Cleidson de Souza'?
'Donald Bren School of Information and Computer Science

From Technical Dependencies to
Social Dependencies

Paul Dourish?

University of California, Irvine
Irvine, CA, USA — 92667

Abstract

This paper describes Ariadne, a Java tool for thiép&e
IDE, that links technical and social dependenchetadne

is based on the observation that technical depeneken
among software components create social dependencie
among the software developers implementing these
components. We describe our approach for creating
technical, socio-technical and social dependentas a
software project. We describe possible uses of our
approach and tool as well as discuss briefly rdlaterk.

1. Introduction

One of the most important and influential princgla
software engineering is the idea of information itndd
proposed by Parnas [13]. According to this prireipl
software modules should be both “open (for extensind
adaptation) and closed (to avoid modifications thffect
clients)” [7]. Information hiding aims to decreaske
dependency (or coupling) between two modules st tha
changes to one to not impact the other. Parnasatsu
recognized that information hiding also brings nggerél
advantages: by dividing the work in independent uhes

it is also possible to give these modules to diffier
developers that can work on them independently. édewy

a consequence of decomposing the system into pieces
the eventual need to integrate these pieces i tvdweate
the whole software. This work of building the whole
software from its parts requires a lot of coordiorateffort

[5] [3] [4]- Reconstructing the system from its s
happens often for testing and integration purpakefng
both development and maintenance phases. Furthermor
despite the advantages of the modular decomposition
software engineering research has already foundthait
one module can not be implemented completely
independently of its users; somehow it needs twksame

of the requirements that its clients have [6].

These two aspects - the frequent need to recomihese
software and the dependency among components estgg
that software developers working on the impleméortabf
these modules still need to interact regularly Ekensure
that their work is aligned, so that the integratafnthese
modules flows smoothly when necessary. In otherdgor
because software modules interact, this createisnigas
need of interaction among the software developers
implementing them. In other words, technical degerits
between modules create social dependencies bettlieen

David Redmiles?

Stephen Quirk! Erik Trainer*
’Departamento de Informatica

Universidade Federal do Para
Belém, PA, Brazil — 66075

software developers implementing these modules5]3,
Based on this observation, we argue that the sexode
itself can be an important resource to identify ialoc
relationships that need to be built among software
developers to facilitate the integration process;aise it
contains information about the technical dependEnci
among pieces of software. This paper then desciies
approach, and associated tool — Ariadne, to uncthisr
relationship among technical and social dependsncie
Ariadne is currently being developed at UC, Irviaed
supports the analysis of Java programs to iderttify
technical dependencies. Authorship information bé t
software components (social dependencies) is iatedr
with the technical dependencies by collecting imfation
from a configuration management repository assediat
with the Java program,

2. From Technical to Social
Dependencies

Our approach combines source-code analysis anetctioth

of information about the software developers ineortb
appropriately describe the relationship between the
technical and social dependencies. In this sectienwill
detail the technical aspects of the source-codéysinaas
well as the collection of (social) information absoftware
developers.

Technical Dependencies

Our approach is strongly-based on the concept of
dependencies. Dependencies among pieces of code exi
because components, inevitably, make use of service
provided by other components. For example, letstsat a
componentA uses the services of another comporierdas

a result,A depends omB. That is, in order to componeAt

to be able to perform its functions, it relies cervices
provided by another componer®. A data structure
containing all the dependency relationships ofa@am is
called acall-graph, because it contains information about
which componentgall which other components. Figure 1
below presents an example of a call graph of alsiaah
program. A directed edge from a method A to another
method B indicates a dependency from A to B. Besaus
Java is an object-oriented language, the call-graph
describes the relationship between methods bewakéad

by other methods in the context of their respectilesses
and packages.

5] pemoFrame

i

IMyPackage

MainCode

(o

0
OtherClass

=

i} 0

IMylmyportedPackage OtherPackage VetAnother

Clasgs1
Print —
Quit 0 0 0 n

0] 0

<.

e

Method2

PrintStrearn|
p—
santa |
Figure 1: An example of a call graph

By describing dependencies in the source-code,giiziph
potentially describes dependencies among software
developers responsible for those software compsnent
Using the previous example, where a comporet¢pends
on another componenB, assuming thatA is being
developed bydeveloper a andB is being implemented by
developer b, sinceA depends omB, we similarly find that
developer a depends odeveloper b. However, to be able to
describe these social dependencies, it is necedsary
populate the call-graph with social informationg.,.
information about which software developer wroteichih
part of the code. This is explained in the nextieac

Socio-Technical Dependencies

Authorship information about each node of the gadlph
can be extracted from a configuration managemei)(C
repository, because such a tool contains revision
information about each and every change made to the
software system being analyzed [2]. Typical revisio
information for each change includes: the changgsied

to the software, date and time of these changahpaof

the changes, the files where the changes were egppli
among others. Combining information from the ca#jgh
with authorship information present in the CM rdapmoy

can then create a “social call-graph”, which démsi
which software developers depend on which othensoé
developers for a given piece of code. Figure 2 \belo
presents an example of a “social call-graph” frorsnzall

software development project being conducted at. UCl
directed edge from package A to B indicates a degecy
from A to B. Directed edges between authors an¢tquges
indicated authorship information. Every node of tiadl-
graph might have different options for the assedat
authorship information: for example, in a compaopge
might decide to use information about the last @emsho
committed changes in the file because the last dtiemis
sometimes considered an expert on it [10], in aoth
company, ownership architectures could be usedesinc
documents the relationship between developers ancte
code [1]. The “social call-graph” is based on thaogr
network approach proposed by Latour [8], where péete/
of artifacts and human (both called “actants”) are
represented together.

The “social-call graph” diagram presented in FigBre/as
created using our tool, Ariadne. This tool is diset in
more details in the following section.

Social Dependencies

Because of the information that they have availdisiecial
call-graphs” could easily generate social networ&phs
describing the dependency relationship among soétwa
developersvithout depicting dependencies among software
components. Figure 3 below presents an exampleiaf s
situation. This example is based on our own fieldw@]
through interviews and non-participant observatiBach
point represents a software developer member @famt
Members of the client team are representedNbywhere N

is an integer from 1 to 8. Similarly, members c& gerver
team are represented B, and finally, members of test
team are presented li. The other lettersn(d and a)
indicate other teams in the organization. Arrowdidate
dependency relationships from the source to thgetaof

the arrow, for example, developet depends on developer
sl.

Currently we are investigating the usage of sauévorks
algorithms to assess potential coordination problénthe
software development process. For example, onedcoul
generate technical recommendations about how to
reorganize the source code, or provide managerial
recommendations about how to change the divisidatufr

to minimize the coordination effort of some devaopthat
have to deal with too many dependencies. However in
order to be able to do that, we need a tool thabls to
construct and analyze “social call-graphs” and aoci
network graphs from software development projdctshe
next section, we describe Ariadne, a tool that @skis this
issue.

C1 (souirky

Eedy.ucl.ics.ariadne.view.bd

O (souirky

| ci ics ariadre. model authorship.cvsmodel

NETu uciics ariadne model

O (squirg

poiu.uciics ariadne api

(cdlesouza)

BUTICLICS ariadne view ireemaps

E {cdesauza)

O (squirky

T (squirk

hedu uciics ariadne|model depfind

(squirky

eduuciics.ariadneview.reports
[(cdesouza)

[Mdu.uciics.ariadne

Cledu.uciics ariadne. preferences

O tsquing

[Fduuciics.ariadne.ui.popupactions

T (squirk)

[leduuciics ariadne view jung

(etrainer)
O (souirky

[coesouza)

[Jedu.uciics.ariadne.view
[cetrainen

O (squirky

Figure 2: An example of a “social call graph”

s7. s> pYd1

s4

Figure 3: An example of a social network graph
describing dependency relationships among
software developers

3. Ariadne

Ariadne is a Java-based tool that creates technical
social, and social-technical graphs, that is, gedhs,
social network graphs and “social-call graphs”.
Ariadne is currently implemented as a plugin to the
Eclipse IDE (Integrated Development Environment).
Eclipse is an open-source project that aims to ldpve

a powerful IDE with an extensible architecture lohse
on plugins. Therefore, one can create plugins terek
the IDE and still have access to all resourcesigeal

by this IDE. And that is exactly what Ariadne doks.
analyses Java projects being used in Eclipse and
automatically connects to the configuration
management repository associated with these psoject
to get authorship information about the project.
Currently, we are supporting only CVS repositorles.
order to construct call-graphs, Ariadne uses amothe

open-source project called DependencyFinder, which
creates the call-graph for any compiled Java ptojec

This call graph is then populated with authorship
information. Our current implementation can present
social-call graphs at three different levels of

abstraction: methods, files, and packages. Bagicall

information from the methods is aggregated to
generate information about the files, and similarly
information about the files is aggregated to geteera

information about the packages. Furthermore, the
social network diagrams are being generated using
JUNG and Ariadne is also able to export the
information that it collects as Excel files.

We envision two types of users for our tool:

« Software developers who would use it to identify
colleagues with whom they need to interact, that
need to be informed about changes that are going
to impact them, or with similar interests, as ia th
situation described in [3] where developers who
shared a dependency where performing duplicate
work because they were not aware of each other.
In this case, our approach is similar to the one
adopted in the ExpertiseBrowser system [12]
described in the next section.

« Project managers or researchers interested
understanding the interplay between the changes
in the architecture of the software and it social
impact. This approach is similar to the one
proposed by (Ducheneaut, Mahendran, and Sack,
2002). For example, by analyzing the density of a
social network or by identifying bridges in this
network we can understand the key role played
by some software developers or better understand
their coordination and communication needs.

4. Related Work

Despite this relationship between the technicaltaed
associated social dependencies, traditionally,
interdependence relationships have been looked at
from two perspectives, either as interdependence
between people (work tasks (for example Mintzberg
[11]: workflow, process, scale, and social
interdependencies)) or as interdependence between
artifacts (for example, program dependencies [14],
building mechanisms in configuration management
tools [2], traceability tools). In separating peogind
artifacts, these perspectives provide only relétive
narrow and clear-cut views on what could be assumed
to be a wide variety of forms and appearances.
Furthermore, as the examples below recognize,
software developers in their daily work recognike t
integration of those approaches and make use of the
to get their work done. Additional examples can be
found in the literature. For instance, McDonald and
Ackerman [10] describe a field study where software
developers use information from their configuration
management tool to identify experts in the sounmec
that they are changing. Furthermore, research
prototypes have been recently created to expldse th
relationship: Expertise Recommender [9] and
Expertise Browser [12] aim to facilitate the prace$
identifying, and recommending experts in partshef t
software being engineered.

5. Conclusions and Future
Work

This paper described Ariadne a software tool that
addresses the link between technical and social
dependencies. The ties between these two aspects ar
based on the observation that software developeos w
depend on each other often need to coordinate their
work. As of right now, our tool analyzes only one
project in Eclipse each time. Currently, we are
working on extending our tool so that if the prajec
being analyzed is dependent on another projectimlso
Eclipse, Ariadne will also analyze this other pobje
therefore creating a larger graph of dependencies
among different projects and developers. By doing
that, we expect to identify the source code and the
specific developers who act as “bridges” between
different projects.

6. Acknowledgements

This research was supported by the U.S. National
Science Foundation under grant numbers 0133749,
0205724 and 0326105, the Intel Corporation, and by
the Brazilian Government under CAPES grant BEX
1312/99-5.

7. References

[1] Bowman, I. T. and Holt, R., "Reconstructing
Ownership Architectures To Help Understand
Software Systems," International Workshop on

(2]

(3]

[4]

5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

Program Comprehension, pp. 28-37,
Pittsburgh, PA, USA, 1999.

Conradi, R. and Westfechtel, B., "Version
Models for Software Configuration
Management,ACM Computing Surveys, vol.
30, pp. 232-282, 1998.

de Souza, C. R. B., Redmiles, D., et al.,
"Sometimes You Need to See Through Walls -
A Field Study of Application Programming
Interfaces (to appear)," Conference on
Computer-Supported Cooperative Work
(CSCW '04), Chicago, IL, USA, 2004.
Grinter, R., Herbsleb, J., et al., "The
Geography of Coordination: Dealing with
Distance in R&D Work," ACM Conference on
Supporting Group Work (GROUP '99),
Phoenix, AZ, 1999.

Grinter, R. E., "Recomposition: Putting It All
Back Together Again," Conference on
Computer Supported Cooperative Work, pp.
393-402, Seattle, WA, USA, 1998.

Kiczales, G., "Beyond the Black Box: Open
Implementation,'|EEE Software, vol. 13, pp.
8-11, 1996.

Larman, G., "Protected Variation: The
Importance of Being Closed,EEE Software,
vol. 18, pp. 89-91, 2001.

Latour, B., "Where are the missing masses?
The sociology of a few mundane artifacts.," in
Shaping Technology / Building Society:

Sudiesin Sociotechnical Change, W. Bijker
and J. Law, Eds. Cambridge, MA: MIT Press,
1994, pp. 225-258.

McDonald, D. W. and Ackerman, M. S.,
"Expertise Recommender: A Flexible
Recommendation System and Architecture,"
Conference on Computer Supported
Cooperative WORK (CSCW '00), pp. 231-240,
Philadelphia, PA, 2000.

McDonald, D. W. and Ackerman, M. S., "Just
Talk to Me: A Field Study of Expertise
Location," Conference on Computer Supported
Cooperative Work (CSCW '98), pp. 315-324,
Seattle, Washington, 1998.

Mintzberg, H.,The Structuring of

Organizations: A synthesis of the research.
Englewood Cliffs, NJ: Prentice-Hall, 1979.
Mockus, A. and Herbsleb, J. D., "Expertise
Browser: A Quantitative Approach to
Identifying Expertise," International
Conference on Software Engineering, pp. 503-
512, Orlando, FL, USA, 2002.

Parnas, D. L., "On the Criteria to be Used in
Decomposing Systems into Modules,"
Communications of the ACM, vol. 15, pp.
1053-1058, 1972.

Podgurski, A. and Clarke, L. A., "The
Implications of Program Dependencies for
Software Testing, Debugging, and
Maintenance," Symposium on Software
Testing, Analysis, and Verification, pp. 168-
178, 1989.

