

1. Introduction

As the cost of computing power has marched inexorably
downwards, as described by Moore s Law, everyday com-
puting platforms have become increasingly powerful
engines for graphical display. As demonstrated by the rapid
progress in computer games, graphical abilities that were
available only in high-end, specialized devices are now
incorporated into every computer sold. It might be expected
that, as a result, the graphical experience of everyday com-
puting would also have become richer, and that our inter-
faces would exploit the advances in graphical processing in
conventional hardware platforms. However, as has been
repeatedly remarked, most user interfaces continue to rely
on a model of interaction that was designed thirty years ago.
While it has been continually adapted and refined, today s
graphical interface is largely the same as that of the first
graphical interactive workstations.

However, not all aspects of computation have been so
fixed. Conventional computing platforms certainly have, in
some ways, evolved and incorporated more recent ideas.
The incorporation of networking, the increasingly complex-
ity of operating systems, the emergence of component-ori-
ented approaches to application development, and other
factors in the development of software systems, have been
incorporated into modern operating systems and software
environments. Our software systems are considerably more
advanced than those on which the graphical interface was
originally developed.

This leads to an odd conundrum, then. The software sys-
tems that people use are vastly more extensive, intricate, and
complex than those that we formerly used, but the user
interface through which they are to be controlled and under-
stood are no richer or more developed than those of decades

ago. User interfaces have failed to keep track of the increas-
ing complexity of software systems.

Our work is directed towards those problems. In particu-
lar, we are interested in how to enhance the experience of
computation in everyday interaction. How can computa-
tion be made visible and manipulable to end users, so that
they can more directly perceive and understand the conse-
quences of their actions in an interactive system?

This is a complex and multi-faceted problem, but
approach that we have been exploring is to harness visual-
ization techniques and apply them to the problem of visual-
izing computation. Rather than visualizing data sets or
physical processes, our goal is to visualize the computation
going on inside conventional computing systems.

1.1. Long-Term and Short-Term Focus

We are following two strategies concurrently, one long-
term and one short-term.

The long-term strategy is concerned with providing visual
accounts of the action of software systems to the users of
those systems. Our intention is not to provide end users with
a complete or detailed understanding of the operation of
software systems; that would be impossible and inappropri-
ate. However, we want to be able to convey to people some
sense of the activity inside the system, hidden away behind
abstraction barriers, where the configuration of that activity
might have some consequence for what they do and how.
For example, being able to gain a sense of the balance
between network and disk activity involved in certain activ-
ities might provide a user with sufficient information to
appropriately organize their activity around the availability
of network bandwidth as they move between wired and
wireless settings. The primary goal is to make computation
directly available to end users, and the intuition — drawing

A Visual Virtual Machine for Java Programs:
Exploration and Early Experiences

Paul Dourish
Dept. of Information and Computer Science

University of California Irvine
Irvine, CA 92697-3425 USA

jpd@ics.uci.edu

Johan Byttner
Dept. Numerical Analysis and Computer Science

Royal Institute of Technology
Stockholm, Sweden

Abstract

Software visualization is typically understood to be of value primarily to the developers of software systems. We
believe that the same set of approaches offer promise for giving end users a more direct experience of the computation that
they use. However, to do so involves solving a number of technical problems. We present some early experiences with
VaVoom, a visual virtual machine for Java programs, which aims to address these problems. While VaVoom is also targeted
primarily towards software developers, we believe that this technical approach generalizes beyond the domain of program-
ming.

Index Terms

Software visualization, programming education.

on the experience of visualization in other domains — is
that appropriate visual techniques can allow users to derive
some degree of meaning from information that would oth-
erwise be too low-level to be of value to them.

As a short-term strategy and technical proof-of-concept,
we decided to focus on a particular set of users in the first
instance who have a direct need to understand the opera-
tion of software systems — software developers, and espe-
cially novice software developers. Our short-term strategy
is to develop software visualization tools to help develop-
ers understand the behavior and operation of the systems
they develop. Software developers are, of course, a highly
specialized group of users with a completely different set
of needs and requirements than end users. However, our
goal at this point is largely technical — to determine
whether our basic technical strategy is sufficient to achieve
real-time visualization of software system behavior.

To this end, we have been developing a visualization
environment called VaVoom, for the Visual Virtual
Machine. This paper describes some of our motivations,
the technical challenges, and some initial experiences and
reflections.

2. Our Approach

Again, our long-term goal is to be able to provide end
users with a visual experience of computation. Although
we are addressing a different audience in the short term,
our future vision sets a number of constraints that have
guided our short-term design.

First, we are concerned with providing

real-time

 infor-
mation about the behavior of software systems. Our goal is
to be able to provide users with an understanding of the
behavior of their systems as those behaviors unfold. In par-
ticular, in our initial focus on software system developers,
this means that our system should provide for concurrent
analysis. This is in contrast to the more conventional style
of post-mortem analysis supported by standard tracing
and profiling tools, or even more advanced tools such as
Jinsight [1]. This is especially important when using
VaVoom at the development stage, and with interactive
systems, since it allows the programmer to observe directly
the consequences of particular patterns of interaction with
the target program.

Second, we want to focus on the

dynamic behavior

 of
software systems. Many tools, especially those aimed at
novice programmers, aim to provide visual representations
of the static structure of programs. This is especially
important when teaching object-oriented programming, in
which the structural organization of a software system is an
even more important component than in procedural or
functional programming. Similarly, some visualization
tools aimed at large-scale software development, such as

those of Eick and his colleages [2], are built on top of the
static structure (or even the lexical structure) of the system
under investigation. Our goal has been to complement
existing representations of the static structure of a system
with a set of visualizations that can expose aspects of its
dynamic structure — how those static features operate in a
running program, the relationship between components,
the performance of the system while running, etc. These
dynamic properties often have a major impact on software
performance, but are invisible to software developers.

Third, our approach is based on the use of

multiple,
linked visualizations

. Rather than present a single visual
representation of all aspects of the software system s
behavior, we provide multiple specialized representations
which each focus on one particular aspects of what s going
on. Users can switch between these at will, or call up new
ones at any point. In addition, these visualizations are
linked so that different aspects of the system s behavior are
visualized concurrently. This is an important characteristic,
since it allows users to understand the correlations between
different aspects of the system s behavior.

Fourth, and perhaps most importantly for our long-term
vision, we set out to visualize

unmodified code

. Our goal is
to be able to derive visual representations of existing soft-
ware systems without access to the source code, and with-
out requiring programmers to annotate or transform their
code in any way. This is in contrast with traditional
approaches to algorithm animation (e.g. [5]).

3. The Visual Virtual Machine

In order to address these requirements, we have been
tackling our problem at a fairly low level. In particular, our
strategy has been to visualize the behavior of Java pro-
grams by instrumenting and visualizing the actions of the
virtual machine on which they execute [3]. We have
dubbed our system VaVoom, or the Visual Virtual
Machine.

The basic architecture of our system is shown in Figure
1. Java programs run on an instrumented virtual machine,

Instrumented
JVM

unmodified

Java program

multiplexor

visual tools

Fig. 1. The basic architecture separates visualization components from
the JVM execution engine.

which is configured to send reports of its dynamic behavior
to a second process (which may be located on a different
machine). This is the visual multiplexor. The multiplexor
routes information about the virtual machine to one or
more visualization tools. Each visualization tool provides a
visual display of some aspect of the system s behavior. A
single event reported by the virtual machine might be of
interest to multiple visualization tools. Tools can be started
and stopped as the program is running. The tools are not
simply passive displays, but are interactive, allowing the
user to drill down to explore specific features of the
behavior of their program.

3.1. Implementation Details

Our starting point was an open-source implementation of
the Java virtual machine, called Kaffe. Kaffe can operate
both as an interpreter and as a Just-In-Time compiler; our
work has focused on the interpreter. Since Java programs
are typically subject to dynamic compilation and other
advanced adaptive techniques, using an interpreter imposes
a significant performance penalty over conventional execu-
tion; in addition, of course, our modifications make pro-
grams slower still by inserting additional steps in the
execution of Java bytecodes. We will discuss performance
issues later.

Separating the visualization multiplexor and visualiza-
tion tools from the virtual machine itself allows us to mini-
mize the impact on the execution engine, to migrate
visualizations to other machines, and to isolate us from the
specifics of any given virtual machine. Although Kaffe is
written in C, the multiplexor and the visualization tools are
all written in Java. (In fact, it is impossible for the visual-
izer to visualize its own behavior, but this is done more for
novelty value than for utility.)

One current limitation is that, using a pure interpreter,
our implementation cannot handle programs that use the
native code extensions of Java (JNI). Unfortunately, recent
implementations of Java s Swing UI toolkit rely on some
native code (not in Swing itself, but elsewhere in the sys-
tem). We use a Swing library implementation from an older
version of Java (1.1.8), which allows most Swing programs
to run under VaVoom without modification. Some recent
features such as drag-and-drop, however, are not sup-
ported.

4. The Visual Tools

Since our user population, in the short term, is Java pro-
grammers, we have been able to design visualizations that
rely on standard models and metaphors for the execution of
high-level languages. This means that the visualizations
are somewhat more literal than would be appropriate for an
end-user population. Visualizations must always be

adapted to the needs of specific communities, so naturally
we do not anticipate using these same models for other
groups. However, we are interested in determining, first,
the feasibility of our approach, and second, the properties
of visual representations that afford different experiences
of computation.

Our current implementation offers five views of the exe-
cution of a program. Each view is outlined below.

4.1. Instruction Histogram

The simplest and most basic visualization, shown in fig-
ure 1, is a dynamic instruction histogram. It clusters basic
Java bytecodes into simple groups (e.g. load operations,
store operations, arithmetic operations, etc.) and displays a
dynamic histogram showing the number of each class of
instructions executed in the last fraction of a second. Like
an audio spectrum display, the pattern of the histogram
bars varies according to the nature of the instruction cycle
at any given moment.

This visualization was our first demonstration, and is of
little value for analyzing real programs. It does have one
interesting feature which is invariably remarked on; it
demonstrates that an idle program is not idle at all. When
a Java program is in an idle state, the histogram nonethe-
less shows a characteristic pulsing due to the behavior of
background threads.

4.2. Method Stack Depth

One of the primary visual displays is shown in figure 2
(left), and displays the method stack depth. Basically, this
displays a simple measure of the program s behavior at any
given point. Users can watch the stack depth grown and
shrink as calls are made and returned.

In addition to the basic display of method depth, a num-
ber of other features are incorporated:
1. Each method call entry is color-coded to indicate the

degree of locality. One color indicates recursive method
calls within a single object; a second indicates non-
recursive calls within a single object; a third indicates

Fig.2. Instruction histogram, showing moment-by-moment distribution
of excuted bytecodes.

calls within different objects of the same class; and a
fourth indicates calls between different classes.

2. A filtering mechanism allows for faster or slower dis-
play by regulating the frequency with which the data is
sampled. This allows programmers to trade off speed for
detail.

3. As threads are forked off, the display is split. This
allows both comparison between different threads and
visualization of thread scheduling.

4. The visual objects representing each call are active
objects. Selecting one has two effects. First, it highlights
that specific call and all other calls to the same method,
allowing programmers to see how calls are distributed
through the execution trace; second, it highlights the
same call in the method call display (see below) so that
the specific method can be identified.
Due to the richness of the display, and its direct relation-

ship to the underlying execution model, the method stack
depth graph is probably the central visualization in actual
use. The shape of the graph reveals various salient patterns
of behavior. For example, the illustration in figure 2 shows
three threads; in the lower of the threads, two recursive
calls (one tail recursive and one head recursive) can be
seen directly.

4.1. Method Calls

The method call display, shown in figure 2 (right), is a
simple display that exists largely to accompany the method
stack depth display, although it also has some independent
functionality. It displays a dynamic list of called classes
and maintains measures of the frequency of each method
call on those classes. Again, this gives a measure of the
program s dynamic behavior rather than its static structure.
The method call display and the method stack depth dis-
play are linked so that selection in one also highlights the
same information in the other, so that programmers can
move conveniently back and forth between them.

4.2. Class Clusters

The class cluster display, shown in figure 3, gives a very
different display of the program s behavior, and one less
literal than the others. The class cluster display shows an
object for each currently instantiated class, laid out in a 2D
space. The distribution is controlled by a spring-model
simulation in which the strength of the attraction between
any two classes is proportional to the frequency with which
objects of one class call methods on objects of the other.
The result is a display in which classes move together or
apart depending on the degree to which they inter-call at
any given moment. The effects of inter-calls fade with
time, and the slope of this curve can be controlled interac-
tively.

4.3. Instance Count

Finally, a fifth display indicates memory usage, and in
particular the current instance count of each class. Using a
collapsible tree display, it allows users to select either par-
ticular classes or entire packages. The instance count tool
is shown in figure 4.

Although this is a seemingly straightforward display, it
opens up a number of conceptual difficulties in a language
like Java. The first the behavior of the garbage collector,
which automatically reclaims unreachable objects. Our ini-
tial implementation displays both the current instance
count and a high water mark indicating earlier counts
which have been reduced by garbage collection. More
problematic is the notion of object encapsulation. Earlier
incarnations of this tool displayed both instance count and
memory footprint, so as to distinguish more easily
between a small number of large objects and a large num-
ber of small objects. However, this creates a problem in
accounting for the ownership of different portions of the
process memory. When an instance class A incorporates

Fig.3. Method stack depth (left) and method call list (right) display the
pattern of method calls. The lower thread in the graph window shows tail
and head recursion. Fig. 4. Class cluster uses a spring model to show the pattern of inter-call

relationships between instances of different classes.

an instance of class B, should the memory allocated to the
instance of B be accounted to class B or to class A? In dif-
ferent circumstances, either may make sense, depending on
the program under examination or even the class being
examined. Our intention is to examine this issue empiri-
cally.

4.4. Controlling the Visual Tools

The visual tools are controlled through a simple interface
(not shown here) attached to the multiplexor. This allows
users to open or close particular visual tools at will, includ-
ing multiple instances of the one tool (useful when differ-
ent instances have been configured to show different
aspects of a program s behavior). The emphasis is on
allowing the user to explore the visual representations, in
the course of the program s execution. In the case of inter-
active programs, this can be particularly valuable.

5. Experiences with VaVoom

We have not yet (at the time of writing) conducted a for-
mal evaluation of Vavoom. We have conducted a number
of informal feedback sessions with programmers of differ-
ent degrees of experience, in order to get some general
feedback. A number of interesting issues arose in the
course of these procedures, which influence our future
work.

One of the first issues that we encountered was one of
program size and complexity. Since our initial focus was
on novice programmers, our first contact was with students
enrolled in introductory programming classes. However, in
general, we found that their programs were often too small
to be effective in our visualizations. There are a number of
reasons for this. The first is that, since VaVoom visualizes
all Java behavior, the noise introduced by start-up proce-
dures, concurrently running threads, and other aspects of
the background Java virtual machine behavior can domi-
nate small programs. Another related reason is that our
visualizations concentrate on dynamic effects, whereas
novice programmers often struggle more with basic struc-
tural features of programs rather than more complex or

long-lived dynamic behaviors. Although we had some suc-
cesses using VaVoom with the novices (such as using the
method depth graph to illustrate the different recursion pat-
terns exhibited by different sorting strategies), we gener-
ally found that larger programs were more effectively
visualized under our system.

As a result, for our second round of informal evalua-
tions, we looked for more advanced programmers with
more complex systems. Examples of systems that we
explored include a simple interpreter for a Lisp-like lan-
guage, a parser for an Architectural Description Language,
a log file analysis system, and a collaborative spatial
hypertext environment.

There are benefits and costs to this approach. The benefit
of dealing with more complex programs is that they have
more complex behaviors, and so the advantages of being
able to provide developers with rich visual displays are
greater. On the other hand, for larger programs, the perfor-
mance penalty imposed by running the code on a modified
interpreter rather than a more conventional JIT or adaptive
virtual machine is that much greater. For some programs
that we encountered, the performance degradation was
simply too great; interactive programs may be especially
affected. However, other experiences did suggest that, for
some programs, programmers could derive new insights
into the behavior of their programs. So, for example,
dynamic and emergent behaviors (such as the recursive
search through environments in the Lisp interpreter, or
xxx... something else... xxx) become more immediately
visible, especially when they can be displayed as direct
responses to particular patterns of interaction with the visu-
alized program.

Our current set of visual tools reflect some of our early
experiences in looking at our own code and working with
colleagues on their own. For instance, the method call dis-
play is the most recent tool to have been added, since we
repeatedly found that people needed to be able to relate
elements in the method stack depth display to particular
aspects of their program, such as the particular methods
being called. The bidirectional link between the method
call display and the stack depth tools allows for an interac-
tive exploration of the relationship between the program s
static and dynamic structures.

6. Conclusion

As indicated at the outset, our work with VaVoom was
intended to offer a proof-of-concept for a longer-term strat-
egy. In the long term, we are interested in the use of
dynamic visualization as a mechanism to convey aspects of
system behavior to end users, especially in the case of dis-
tributed or component-oriented systems. An initial ques-
tion to be resolved, then, is whether it is possible to derive

Fig. 5. Instance count display showing the number of allocated instances
by package or by class.

information from running systems out of which dynamic
visualizations can be constructed. Focussing on the Java
virtual machine as our first target, we developed VaVoom
as a means to explore the extent to which meaningful
visual displays could be constructed from low-level execu-
tion information.

We regard these initial explorations as successful. While
the audience for these program visualizations is quite dif-
ferent from our anticipated long-term user community, we
are pleased nonetheless that the visual depictions of pro-
grams can be made meaningful. In addition, a number of
design features have emerged that we feel will be impor-
tant to further explorations.

One of these is the use of multiple, linked representa-
tions. The fact that we can provide multiple representations
which proceed in lock-step allows users to triangulate
behaviors, examining them from different perspectives,
refining the views and so narrowing down the range of
behaviors of interest.

Another is the direct coupling of visualization and exe-
cution, so that the programs response to patterns of input
action can be directly apprehended. This is especially
important for interactive systems, and given that our even-
tual audience is expected to be the users of interactive sys-
tems, this is a significant observation for our future work.

We have deliberately constructed VaVoom so as to sup-
port extension and revision. By decoupling the virtual
machine from the visual tools, and the visual tools from
each other, we have attempted to design an experimental
framework in which we can develop and test a range of
visual schemes. This allows us to explore a range of future
directions. On the practical side, we are interested in port-
ing the environment to different virtual machine imple-
mentations which might help us overcome some flaws in
the Kaffe virtual machine implementation. In the short-
term, we want first to conduct more formal evaluations and
then to explore the relationship between visual displays
and styles of software systems in more depth. In the longer
term, our goal is to explore the opportunities for extending

our approach to end users. We intend to do this through two
approaches. In the first, we will focus on domain-specific
areas of activity, such as the behavior of web search
engines, where both engine performance, database cover-
age, and query reformulation are largely hidden from end
users [4]. In the second, we intend to broader our JVM
approach to encompass issues such as network behavior
that may be more relevant to end user investigation. We
feel that the initial experiences with VaVoom support this
general approach. Above all, we believe that visualizing
the behavior of software systems is an approach which has
much broader applicability than has previously been
explored.

Acknowledgment

This work was carried out while Johan Byttner was a
visiting scientist at UC Irvine. We would like to thank the
students who gave time to assist us with informal evalua-
tions, and David Kay, Norm Jacobson, George Leuker,
Alex Thornton and Andre van der Hoek for advice and
assistance.

References

[1] W. De Pauw, D. Kimelman, and J. Vlissides, Visual-
izing Object-Oriented Software Execution, in J.
Stasko, J. Domingue, M. Brown, and B. Price (eds),

Software Visualization

, Cambridge, MA: MIT Press,
1997.

[2] S. Eick, J. Steffen, and E. Sumner Jr., Seesoft: A Tool
For Visualizing Line Oriented Software Statistics,

IEEE Trans. Software Engineering

, pp. 957-68, 1992.
[3] T. Lindholm and F. Yellin,

The Java Virtual Machine
Specification (2nd Edition)

. Addison-Wesley, 1999.
[4] J. Muramatsu and W. Pratt, Transparent Queries:

Investigating Users Mental Models of Search
Engines, Proc. ACM Conf. Information Retreival
SIGIR 01, New York: ACM.

[5] J. Stasko, TANGO: A Framework and System for
Algorithm Animation,

IEEE Computer

, 23(9), 27-39,
Sept. 1990.

