
UCI-ISR-02-3 1 8/29/02

The Experience of Computation
Paul Dourish

Information and Computer Science/Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
jpd@ics.uci.edu

FROM USABILITY TO EXPERIENCE
Moore’s Law sets the pace for computational life. Originally noted in 1964 by Intel
founder Gordon Moore, it observes that the achievable density of components on a
silicon substrate doubles roughly every 18 months. It has many corollaries and alternative
formulations. One is that computers get twice as fast every eighteen months; another is
that they get half as expensive. My personal favorite interpretation is that the total of all
the advances in computer power since I was born (or you were born, or man first walked
on the moon) will be exceeded by the progress of the next eighteen months. Although
Moore’s Law is conventionally regarded as a technical observation, its implications are
much broader. The exponential advances in computer technology that we experience
quickly mount up to changes not just in number, but in kind; computers become not just
be cheaper and more plentiful, but become quite different kinds of things.1 Computers
reinvent themselves continually, and as a consequence, our expectations of them – of
when and where and how we will encounter them, of what they will be expected to do,
and of how we expect to be able to incorporate them into daily life – are also continually
changing. So it’s unsurprising that even in its short history, Human-Computer Interaction
(HCI) has also undergone repeated changes in emphasis and approach. Early concern
with input devices and display technology gave way to explorations of theories of
cognition and action; in turn, once those became systematized, we became more
concerned with the development of generic user interface technologies, and then with
design approaches that would allow us to keep up with the pace of technical
development.
One of the more interesting changes in recent years has been the rising influence of
design, and the emergence of Interaction Design as one of the central strands within HCI
practice. Design has always been an important part of HCI, of course, with designers
represented within both research and development organizations, but in the past few
years, it has taken on a much more prominent role. High-profile designers have played a
more active role in conferences like CHI (e.g. John Thakara’s keynote at CHI 2001 in
Den Haag); courses and books incorporating the idea of Interaction Design have become
more popular (e.g. Preece, Rogers and Sharp, 2002); the DIS (Designing Interactive

1 Consider, as an example, that multimedia and networking facilities are relatively recent additions to the
standard PC, while today, a computer that wasn’t capable of connecting to the Internet and of playing MP3s
and DVDs would be regarded as almost useless. The computer has become a network terminal and a
multimedia hub.

UCI-ISR-02-3 2 8/29/02

Systems) conferences have become more firmly established as a major venue for research
presentations, one that fuses technical and design concerns; and the manifestations of
design on Web sites and in new interfaces such as Apple’s Aqua (in MacOS X) and
Microsoft’s newer Windows XP design have become important criteria for selling and
distinguishing between systems.
One of the reasons to draw attention to the increasing prominence of design in HCI is that
it marks a departure from some earlier conceptions of the role of HCI and interactive
technology. While there are many different schools of design and different perspectives
on its role, one thing that most would agree on is that the incorporation of design is a
move beyond a traditional narrow focus usability. Where the notion of “usability” evokes
images of experimental evaluation, laboratory settings, and formal metrics of
effectiveness, design addresses the much richer concerns of products in use. Designers
are concerned not simply with how people use products, but also with what they
experience in the process; they are concerned with the meaning that those products and
interactions hold. From this perspective, usability is a critically important criterion, but
the only way to understand usability is to place it within this wider frame of the meaning
that technology holds and experience that it affords.

Experience and Practice
It is easy to dismiss this perspective as frivolous – to suggest, perhaps, that it’s all
“marketing hype” and that such issues as experience are merely ways to distinguish one
product from another, irrelevant to the foundational concerns of technology in use.
However, we know from other studies of technology in real settings that related issues of
meaning and experience are critically important to successful design and adoption. Usage
studies point out that individuals and groups find new ways to use technology that the
designers had never intended; they find ways to make the technology useful to
themselves by developing new sorts of practice and new ways of incorporating
technology into that practice. The success of a technology depends not least on how well
it can be incorporated into the practice of those who use it, and how well the technology
and the practice can coevolve. The relevance of this here is that practice and meaning are
intimately interconnected.
Etienne Wenger suggest that “practice is, first and foremost, a process by which we can
experience the world and our encounters with it as meaningful.” (Wenger, 1998:51).
Wenger’s concern is with “communities of practice,” the social groups whose common
experience of action provides a framework for shared meaning. As an illustration,
consider an apprentice shoemaker. On his first day in the workshop, he finds himself
surrounded by leathers of different sorts, but he lacks the skills to distinguish between
them except on broad levels such as size, color, or flexibility. Over time, as he learns to
use the tools of the trade, and as he learns to work the leather, he learns how to “read” the
leather in new ways. He learns how to experience leather as amenable to certain sorts of
operations, workable with certain sorts of tools and techniques, or holding the capacity to
be used in different kinds of shoes or products. In other words, learning the practice of
shoemaking means learning how to encounter the world as meaningful for that practice.
This isn’t unique to shoemaking, by any means. Sculptors sometimes talk of “releasing” a
sculpture from the rock (rather than carving it); and part of the process of teaching

UCI-ISR-02-3 3 8/29/02

computer scientist is training students to see the world as computer scientists see it, as
amenable to certain forms of representation and proceduralization (teaching them to see
algorithms, iteration, and encapsulation.) The relationship between practice and meaning
is universal.
So, the concern with meaning and experience in use that design approaches draw our
attention to are relevant not just for web pages or physical artifacts, but for all aspects of
information systems. Further, these topics are not niceties or factors that supplement the
basic stipulations of “usability engineering” – they go to the heart of what it means for a
system to be usable in any practical sense. Experience, meaning, and practice are central
to interactive system development and use.

Two Problems: Fragmentation and Alienation
It should be heartening, then, to see design take a more prominent place in HCI, and
indeed it is. However, the effectiveness of this attempt to give users a richer experience in
using technology is potentially limited by being conducted at the wrong level. As HCI
designers, we tackle design and user experience problems largely at the level of
applications and frameworks – the design of specific web pages, specific interactive
widgets, or specific applications. Further, in doing these, we look outside of the computer
to find metaphors to make these experiences meaningful. The result is a cacophony of
concepts presented side-by-side on a single computer screen. At any given moment, a
user might have to contend with “windows,” “palettes,” “menus,” “icons,” three-
dimensional objects that stretch and twist, hourglasses, and even faux street signage all
present on the screen at the same moment.
These metaphors have been designed to make the technology easier to for us to use and
make sense of, by drawing analogies between technical practice and the everyday world.
They encourage us to think of interactive systems not as pieces of software, but as
artifacts that embody aspects of desktops, spatial environments, social institutions (in the
case of the traffic signs) and the everyday physical environment. In doing so, though,
they introduce some other difficulties. I will briefly suggest two here.
The first is fragmentation. The nature of the way that we design computer systems today
– the structure of interactions between operating systems, modules, and applications – is
forced on us by a combination of technical necessity and historical precedent. It makes it
possible to harness human resources to build large-scale technical artifacts under the
constraints that operate on most software development exercises. On the other hand,
though, the separation of software systems into different components, developed by
different (groups of) people, subject to different sorts of demands, requirements, and
interpretations of need, working under different organizational strictures, makes it hard to
manifest a system-wide coherence of interaction. Application development efforts are
largely independent, and while software platform providers can do their best to
promulgate standards, conventions, and design guidelines to promote consistency across
these different applications, an absolute consistency is impossible to achieve.
The second difficulty, and the more serious here, is what I will call alienation. When
faced with the tough challenge of creating a user interface to a new software system,
designers typically look outside of the computer system itself to find models and

UCI-ISR-02-3 4 8/29/02

metaphors with which to make the system seem more familiar and natural. While this
offers a fruitful model for “first-time” or “walk-up” use, the effect over time is to prevent
or interfere with the user gaining a deeper understanding of how the computer system is
operating in response to their actions. The level at which the computer system is
experienced is deliberately and systematically distanced from the level at which it
actually operates. In addition, through the process of abstraction, many quite different
technical phenomena may be presented through the same interface (such as the
ubiquitous “folder” that might represent a floppy disk, part of a fixed disk, a digital
camera, or a networked server hundreds of miles away – each of which, clearly, have
very different characteristics). This barrier frustrates the user’s attempt to understand
what is going on, and to relate the system’s response (or lack of response) to the actions
that they take. Even so-called “naïve” users, or those who have no interest in finding out
how computers work, nonetheless do form models of causality that furnish them with the
basic means to interpret the system’s behavior. However, the accuracy of these models is
limited by the way that conventional design systematically alienates users from the
technology that acts on their behalf.

FORMULATING AN AGENDA
These problems, fragmentation and alienation, have elements in common. Essentially,
they are each the consequence of barriers erected within computer systems. Where
fragmentation arises because of the barriers between different parts of the system,
alienation is a product of the barriers that are placed between users and the underlying
computational medium. Further, they have a number of consequences for the questions of
meaning and experience as central elements in interactive system design. Drawing on
social studies of technology use, it was suggested that successful system adoption
depends on being able to fit technology into working settings. Although this is a widely
recognized concern which has motivated a great deal of work on user-centered design
and on workplace studies to inform system development, what I want particularly to point
out here is the dynamic nature of this fit. Technology must fit into working settings, but
working settings and forms of practice evolve over time, and technologies coevolve
alongside. Studies such as those of Mackay (1990) have illuminated the coadaptive
relationship between technology and practice, and have emphasized the importance of
understanding how technologies can be made amenable to this sort of adaptation and
appropriation. The question to be asked, then, is not simply, “how can we design
technology to fit the working practice that we have observed?” but rather, “what
properties of computer systems allow them to support the emergence and continual
evolution of practice?”
Elsewhere, I have termed this continual integration into practice “appropriation”
(Dourish, in press). Appropriation of technology, in this sense, is not simply tailorability
and customization, but also the emergence of new working practices that arise around
technology in use, based on evolving understandings of its capabilities and potential. We
see it not only in explicit customization, but also in the emergence of conventions by

UCI-ISR-02-3 5 8/29/02

which new meanings can be created through differentiation and repetition.2 Technologies
that lend themselves to this sort of adaptation and appropriation are not only ones that are
malleable, but ones that are translucent, allowing users to see the consequences of their
actions, and understand how those actions can be transformed to yield different results.
Flexibility must be accompanied by reversibility, directness, and accountability (Dourish,
1995), allowing for continual adaptation, not as a separate activity (e.g. programming),
but seamlessly woven into use.
The vision this suggests is of a fluid, flexible computational medium, malleable and
responsive enough to allow the development of new structures and practices. At a high
level, this is similar to the “tool paradigm” for interactive systems – the idea that a system
should present itself to users as a tool without overly constraining how the tool is to be
used. On a more detailed level, though, this approach breaks with the traditional
interpretation of the tool paradigm by focusing at the level of computation rather than
applications. The tool paradigm has normally been realized at the level of applications,
giving us tools for reading, for writing, and for communicating. However, the problem of
alienation suggests that we need to go further – not just to mimic existing tools, or to
create new sorts, but to recognize the inherent nature of the computer as a tool.
Computation is representational, is active, is responsive. A solution to the problems of
fragmentation and alienation will depend on giving people an experience of computation.
What are some of the properties of interactive systems that give an experience of
computation?
Perceptual. Directness is a key property for this approach. Our goal is to support
embodied interaction, where embodiment denotes a sense of participation and presence
(Dourish, 2001). An important design concern here is to make information directly
available and perceptible to the user, without requiring indirect manipulation or
interpretation. Much of our current work (see below) is based on visual approaches,
which aim to move processing from the cognitive to the perceptual system (Robertson et
al., 1993), relying on what has been called “external cognition” (Scaife and Rogers,
1996)
Continuous input and output. An important characteristic of our experience of the world
is that it is continual and ongoing. The world around us may fade into the background as
we concentrate on some task, but it remains there, available and accessible. The world is
always available for interaction, and always presents itself directly. Similarly, we believe
that an important building block for giving an experience of computation is continual
input and output. Instead of building systems around a model of commands and results, it
will be necessary to build them around a model where users shape the unfolding of
computational behaviors, continually changing, revising, shaping and directing them.

2 A simple example is the use of README files; everyone knows what sort of information is likely to be in
a README file, and where it is likely to be found. The README file is meaningful to certain sets of
system users even though these “semantics” are never encoded in the filesystem. It is a convention that
arises amongst people who understand facets of each other’s work and can recognize how the system will
appear to them (and has, in the process, lost the sense of its original reference to “Alice in Wonderland”.)

UCI-ISR-02-3 6 8/29/02

Concrete. The direct interaction style envisioned by this proposal leads to a concrete
design style. By this, I mean that the entities affecting interaction should be directly
available and accessible within the interaction. Rather than providing two worlds – one
world of objects of attention, and one of abstractions that describe them – the design style
is to present an integrated whole. Philosophers of language talk about the use/mention
distinction – the difference between saying “hello” (use) and referring to the word “hello”
(mention). So, one important characteristic that supports a direct experience of
computations is that it integrates the two.
We present these characteristics here to give a flavor of the main idea, rather than as a
definitive list of necessary or adequate conditions. They are intended to help sketch the
outlines of the design space. To this same end, it is valuable to look at some current
research activities that address some of the same questions.

SOME EXAMPLES
These are broad, abstract ideas. To try to see how they might work out in practice, it’s
useful to look at some specific examples. I will introduce four current activities:
visualizing the behavior of software systems, visualizing security, populating the social
workscape, and ad-hoc and emergent information management. Each of the projects
described here is ongoing work, and expresses some part of the approach outlined here.
None is intended as an ideal instantiation; rather, they are designed to explore some of the
issues outlined above.

Visualizing the Behaviour of Software Systems
One of the centrally important features of computation is that, in its embodiment in
conventional computers, it is active – it can do things for us. If it could not, there would
be little point in using computers. However, what it’s doing, and how, is typically not
information that’s available to us as users of computers. Interfaces are constructed in
terms of requests and results, but not in terms of the mechanisms necessary to turn one
into the other.
The reasons for this are simple and obvious (although not so obvious that HCI
practitioners don’t have a hard time explaining them to people sometimes). Most people,
most of the time, don’t want to “use computers” – they want to get their work done.
Using the computer is simply a means to an end. They have no desire to be forced to
understand the intricacies of the computer system design merely to print a letter, send an
email message, or perform a mathematical analysis, any more than they would be
interested in learning the physics of the internal combustion engine in order to get to
work in the morning. This is a basic principle behind much of HCI, but it hides a more
complex observation. Although nobody wants to learn about internal combustion in order
to get to work, most of us do have available to us a set of cues that let us assess how our
cars are performing – the sound (or, if we’re unlucky, the smell) of the engine, the feel of
the steering wheel or the clutch, or the whizzing of the scenery in our peripheral vision.
We may not be engine mechanics, but we have a practical understanding of how cars
work that guides our own activity. The sound of the engine straining prompts me to
change gear; the feel of the steering in a turn prompts me to give the engine more gas. In
general, we act everyday in the world as we find it, available to use for practical action,

UCI-ISR-02-3 7 8/29/02

organized in ways that are more or less predictably meaningful. The world is available to
us for examination and interpretation, even if the interpretations that we make are flawed
or incorrect. Notably, this is not true of most computer interfaces; organized around
requests and responses, they provide no insight into the operations that came in between.
Web search engines exemplify this paradigm; you enter a query, a results page is
returned, and it’s up to you to figure out how the results are meant to be related to your
request, and what to do about it (Muramatsu and Pratt, 2001).
One of our recent projects has been exploring the extent to which we can produce real-
time visual representations of executing programs. An important criterion is to be able to
visualize programs without making any changes to them. We have been developing
VaVoom, a “visual virtual machine” for Java programs, which takes unmodified Java
class files and executes them, producing a simultaneous visual representation of the
program as it runs (Dourish and Byttner, 2002). Various aspects of the program’s
behavior are displayed in real-time alongside the program’s execution, and these visual
representations can be dynamically controlled and explored. At any moment, the user can
shift attention from one representation to another, or display multiple different
representations concurrently to observe any correlations in their behavior.
As a first step and proof-of-concept, the initial target is to be able to produce
representations that give novice programmers insight into the execution of their
programs. Our informal experiences working with programmers has been positive, and
indeed the system has been more effective than we had hoped at allowing people to see
external manifestations of otherwise purely internal behavior. However, aiming these
presentations at programmers allows us to rely on their internal models of software
construction, which, although often flawed, are clearly much more sophisticated than
would be those of end users. Our intuition is that sufficiently carefully design visual
displays (and, in particular, coupled visual displays that maintain temporal coherence)
can provide people with meaningful interpretations of information that would otherwise
be much lower-level than you would expect to make sense (much like the sound of the
car engine is a representation of information about engine timing that is over my head);
however, the representations that we have been working with so far are definitely too
low-level for effective engagement with end users. This work is a first step, though, and
the approach seems to have promise.

Visualizing Security
To use this visualization approach with end-users, our approach is to look for specific,
focused application areas in which we can build specialized visualizations. This will
allow us to better formulate design parameters for these active visualizations. One
especially promising area that we are beginning to explore is security in networked
applications.
Much work over the past few years has been directed towards the goal of providing
reliable and robust mechanisms for implementing secure computer communications. The
use of strong cryptographic technology allows mathematically provable security
guarantees to be made about specific technical arrangements. However, practical security
has proven to be an elusive goal for at least two reasons: first, that the nature of these
mathematical guarantees is hard for people to understand, and second, that secure

UCI-ISR-02-3 8 8/29/02

infrastructures are inherently brittle, requiring users to pay attention to myriad details in
order to maintain them. The irony here is that absolutely, mathematically-provable strong
cryptography is often more than people need. End users do not ask, “is this system
secure?” but rather, “is this system secure enough for the task at hand?” Different tasks –
sending an email message to a friend, submitting grades, executing a financial transaction
– require different degrees and different sorts of security guarantees. In the everyday
world, we might assess our immediate security by examining our surroundings, or by
testing doors and windows. Computer systems tend not to provide users with the
resources they need to make an informed decision about the adequacy of available
security configurations and mechanisms.
Again, we take a visualization-based approach to this problem (Dourish and Redmiles,
2002). The infrastructure we are developing rests on three foundations. One is a
distributed event routing and monitoring architecture. This allows us to gather
information from multiple system and network components, including being aware of
activities in the user interface. The second is a visualization engine that can provide
graphical depictions of security-relevant system actions. As in the previous case, the
critical feature of these visualization is that they are provided dynamically, along with the
system action that they describe; these are not intended as probes or analysis tools, but
rather as ways of making system and network activity visible and manifest to users as
part of the computational experience. The third component that links these two together is
a set of security-specific interpretation agents, which use heuristic reasoning to attempt to
determine the security implications of particular configurations of technology. For
instance, observing that an encryption technology such as stunnel or ssh is currently
running, and is targeting internet port 25 (assigned to the SMTP mail transport protocol)
allows an agent to determine that email may be being tunneled securely (subject to
further verification).

Populating the Social Workscape
Most interactive systems are designed for single users, individuals sitting at their own
computers. In contrast, very many of the activities we carry out at computers are related
to other people. We write documents to send to others, we read email that other people
sent us, we develop software systems for others to use, and we create Web pages for
others to read. Our working lives are suffused with other people, but the computer
systems through which these lives are lived are stubbornly individual. The research
domain of Computer-Supported Cooperative Work has developed a range of systems that
provide explicit support for collaborative and collective activities, but this approach
separates the domain of “collaborative” applications from that of “individual” ones. In
our richly interconnected everyday worlds, even single-user applications are used to carry
out tasks that relate to multiple individuals. I may be a single user of this word processor,
but I write with a sense of the others who have commented on my document and who
might read it in future. As in the examples encountered earlier, system design has erected
barriers – this time, between a person sitting at a computer and the rich social workscape
that extends beyond it. One of our current projects is attempting to remedy this problem.
The solution we are developing is based around social networks. In social science, social
networks refer to patterns of connection between individuals that bind them into larger

UCI-ISR-02-3 9 8/29/02

collectivities. Social networks can be constructed around many different relations. For
instance, a network can be defined around the people who talk to each other on any given
day. Person A talks to persons B, C, and D; person D talks to persons E and F, and so on.
By iteratively exploring this relationship, a “network” can be drawn up which maps out
the patterns of contact between individuals. Other networks might be drawn around
people who frequent the same cafes, people who know each other, people who work
together on projects, and so on. The network makes it possible to measure and compare
various characteristics of the social group, such as subgroups, degrees of connectedness
and centrality. Social network analysis is a common technique in the social sciences, an
approach that analysts use to understand social groups. In our work, though, we are
exploring the role that social networks can play for end users of computing systems. Can
we automatically determine features of the social networks in which people are
enmeshed, and can we use those features to “populate” the electronic workspace, turning
it into a window onto the social workscape beyond? For example, can my filesystem be
organized and displayed in ways that show me what other people are associated with the
activities represented by my files?
There are three parts to this research. First, we are developing an infrastructure for
determining and mapping social network information, which will then support the design
of awareness and other socially-aware facilities to be integrated into the everyday user
experience. We use a variety of sources of information, including patterns of electronic
mail contact, other sources of electronic communication, filesystem activity, etc., to
create a rich information base for exploring potential social networks. Second, we are
building analysis tools that allow us to explore this information to find interesting
relationships. We need to find the particular measures of social network activity that are
especially relevant to people – perhaps different measures for different times or for
different groups. Third, we are designing ways to embed this information into the
conventional user experience. Again, as in the previous examples, we wish to avoid the
problems of fragmentation and alienation by making this information pervasively
available as a part of the user experience, rather than providing a new “social network
browser” application.
One interesting observation that has arisen from this work is that social network
information may be most useful when combined with other forms of information. In
particular, we are interested in the use of temporal information in order to gain more
insight into the social network statistics that we can gather. Social networks provide
information about, for instance, who might talk with whom; by augmenting this with
temporal information, we can also begin to understand when this might happen. This
allows us to develop more nuanced presentations of information. For example, if I am
working on a paper with a colleague, this information might allow the system to make the
icon for that document increasingly prominent as we get closer to the time of day when
my colleague normally goes home for the evening, making it clearer to me that I should
work on this soon. The issue of temporal patterns of activity is increasingly receiving
attention in the research community (e.g. Hudson et al., 2002; Reddy and Dourish, 2002;
Begole et al., 2002); our Social Workscape activities provide us with opportunities to
explore the technical and design implications of this research.

UCI-ISR-02-3 10 8/29/02

Ad-Hoc and Emergent Information Structures
The final example here deals with a set of general problems surrounding practices of
information management. Managing information is clearly at the heart of what computers
do, and what we do with computer systems. Much of our everyday activity involves
information management, either in the large (processing database records) or in the small
(navigating a filesystem or filing email). Most information tasks are handled by
introducing structures into which the information will fit; information is managed by
navigating and manipulating the structure. Examples of structures include hierarchies (as
in the filesystem), schemas (as in databases), or graphs (for web pages). Structures are
convenient mechanisms for systems, but research on users managing information has
repeatedly shown that they can present significant obstacles to user interaction (see, e.g.,
Shipman and Marshall, 1999).
There are at least four common problems. First, information structures must be
predefined; the structures are defined in advance of the information. So, a folder must
already exist before an email message can be filed in it; a database schema must be
defined before the first record can be stored. On the other hand, when people create
structures, they do so out of the detail of the information they have on hand. When I
decide how my email should be organized, it depends on the messages that I have to
arrange. I might use different structures for different sets of information. Defining
structures ahead of use puts the cart before the horse. Second, information structures are
hard to revise. It’s easy to add a new folder for my email, but it’s very hard to revise my
whole filing structure, to organize it by topic rather than by person. Most information
structures have this property. Even when the structure is easy to change, it may not be
easy to move my information from one structure to another. Third, information structures
are uniform, while actual circumstances frequently involve exceptions and variations.
Information structures work by making everything the same, while actual circumstances
are often characterized by variety and difference. Fourth, information and structure
typically exist on different levels. Most systems separate the tools by which we manage
information from the tools by which we examine, define, and modify structure. Working
on both information and on structure can often mean moving repeatedly back and forth
between “definition” and “use.” Different information systems exhibit different
problems, or exhibit them to different degrees, but these four problems are relatively
common across a range of information systems.
Again, the problem is one of barriers. Information structures act as a barrier between
users and their information. In the early days of computing, this was a worthwhile trade-
off; computers were large, slow, and expensive, and so the extra effort required of users
to manage their information according to fixed and static structures was repaid in the
improved performance that computers could achieve with uniform information in well-
formed structures. However, the inexorable advance of Moore’s Law has changed the
balance. Computers are now much faster, and their time is no longer worth more than
human time. It is now possible for computer systems to work with unstructured or semi-
structured information, or to derive structure automatically, fitting it to the data and the
circumstances. However, this suggests a change to how we manage and work with
information.

UCI-ISR-02-3 11 8/29/02

We are exploring tools for ad hoc and emergent structure. By ad hoc structure, we mean
systems in which information is related by multiple different information structures (or
even no structure at all), and in which structure is developed on the fly, according to
immediate needs and activities. By emergent structure, we mean those structures that are
developed by engaging with and exploring the information. For example, in sensemaking
tasks, in which users must sift through large amounts of information in order to develop
an understanding of the whole, structure is emergent – it arises out of the interaction
between people and information.
In the Placeless Documents project (Dourish et al., 2000), we developed information
systems based on an attribute-system in which fixed structures such as hierarchies and
schemas were replaced with flexible and open-ended (or even nonexistent) structures
based on attributes that were meaningful to end-users. Users could annotate information
objects with attributes, which the system would then use to create dynamic structures
through a high-performance query engine. To complement this information
infrastructure, we have more recently been working on interactive systems that attempt to
provide equally flexible ways to interact with information.
The particular approach we have been exploring is spatial hypertext. Where conventional
hypertext systems relate information through explicit links, spatial hypertext systems
allow users to arrange information freely in a two-dimensional space, and then exploit
spatial and other visual properties to relate information items. The system can
automatically recognize potentially meaningful patterns, such as columns, tables, or piles.
Structure is implicit in what users do, although they can use it to interact with object
groups. There is no separation between using the information and defining structure –
structure is defined by moving an object from one place to another. So, creating,
destroying and manipulating structures is done in the course of regular interaction with
the objects. Objects can live in many structures at once, or in none; the structure is
provided to assist user tasks, but is not enforced or required.
Spatial hypertext systems have shown considerable promise for some time, but there
remain a number of important open questions. Two of the questions we are attempting to
address are, first, how can we scale these systems up to large amounts of information
while maintaining the casual interaction style?; and second, how can we extend this style
of interaction to collaborative activities? To this end, we have built a spatial hypertext
system that supports multi-way collaborative interactions and is based on a zooming
paradigm. The visual properties on which spatial hypertext rests are scale-independent, so
a zooming model seems a natural way to extend the space; and by incorporating both
synchronous and asynchronous interaction, we hope to support the emergent information
practices of workgroups.

THE EXPERIENCE OF COMPUTATION
What I have been arguing for here is a research agenda for HCI that concentrates on the
“experience of computation.” By “experience,” I mean to draw attention to the direct,
embodied, participative nature of interaction; this interaction style is concerned with the
ways that computation is manifest in the course of working activities, and is made
directly and continuously accessible to users. By “computation,” I mean to draw attention
to the way that, rather than adopting external metaphors or high-level abstractions, we

UCI-ISR-02-3 12 8/29/02

attempt to focus on computation as a medium, representational and responsive. Each of
the four ongoing projects introduced above addresses one or more aspects of this long-
term goal, and is designed to provide some insight into the general problems to be solved.
Much more work needs to be done, besides. We are accompanying these design efforts
with ethnographic investigations of work, as well as foundational explorations of the
relationship between computation and experience (Dourish, 2001), drawing on the work
of others who have grappled with similar questions (e.g. Agre, 1997; Smith, 1996).
Our central concern, though, is one that unites these different activities and gives them a
common focus. At the start of the twenty-first century, our experience of computation is
dominated by models and approaches first developed half-way through the twentieth. Our
goal is to follow through and develop the interactional consequences of the massive
transformation in computation that has taken place since that time, and which continues
to develop and evolve.

Acknowledgements
The work described here is being carried out in collaboration with a number of students
and colleagues, including Johan Byttner, Danyel Fisher, Haimin Lee, Sameer Patil,
Madhu Reddy, and David Redmiles.

References
Agre, P. 1997. Computation and the Human Experience. Cambridge: Cambridge
University Press.
Begole, J., Tang, J., Smith, R., and Yankelovich, N. 2002. Exploring Work Rhythm
Awareness: Coordinating Contact Among Colleagues. Proc. ACM Conf. Computer-
Supported Cooperative Work CSCW 2002 (New Orleans, LA) New York: ACM.
Dourish, P. 2001. Where the Action Is: The Foundations of Embodied Interaction.
Cambridge: MIT Press.
Dourish, P. and Byttner, J. 2002. A Visual Virtual Machine for Java Programs:
Exploration and Early Experiences. Workshop on Visual Computing (San Francisco, CA).
New York: Springer.
Dourish, P. and Redmiles, R. 2002. An Approach to Usable Security based on Event
Monitoring and Visualization. Proc. New Paradigms in Security Workshop (Virginia
Beach, VA).
Dourish, P. In press. The Appropriation of Interactive Systems: Some Lessons from
Placeless Documents. Computer-Supported Cooperative Work.
Dourish, P., Edwards, K. Lamarca, A., Lamping, J., Petersen, K., Salisbury, M., Terry,
D., and Thornton, J. 2000. Extending Document Management Systems with User-
Specific Active Properties. ACM Transactions on Information Systems, 18(2), 140-170.
Hudson, J., Christensen, J., Kellogg, W., and Erickson, T. 2002. “I’d be Overwhelmed,
but It’s Just One More Thing To Do:” Availability and Interruption in Research
Management. Proc. ACM Conf. Human Factors in Computing Systems CHI 2002
(Minneapolis, MN). New York: ACM.

UCI-ISR-02-3 13 8/29/02

Mackay, W. 1990. User and Customizable Software: A Coadaptive Phenomenon. PhD
Dissertation, Sloan School of Management, MIT.
Muramatsu, J. and Pratt, W. 2001. Transparent Queries: Investigating Users’ Mental
Models of Search Engines. Proc. ACM Conf. Research and Development in Information
Retrieval (New Orleans, LA.) New York: ACM.

Preece, J., Rogers, Y., and Sharp, H. 2002. Interaction Design: Beyond Human-Computer
Interaction. Wiley.
Reddy, M. and Dourish, P. 2002. A Finger on the Pulse: Temporal Rhythms and
Information Seeking in Medical Work. Proc. ACM Conf. Computer-Supported
Cooperative Work CSCW 2002 (New Orleans, LA). New York: ACM.
Robertson, G., Card, S., and Mackinlay, J. 1993. Information visualization using 3d
interactive animation. Communications of the ACM, 36:57 – 71.
Scaife, M. and Rogers, Y. 1996. External Cognition: How do Graphical Representations
Work? Intl. Jnl. Human-Computer Studies, 45, 185-213.
Shipman, F. and Marshall, C. 1999. Formality Considered Harmful: Experiences,
Emerging Themes, and Directions on the use of Formal Representations in Interactive
Systems. Computer Supported Cooperative Work, 8(4), 333-352.
Smith, B.C. 1996. On the Origin of Objects. Cambridge, MA: MIT Press.
Wenger, E. 1998. Communities of Practice: Learning, Meaning and Identity. Cambridge:
Cambridge University Press.

