections. This tool encapsulates many behavioral parameters that
the user would otherwise need to supply by hand, then combines the results
from both hosts into a presentation that is far more comprehensible than direct
operation of the underlying UNIX tool.

This approach has several advantages over previous tools. The use of HTML
hyperlinks to annotate the output of standard monitoring commands means that
the Web pages define a space of information with a high degree of branching,
encouraging the user to explore specific features of interest, rather than building
up a general picture. The path that a user follows to a particular leaf node
can contextualize the way in which the tool appearing there is used. Finally, a
serendipitous advantage is that Checkup pages can readily be created with links
to other web-based diagnostic, monitoring, and repair tools, extending the scope
of the system with little effort.

4.1 Checkup Implementation

Checkup (see Fig. 3) is based on Java servlets, server-based objects that cre-
ate Checkup pages on demand as links are followed, through the auspices of a
mechanism similar to Java Server Pages [15]. To the Health Blackboard, servlets
are hunters, collecting information from the blackboard to be reported back to
the user. As usual, these hunter requests lead to the on-demand launch of the
necessary gatherer agents, whose results are posted to satisfy the user requests.
The implementation includes mechanisms for retaining (for a brief time within a

1 Full-resolution color versions of all user examples are available at
http://www.parc.xerox.com/csl/projects/systemhealth/md/examples.



Fig. 2. A sequence of Checkup web pages, generated by servlet hunters.

session) time-consuming computations, such as the top-level attributes of all of
a host’s processes. Servlets that create related pages can use such cached infor-
mation to increase responsiveness. Some pages, such as the one depicted in Fig.
2 panel 3, issue multiple requests for information provided by multiple hosts.

Servlets annotate their web pages with dynamically computed information
and with hyperlinks to more detailed analyses. For example, the root page servlet
checks what other systems a host depends on for its file service, and for each,
either indicates that the corresponding server is not running or provides a link
to the root page for that server.

Web browsers

Checkup Blackboard

hunter
servlets

Fig. 3. Checkup is a servlet-based Health application for standard Web browsers

4.2 Application Helpers

We can use the same infrastructure both to evaluate and inform a specific ap-
plication, by linking the application to the health system via a small “Health
Helper” program.

As an example, we have built a Health-enabled variant of emacs, a text editor
available on many platforms. We chose emacs because it is widely used, depen-



dent on many components in the environment, and highly customizable through
provided APIs. When emacs is started, a small “emacs helper” is also started
to provide bidirectional communications between emacs and the blackboard.
Acting as a gatherer, this program posts specific performance information, in-
cluding details of memory and CPU usage that other applications can use to
help them coexist with this large, cycle-hungry application. Acting as a hunter,
the helper can supply emacs with information that can improve its robustness.
For example, emacs can divert an attempt to download library code from an
unresponsive server to one that is available; similarly, emacs can determine that
there is insufficient room to save the next version in the current location, in time
to prevent an attempt that could result in failure or lost work.

A Checkup page could be created to present to the user the detailed emacs
performance information provided by the helper program. Thus, users do not
have to learn a new application to monitor this application, but can use methods
they are already familiar with.

5 Visualizing System State

Finally, we have been exploring the presentation of system health information
through visualization tools. Visualization enables the movement of activity from
the cognitive system to the perceptual system [11], making patterns and corre-
lations in the blackboard data directly perceptible. Visualization through ani-
mation of system data [12] directly supports our intuition that patterns of sig-
nificance to the user occur all the time, not only in the face of failure. Since we
assert that systems health depends both on individual components and on the
interactions and relationships between them, we believe a successful approach
will convey these relationships as well as the more objective data. Further, we
seek a presentation that minimizes the technical knowledge required to interpret
it, which argues for a perceptual rather than a cognitive approach.

We have prototyped a series of simple visualizations. The Ping Radar visu-
alizes the performance of a network, as seen from a particular host. In Fig. 4,
columns represent hosts. Rows are snapshots at successive instants. The color of
a cell estimates a round trip time to that host. The radar ”beam” replaces rows
cyclically at fixed intervals, giving us a picture of recent activity. Over time,
patterns reveal the reliability of each connection, periods of network downtime,
etc. We can see that one host appears to be down (black column), that hosts on
the left are closer to us than those on the right, and that network response to
distant hosts is quite variable.

Similarly, we built a Process Map that depicts the processes on a single host,
using the position and color of data boxes to represent the memory each has
consumed, their run times, and their current states. Readily perceived sepa-
rations emerge between temporary small processes (simple commands), long-
running processes (servers) and anomalous processes (runaway computations).
These tools are blackboard clients, permitting exploration of different ways to
organize and visualize relevant information.



Fig. 4. The Ping Radar gives a continually updated view of the recent network state

It is clear from these early explorations that the context in which information
is presented is of considerable importance. Our examples so far all deal out
absolute data: ping times, absolute memory consumption, etc. Although these
readings provide valuable information, there are times when relative values, such
as deviations from the norm, anomalous readings, or the differences between
readings, would provide more insight.

6 Conclusions

Traditional diagnostic tools are optimized for system managers and adminis-
trators. We believe that information about the health of networked distributed
systems can be of equal value to end users, if properly presented. We have the
beginnings of a tool set that can tell users what is going on with their applica-
tions. We employ a blackboard architecture and multiple cooperating agents to
build up information from “vertical” system views into “horizontal” slices cor-
responding to the end-to-end structure of user activities, combining disparate
information sources into a coherent user report. This architecture is effective
both for creating expressly designed health views and for augmenting the capa-
bilities of existing applications to explain their behavior.

Basing our repository on a weakly consistent replication model enables a
high degree of fault-tolerance in support of our “fail least/fail last” criterion,
maximizing the availability of correct and at least partially complete information.

Checkup and our visualizers are only a first step in building health applica-
tions. Considerable work remains, particularly in the exploitation of historical
information and in the ability to report coherently about application behavior.
The infrastructure we have developed is a basis for further investigation.
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