
From Technical Dependencies to
Social Dependencies

Cleidson de Souza1,2 Paul Dourish1 David Redmiles1 Stephen Quirk1 Erik Trainer1
1Donald Bren School of Information and Computer Science

University of California, Irvine

Irvine, CA, USA – 92667

2Departamento de Informática

Universidade Federal do Pará

Belém, PA, Brazil – 66075

Abstract
This paper describes Ariadne, a Java tool for the Eclipse
IDE, that links technical and social dependencies. Ariadne
is based on the observation that technical dependencies
among software components create social dependencies
among the software developers implementing these
components. We describe our approach for creating
technical, socio-technical and social dependencies from a
software project. We describe possible uses of our
approach and tool as well as discuss briefly related work.

1. Introduction
One of the most important and influential principles in
software engineering is the idea of information hiding
proposed by Parnas [13]. According to this principle,
software modules should be both “open (for extension and
adaptation) and closed (to avoid modifications that affect
clients)” [7]. Information hiding aims to decrease the
dependency (or coupling) between two modules so that
changes to one to not impact the other. Parnas had also
recognized that information hiding also brings managerial
advantages: by dividing the work in independent modules,
it is also possible to give these modules to different
developers that can work on them independently. However,
a consequence of decomposing the system into pieces, is
the eventual need to integrate these pieces in order to create
the whole software. This work of building the whole
software from its parts requires a lot of coordination effort
[5] [3] [4]. Reconstructing the system from its pieces
happens often for testing and integration purposes during
both development and maintenance phases. Furthermore,
despite the advantages of the modular decomposition,
software engineering research has already found out that
one module can not be implemented completely
independently of its users; somehow it needs to know some
of the requirements that its clients have [6].

These two aspects - the frequent need to recompose the
software and the dependency among components - suggest
that software developers working on the implementation of
these modules still need to interact regularly to make sure
that their work is aligned, so that the integration of these
modules flows smoothly when necessary. In other words,
because software modules interact, this creates a similar
need of interaction among the software developers
implementing them. In other words, technical dependencies
between modules create social dependencies between the

software developers implementing these modules [3, 5].
Based on this observation, we argue that the source-code
itself can be an important resource to identify social
relationships that need to be built among software
developers to facilitate the integration process, because it
contains information about the technical dependencies
among pieces of software. This paper then describes our
approach, and associated tool – Ariadne, to uncover this
relationship among technical and social dependencies.
Ariadne is currently being developed at UC, Irvine and
supports the analysis of Java programs to identify the
technical dependencies. Authorship information of the
software components (social dependencies) is integrated
with the technical dependencies by collecting information
from a configuration management repository associated
with the Java program,

2. From Technical to Social
Dependencies

Our approach combines source-code analysis and collection
of information about the software developers in order to
appropriately describe the relationship between the
technical and social dependencies. In this section, we will
detail the technical aspects of the source-code analysis as
well as the collection of (social) information about software
developers.

Technical Dependencies
Our approach is strongly-based on the concept of
dependencies. Dependencies among pieces of code exist
because components, inevitably, make use of services
provided by other components. For example, let’s say that a
component A uses the services of another component B, as
a result, A depends on B. That is, in order to component A
to be able to perform its functions, it relies on services
provided by another component B. A data structure
containing all the dependency relationships of a program is
called a call-graph, because it contains information about
which components call which other components. Figure 1
below presents an example of a call graph of a small Java
program. A directed edge from a method A to another
method B indicates a dependency from A to B. Because
Java is an object-oriented language, the call-graph
describes the relationship between methods being invoked
by other methods in the context of their respective classes
and packages.

Figure 1: An example of a call graph

By describing dependencies in the source-code, this graph
potentially describes dependencies among software
developers responsible for those software components.
Using the previous example, where a component A depends
on another component B, assuming that A is being
developed by developer a and B is being implemented by
developer b, since A depends on B, we similarly find that
developer a depends on developer b. However, to be able to
describe these social dependencies, it is necessary to
populate the call-graph with social information, i.e.,
information about which software developer wrote which
part of the code. This is explained in the next section.

Socio-Technical Dependencies
Authorship information about each node of the call-graph
can be extracted from a configuration management (CM)
repository, because such a tool contains revision
information about each and every change made to the
software system being analyzed [2]. Typical revision
information for each change includes: the changes applied
to the software, date and time of these changes, author of
the changes, the files where the changes were applied,
among others. Combining information from the call-graph
with authorship information present in the CM repository
can then create a “social call-graph”, which describes
which software developers depend on which other software
developers for a given piece of code. Figure 2 below
presents an example of a “social call-graph” from a small

software development project being conducted at UCI. A
directed edge from package A to B indicates a dependency
from A to B. Directed edges between authors and packages
indicated authorship information. Every node of the call-
graph might have different options for the associated
authorship information: for example, in a company, one
might decide to use information about the last person who
committed changes in the file because the last committer is
sometimes considered an expert on it [10], in another
company, ownership architectures could be used since it
documents the relationship between developers and source
code [1]. The “social call-graph” is based on the actor-
network approach proposed by Latour [8], where networks
of artifacts and human (both called “actants”) are
represented together.

The “social-call graph” diagram presented in Figure 2 was
created using our tool, Ariadne. This tool is described in
more details in the following section.

Social Dependencies
Because of the information that they have available, “social
call-graphs” could easily generate social network graphs
describing the dependency relationship among software
developers without depicting dependencies among software
components. Figure 3 below presents an example of such
situation. This example is based on our own fieldwork [3]
through interviews and non-participant observation. Each
point represents a software developer member of a team.
Members of the client team are represented by cN, where N
is an integer from 1 to 8. Similarly, members of the server
team are represented by sN, and finally, members of test
team are presented by tN. The other letters (n, d and a)
indicate other teams in the organization. Arrows indicate
dependency relationships from the source to the target of
the arrow, for example, developer c2 depends on developer
s1.
Currently we are investigating the usage of social networks
algorithms to assess potential coordination problems in the
software development process. For example, one could
generate technical recommendations about how to
reorganize the source code, or provide managerial
recommendations about how to change the division of labor
to minimize the coordination effort of some developers that
have to deal with too many dependencies. However in
order to be able to do that, we need a tool that is able to
construct and analyze “social call-graphs” and social
network graphs from software development projects. In the
next section, we describe Ariadne, a tool that addresses this
issue.

Figure 2: An example of a “social call graph”

Figure 3: An example of a social network graph

describing dependency relationships among
software developers

3. Ariadne
Ariadne is a Java-based tool that creates technical,
social, and social-technical graphs, that is, call-graphs,
social network graphs and “social-call graphs”.
Ariadne is currently implemented as a plugin to the
Eclipse IDE (Integrated Development Environment).
Eclipse is an open-source project that aims to develop
a powerful IDE with an extensible architecture based
on plugins. Therefore, one can create plugins to extend
the IDE and still have access to all resources provided
by this IDE. And that is exactly what Ariadne does. It
analyses Java projects being used in Eclipse and
automatically connects to the configuration
management repository associated with these projects
to get authorship information about the project.
Currently, we are supporting only CVS repositories. In
order to construct call-graphs, Ariadne uses another

open-source project called DependencyFinder, which
creates the call-graph for any compiled Java project.
This call graph is then populated with authorship
information. Our current implementation can present
social-call graphs at three different levels of
abstraction: methods, files, and packages. Basically,
information from the methods is aggregated to
generate information about the files, and similarly
information about the files is aggregated to generate
information about the packages. Furthermore, the
social network diagrams are being generated using
JUNG and Ariadne is also able to export the
information that it collects as Excel files.

We envision two types of users for our tool:
• Software developers who would use it to identify

colleagues with whom they need to interact, that
need to be informed about changes that are going
to impact them, or with similar interests, as in the
situation described in [3] where developers who
shared a dependency where performing duplicate
work because they were not aware of each other.
In this case, our approach is similar to the one
adopted in the ExpertiseBrowser system [12]
described in the next section.

• Project managers or researchers interested
understanding the interplay between the changes
in the architecture of the software and it social
impact. This approach is similar to the one
proposed by (Ducheneaut, Mahendran, and Sack,
2002). For example, by analyzing the density of a
social network or by identifying bridges in this
network we can understand the key role played
by some software developers or better understand
their coordination and communication needs.

4. Related Work
Despite this relationship between the technical and the
associated social dependencies, traditionally,
interdependence relationships have been looked at
from two perspectives, either as interdependence
between people (work tasks (for example Mintzberg
[11]: workflow, process, scale, and social
interdependencies)) or as interdependence between
artifacts (for example, program dependencies [14],
building mechanisms in configuration management
tools [2], traceability tools). In separating people and
artifacts, these perspectives provide only relatively
narrow and clear-cut views on what could be assumed
to be a wide variety of forms and appearances.
Furthermore, as the examples below recognize,
software developers in their daily work recognize the
integration of those approaches and make use of them
to get their work done. Additional examples can be
found in the literature. For instance, McDonald and
Ackerman [10] describe a field study where software
developers use information from their configuration
management tool to identify experts in the source code
that they are changing. Furthermore, research
prototypes have been recently created to explore this
relationship: Expertise Recommender [9] and
Expertise Browser [12] aim to facilitate the process of
identifying, and recommending experts in parts of the
software being engineered.

5. Conclusions and Future
Work

This paper described Ariadne a software tool that
addresses the link between technical and social
dependencies. The ties between these two aspects are
based on the observation that software developers who
depend on each other often need to coordinate their
work. As of right now, our tool analyzes only one
project in Eclipse each time. Currently, we are
working on extending our tool so that if the project
being analyzed is dependent on another project also in
Eclipse, Ariadne will also analyze this other project,
therefore creating a larger graph of dependencies
among different projects and developers. By doing
that, we expect to identify the source code and the
specific developers who act as “bridges” between
different projects.

6. Acknowledgements
This research was supported by the U.S. National
Science Foundation under grant numbers 0133749,
0205724 and 0326105, the Intel Corporation, and by
the Brazilian Government under CAPES grant BEX
1312/99-5.

7. References
[1] Bowman, I. T. and Holt, R., "Reconstructing

Ownership Architectures To Help Understand
Software Systems," International Workshop on

Program Comprehension, pp. 28-37,
Pittsburgh, PA, USA, 1999.

[2] Conradi, R. and Westfechtel, B., "Version
Models for Software Configuration
Management," ACM Computing Surveys, vol.
30, pp. 232-282, 1998.

[3] de Souza, C. R. B., Redmiles, D., et al.,
"Sometimes You Need to See Through Walls -
A Field Study of Application Programming
Interfaces (to appear)," Conference on
Computer-Supported Cooperative Work
(CSCW '04), Chicago, IL, USA, 2004.

[4] Grinter, R., Herbsleb, J., et al., "The
Geography of Coordination: Dealing with
Distance in R&D Work," ACM Conference on
Supporting Group Work (GROUP '99),
Phoenix, AZ, 1999.

[5] Grinter, R. E., "Recomposition: Putting It All
Back Together Again," Conference on
Computer Supported Cooperative Work, pp.
393-402, Seattle, WA, USA, 1998.

[6] Kiczales, G., "Beyond the Black Box: Open
Implementation," IEEE Software, vol. 13, pp.
8-11, 1996.

[7] Larman, G., "Protected Variation: The
Importance of Being Closed," IEEE Software,
vol. 18, pp. 89-91, 2001.

[8] Latour, B., "Where are the missing masses?
The sociology of a few mundane artifacts.," in
Shaping Technology / Building Society:
Studies in Sociotechnical Change, W. Bijker
and J. Law, Eds. Cambridge, MA: MIT Press,
1994, pp. 225-258.

[9] McDonald, D. W. and Ackerman, M. S.,
"Expertise Recommender: A Flexible
Recommendation System and Architecture,"
Conference on Computer Supported
Cooperative WORK (CSCW '00), pp. 231-240,
Philadelphia, PA, 2000.

[10] McDonald, D. W. and Ackerman, M. S., "Just
Talk to Me: A Field Study of Expertise
Location," Conference on Computer Supported
Cooperative Work (CSCW '98), pp. 315-324,
Seattle, Washington, 1998.

[11] Mintzberg, H., The Structuring of
Organizations: A synthesis of the research.
Englewood Cliffs, NJ: Prentice-Hall, 1979.

[12] Mockus, A. and Herbsleb, J. D., "Expertise
Browser: A Quantitative Approach to
Identifying Expertise," International
Conference on Software Engineering, pp. 503-
512, Orlando, FL, USA, 2002.

[13] Parnas, D. L., "On the Criteria to be Used in
Decomposing Systems into Modules,"
Communications of the ACM, vol. 15, pp.
1053-1058, 1972.

[14] Podgurski, A. and Clarke, L. A., "The
Implications of Program Dependencies for
Software Testing, Debugging, and
Maintenance," Symposium on Software
Testing, Analysis, and Verification, pp. 168-
178, 1989.

