

Continuous Coordination:

A New Paradigm for Collaborative Software Engineering Tools

André van der Hoek, David Redmiles, Paul Dourish
Anita Sarma, Roberto Silva Filho, Cleidson de Souza

Department of Informatics
School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425 USA

{andre, redmiles, jpd, asarma, rsilvafi, cdesouza}@ics.uci.edu

Abstract

Collaborative software engineering tools that have
been developed and used to date exhibit a fundamental
paradox: they are meant to support the collaborative ac-
tivity of software development, but cause individuals and
groups to work independently from one another. The un-
derlying issue is that existing tools discretize time and
tasks in concrete but isolated process steps. This ap-
proach is fundamentally flawed in assuming that human
activity can be codified and that periodic resynchroniza-
tion of tasks is an easy step. We propose a new approach
to supporting collaborative work called continuous coor-
dination. The underlying principle is that humans must
not and cannot have their method of collaboration dic-
tated, but should be supported flexibly with both the tools
and the information to coordinate themselves and col-
laborate in their activities as they see fit. In this paper, we
define the concept of continuous collaboration, introduce
our work to date in building some example tools that sup-
port the continuous coordination paradigm, and set out a
further research agenda to be pursued.

1. Introduction

Collaboration is at the heart of software development.
Most software is developed by a group of people rather
than an individual. This means that software engineering
environments and processes must support the coordina-
tion of the activities that individuals carry out within the
overall objectives of the group at large. Within the soft-
ware engineering community, the response has been a
flurry of research and development that has resulted in the
availability of a host of formal software process lan-
guages and environments. These languages and environ-
ments aim to help users in choosing their tasks, obtaining
prerequisite input from a set of relevant people and tools,
performing their tasks, and sending their output to another

(sometimes overlapping) set of relevant people and tools.
While this has certainly helped in advancing the ability of
individuals to collaborate in groups, these approaches are
built on a fundamental paradox: to collaborate, individu-
als work completely independently from each other and
are isolated by the environment that supports their day-to-
day activities.

Within the computer-supported cooperative work
community, the response has been virtually the opposite
rather than constraining and guiding a user in their tasks,
the focus is on informally raising awareness by informing
users of ongoing, parallel activities so they can interpret
this information and self-coordinate amongst each other.
While this has lead to novel tools and approaches, there is
an issue of scalability and cognitive overload: users can
only absorb and meaningfully interpret limited amounts
of typically contextualized information.

In this paper, we introduce and explore an alternative
approach: continuous coordination. Continuous coordina-
tion blends the best aspects of the more formal, process-
oriented approach with those of the more informal,
awareness-based approach. In doing so, continuous coor-
dination blends processes to guide users in their day-to-
day high-level activities with extensive information shar-
ing and presentation to inform users of relevant, parallel
ongoing activities. Through this blending, users become
aware of the context in which they perform their work,
can interpret their context, and take action accordingly.
This allows users to self-coordinate within the overall
process to avoid situations in which their activities
threaten to obstruct or interfere with activities of others,
or simply to better organize and order respective tasks.

2. Motivating Example

To better understand why, when, and how software

developers coordinate their work, we conducted an eight-
week field study of existing software development prac-

tices at NASA/Ames Research Center [1,2]. In particular,
we studied a software team developing a suite of tools to
help air traffic controllers manage the increasingly com-
plex air traffic flows at large airports. The team is com-
posed of 25 co-located developers, who design, test,
document, and maintain the tools. Like most professional
software teams, they make use of an advanced configura-
tion management system, which they use to periodically
check out and check in chunks of code, as well as to co-
ordinate their parallel work. However, the configuration
management system tells only part of the story. Our field
study produced two important observations:

• While having at their disposal a state-of-the-art con-
figuration management system to coordinate their ac-
tivities, developers mostly relied on an informal
mechanism, e-mail, to inform each other about those
activities. Before a developer checks in changes, for
instance, it is customary to send an e-mail notifying
the whole group of not just the imminent action, but
also of the effect it may have on the work of every-
body else.

• While developers stated in our interviews that the
combination of configuration management with e-
mail works fine for them, in reality we observed that
this is not the case. For example, when they get
closer to completing their changes, often they rush to
be the first to check in to avoid having to be the per-
son who has to merge and/or retest. As another ex-
ample, they often do not wait until they have finished
their work, but instead try to minimize the possibility
of conflicting changes by checking in partially com-
pleted work.

These examples highlight a mismatch between the col-
laboration model supported by the configuration man-
agement system and the actual collaboration needs of the
developers. While the technology embodies a model of
collaborative work designed to ensure team progress with
a minimum of coordination problems, in practice we see
that these formal mechanisms are accompanied by a set of
less formal communicative practices which help to set the
formal work in context. In this particular case, the isola-
tion amongst the developers introduced by the CM system
is offset via primitive but somewhat disciplined use of e-
mail.

Our study is not unique in making these observations.
Time and again it has been demonstrated that software
engineering tools fail in their attempts to codify human
activity (e.g., [3, 4, 5]). They limit the dimensions of hu-
man activity and creativity, and therefore are unsuccessful
in providing adequate support for effective and flexible
collaboration. The resulting problems are dramatic: much
time and effort is wasted in resolving conflicting changes;
salient faults are introduced as a result of parallel but un-
detected incompatible changes; and the team as a whole

has little intellectual and conceptual integrity. Overall, the
software development process remains ineffective and
instills a false sense of security in its ability to manage the
collaborative effort.

3. Formal Coordination

Many software engineering tools that support coordi-
nation and collaboration rely on a formal, process-based
approach [6]. A process model, either implicitly or explic-
itly defined by the tool, splits work into multiple, inde-
pendent tasks that are periodically resynchronized. This
approach, illustrated in row 1 of Table 1, can be charac-
terized as inherently group-centric: it makes the group as
a whole the important entity by providing a scalable, pre-
dictable, and dependable solution that promotes tight-
controlled coordination and insulates different activities
from each other. The canonical example is a configura-
tion management system: by checking out artifacts a de-
veloper is insulated from other activities and by checking
in any modified artifacts the developer resynchronizes
their work with the work of the group.

The formal, process-based approach, however, suffers
from two significant problems that make it a less-than-
effective solution when it comes to coordination and col-
laboration:

1. Formal processes can describe only part of the activ-
ity of software development (or any collaborative
task). No matter how formal and well-defined a proc-
ess may seem, there is always a set of informal prac-
tices by which individuals monitor and maintain the
process, keep it on track, recognize opportunities for
action and the necessity for intervention or deviation.
In other words, no process description will or can
ever be complete (e.g., [7]).

2. Even when a process description attains a relatively
high degree of detail and accuracy, the periodic re-
synchronization of activities remains a difficult and
error-prone task. In fact, it has been shown that when
more parties are involved, more conflicts arise and
more faults are introduced in the software at hand
(e.g., [8]).

There are solid theoretical foundations to back up
these observations (e.g., [9, 10]). What the theory indi-
cates is that the empirical phenomena observed are not
simply signs of poorly-designed processes or badly-
specified tools. Rather, these problems are inherent in any
tool that relies upon a formal encoding of collaborative
work. Any formal process is inevitably surrounded by a
set of informal practices by which the formal conditions
are negotiated and evaluated.

4. Informal Coordination

The notion of awareness, as an informal, passively-

gathered understanding of the ongoing activities of oth-
ers, has become a central element of Computer-Supported
Cooperative Work (CSCW) research. Through a range of
workplace studies, CSCW researchers have begun to rec-
ognize the central role played by awareness in collabora-
tive systems [11, 12]. Awareness is an informal under-
standing of the activity of others that provides a context
for monitoring and assessing group and individual activ-
ity (such as the mutual awareness of activities that arises
in shared physical environments, where we can see and
hear each other and “keep an eye out” for interesting or
consequential events). Following from these observations,
CSCW tool developers began to investigate ways to pro-
vide continual visibility (awareness) of concurrent actions
in hopes of stimulating its users to self-coordinate.

This approach, illustrated in row 2 of Table 1, can be
characterized as inherently user-centric: it places the user
first in providing them with a flexible mechanism that
promotes intellectual and conceptual integrity and allows
users to place their own work in the context of others’
activities. The canonical example is the multi-user editor:
by continuously displaying the ongoing activities of oth-
ers, users typically self-coordinate by avoiding areas of
the document in which others are currently working.

As with the formal, process-based approach, the in-
formal, awareness-based approach suffers from a signifi-
cant problem that makes it a less-than-effective solution
when it comes to coordination and collaboration. In par-
ticular, implementations of awareness-based approaches
scale poorly; they are largely of value for small groups

only. This is primarily caused by two factors:

1. Users have limits on the amount of cognitive infor-
mation they can process. Especially in complex situa-
tions, the amount of “awareness information” gener-
ated by a system can be so large that the net effect is
that the user ignores all information. Human interme-
diation is a critical step in this approach, and care
must be taken not to cognitively overload users.

2. The emergence of awareness-based approaches as a
reaction to the strong restrictions imposed by work-
flow and process-based technologies means that, in
most CSCW research, the approaches have largely
been seen as irremediably opposed. As a result, most
CSCW tools tend to abandon any form of process al-
together and, by purposely only sharing information,
leave all coordination tasks to the user.

While some have proposed mechanisms for “asyn-
chronous awareness,” which can more easily support
large-group collaboration (e.g., [13]), the conventional
wisdom is that awareness technologies work well for
small groups, but break down for large groups.

5. Continuous Coordination

The formal and informal approaches have thus far al-

ways been treated as opposites. Developers have either
looked towards formal processes or informal awareness to
support coordination. Our research moves beyond this
long-standing dichotomy and proposes an integrated ap-
proach to supporting collaborative work that combines
formal and informal coordination to provide both the
tools and the information for users to self-coordinate. The
result, which we term continuous coordination, is shown

 Conceptual Visualization Strengths Weaknesses

Formal
 process-based
coordination

Scalable; Control;
Insulation from other
activities;
Group-centric

Resynchronization
problems;
Insulation becomes
isolation

Informal,
awareness-based
coordination

Flexible;
Promotes synergy;
Raises awareness;
User-centric

Not scalable;
Requires extensive
human intermediation

Continuous
coordination

Expected to be the
strengths of both formal
and informal
coordination

To be discovered by
future research

in row 3 of Table 1. Continuous coordination aims to
combine the strengths of the formal and informal ap-
proaches while overcoming the current shortcomings of
either. In particular, it retains the checkpoints and meas-
ures of the formal approach to coordination, but provides
developers with a view of each others’ relevant activities
between the formal checkpoints. In doing so, it provides
them with ways to understand the potential relationships
between their own work and the work of their colleagues.
This is not a way to step outside the bounds of formal
coordination—rather, it allows developers to better judge
both the timing and the impact of formal coordination
actions. Neither is it “just a better way” of exception han-
dling—rather, we consider the occurrence of conflicts and
other hindrances a normal part of any process and believe
that any approach must integrally address them in a com-
bined formal and informal way.

Our goal in promoting continuous coordination is not
to create radically new ways of working, but rather to
provide more effective technical support for the existing
balance between formal and informal approaches. The
mechanisms we describe—the need to be able to assess
and manage the formal coordination—are already aspects
of software development practice. Consider the field
study presented in Section 2. Developers recognized the
need for formal underpinnings of their effort (the configu-
ration management system) but at the same time realized
they also needed informal channels of communication to
be more aware of each others’ activities (the e-mails). In
effect, they are attempting to create a continuous coordi-
nation approach, but are forced to do so by combining
tools that are not necessarily fully prepared to support that
approach. For instance, it is only an accidental side effect
of using e-mail that results in the developers being aware
of who has expertise in which area. As another example,
they wish to be able to check in partially completed tasks
to share with specific other developers. The configuration
management system, however, only supports them in
checking in changes to the central repository and cannot
distinguish a “partial check in” directed to a specific per-
son from a “complete check in” directed to the group as a
whole. The current set of tools, thus, is neither good at
providing the information nor the functionality needed for
effective collaboration.

The software engineering community must find new
ways of constructing software engineering tools such that
they integrally support continuous coordination. Formal-
isms, including process mechanisms, always will be a
necessary part of certain kinds of collaborative efforts,
but their effectiveness is exploited best when they provide
high-level guidance and support. At lower levels, a proc-
ess must not try to specify and automate all small steps
and all activities; rather it must be flexible and augmented
with other mechanisms rooted in the informal, awareness-
based approaches. The underlying principle of continuous

coordination is that humans must not and cannot have
their method of collaboration dictated to them, but should
be supported flexibly with both the tools and the informa-
tion to self-coordinate and collaborate in their activities as
they see fit.

6. Our Current Work

Currently, we are involved in two different strands of
work in our pursuit of understanding continuous coordi-
nation. First, we continue to perform empirical studies of
software developers and their mechanisms of collabora-
tion and coordination. Second, we have started construc-
tion of software engineering tools in support of continu-
ous coordination. As our empirical studies are ongoing,
we report on the second aspect of our work here and de-
scribe YANCEES, a highly versatile event notification
server that can be used in the construction of novel soft-
ware engineering tools that support continuous coordina-
tion, and Palantír, an example tool that embraces the prin-
ciple of continuous coordination in enhancing existing
configuration management solutions with an informal,
awareness-based mechanism.

6.1. YANCEES

Notification servers are brokers for system events,

generally following a publisher-subscriber pattern [14].
Software processes that produce events publish their
events to a notification server. Software processes that
perform processing on events subscribe to events of inter-
est through the notification server. Figure 1 shows a gen-
eral architecture that supports the notion of awareness
and, in general, the continuous coordination concept. End
users (e.g., designers, programmers, testers, and others)
use software tools (e.g., design environments / IDEs, ver-
sioning, email, chat, and others). The usage creates events
that are published to an event notification server. Visuali-
zations that keep the same end users aware of all activities
are software processes, which are consumers of the
events.

The above description makes it seem straightforward
that notification servers provide an infrastructure for
keeping users aware of events of interests. However,
some issues arise in practice: generalization versus spe-
cialization of notification servers and services; weak sup-
port for customization; and poor support for extensibility.

Figure 1. Simplified Architecture Supporting

Awareness.

Indeed, a broad spectrum of research and commercial
event notification servers are available nowadays. At one
extreme, “one-size-fits-all” approaches, such as adopted
by CORBA Notification Service [15] or READY [16],
strives to address new applications requirements by pro-
viding a very comprehensive set of features, able to sup-
port a broad set of applications. At the other extreme,
specialized notification servers tailored to application-
specific requirements provide novel but specific function-
alities. Examples of such specialized systems include
Khronica [17] and CASSIUS [18] which are specially
designed to support groupware and awareness applica-
tions; or even Yeast [19] and GEM [20] which are spe-
cialized in advanced event processing for local networks
applications, and distributed applications monitoring re-
spectively. Finally, servers such as Siena [21] and Elvin
[22], even though designed with special domains in mind,
strive for a balance between specificity and expressive-
ness of the subscription language and event model they
support.

Therefore, in the development of event-based collabo-
rative software applications, developers face the dilemma
of specialization versus generalization: to use a general-
ized infrastructure, that can support and integrate differ-
ent applications, but may not provide all the necessary
functionality for specific application domains; or to use
one event-based infrastructure for each application do-
main, having “the right tool for the right problem”, but
losing the uniformity and integration of a single solution.

Another problem of the currently available event-
based infrastructures is the weak support for selection and
customization of the services to be provided, which is
important for applications that run on resource-limited
devices such as the ones common to mobile applications.

Moreover, current event-based infrastructures lack
mechanisms to support the easy extensibility of its func-
tionality. The only extension mechanism is usually the
(understanding and) change of their source code, or the
implementation of the service by the client. Additionally,
due to restrictions in their event or subscription models,
the addition of new functionality may constitute a very
difficult task [23].

This work was motivated by the problems discussed
above, faced when adapting current notification servers to
different collaborative software development scenarios.
In an organization, there is a clear need of a single server
model that can be adapted and customized to different
applications. Moreover, due to the constant evolution of
the applications and tools used in these environments, the
event-based infrastructure must provide ways to add new
features, when necessary, to evolve with the organiza-
tion’s needs.

In order to support this spectrum of requirements,
along with the flexibility to select the subset of features
needed by each application domain, our event notification
architecture had to be configurable and extensible. Such
flexibility was one of the main challenges in our design.
In short, the architecture needs to:

• Support different requirements associated to the
models of the design framework, especially the
event, subscription, notification, and resource and
protocol models.

• Provide extensibility through mechanisms that allow
a programmer to define and implement new capabili-
ties to the models defined above.

• Support different configurations, sets of services (or
features) that may work together to provide the func-
tionality necessary for the application domains.

• Permit the distribution of components and services
among the publishers and subscribers to comply with
device limitations, prevent performance bottlenecks,
and implement services that require some degree of
distribution, such as mobility.

The YANCEES framework was designed to provide
different extension points around a common pub-
lish/subscribe core. The extensibility and configurability
of the system is achieved by the use of the following
strategies:

• Extensible languages to each design dimension
• Dynamic allocated plug-ins
• Parsers that combine and allocate plug-ins according

to the extensible languages syntax.
• Input/output filters and shared services as auxiliary

elements in the implementation of new extensions
• An architecture configuration manager to statically or

dynamically load configurations of plug-ins, services,
and filters to each application domain

• A central publish/subscribe core providing basic con-
tent-based filtering

The main components and interfaces of the architec-
ture are presented in Figure 2. The static components and
APIs are drawn in gray, whereas dynamic allocated com-
ponents are depicted as dashed line boxes.

YAN
CEES API

Publish API

Input Filters
Subscriber API

O
utput Filters

Protocol API

Subscript.
Parser

Notification
Plug-in

instances

Subscription
Plug-in

instances

Protocol
Plug-in

instances

D
ispatcher Adapter

Event D
ispatcher (Siena or Elvin)

Protocol
Parser

Notification
Parser

Service Instances

Plug-in Manager

Architecture Configuration Manager

Protocol
Session

Subscriber
Interface

Plug-in factories

Services Manager

Active Plug-in instances DB

Publish

Subscribe

Notifications

Messages

Configurations

Both the pessimistic and optimistic approach partition
the work of developers in separate tasks to be performed
in individual workspaces. These workspaces shield de-
velopers from the effects of other changes in other work-
spaces, but also have the unfortunate side effect of creat-
ing a barrier that prevents developers from knowing
which other developers change which other artifacts in
parallel. This regularly leads to problems, when conflict-
ing changes are made on the same artifacts (direct con-
flicts), or when changing on one artifact by one developer
do not “jell” with the changes by another developer on
another artifact (indirect conflicts). In effect, the formal
underpinnings of CM systems necessitate developers to
look for other, additional mechanisms to coordinate their
activities, as exemplified by the study in Section 2.

Figure 2. General framework static and dynamic com-
ponents.

A prototype of the YANCEES framework was imple-
mented using Java 1.4 and the Java API for XML Proc-
essing (JAXP) v1.2.3, which supports XMLSchema [24].
The XMLSchema provides inheritance and extensibility
mechanisms. When used with the Java DOM parser, an
XML document defined according to an XMLSchema
can have its syntax automatically validated. This resource
is used in our implementation to guarantee the correct
form of the messages. The event dispatcher component
used in the implementation was Siena 1.4.3. Elvin 4.x
was also used in the tests. Both support content-based
subscriptions and federation of servers, and both repre-
sent events as attribute/value pairs. In our current proto-
type implementation, two component distribution con-
figurations are possible: (1) the execution of all compo-
nents on the client stub; or (2) the execution of all com-
ponents on the server-side. In the former case the com-
munication between client stub and server side (Siena or
Elvin) is performed by using their native protocols; in the
latter case, the communication between client stubs and
the YANCEES server is performed by using Java RMI.

Building upon popular models of event notifications,
but using an extensible, sophisticated architecture,
YANCEES is able to support many kinds of coordination
and collaboration services. YANCEES provides an infra-
structure upon which awareness can become part of a
suite of software tools.

6.2. Palantír

One of the core functions of any configuration man-

agement (CM) system is to coordinate access to a com-
mon set of artifacts by multiple developers who are all
working on the same project. Existing CM systems ad-
dress this task in two different ways: pessimistically and

optimistically. In the pessimistic approach, a developer
must lock artifacts before making any modifications.
Such a lock prevents other developers from making con-
current modifications. In the optimistic approach, multi-
ple developers can change the same artifacts at the same
time. Conflicts may arise, but semi-automated differenc-
ing and merging tools help in identifying and resolving
them.

We have been building Palantír, a novel CM work-
space awareness tool that embraces the continuous coor-
dination paradigm. Palantír builds upon existing CM sys-
tems by hooking into their workspaces and sharing in-
formation about ongoing changes. It does so by intercept-
ing workspace events, calculating a simple measure of
severity to provide an assessment of the size of each
change, distributing the event to the other workspaces in
which the artifact is present, and graphically presenting
the information to the developers “owning” those work-
spaces (Figure 3 shows two example visualizations). This
information allows developers to actively self-coordinate:
should they notice a potential conflict arising, or should
they notice a developer is changing some file they in-
tended to change or need in an unmodified form, they can
proactively contact that developer, coordinate their ac-
tions, and avoid any larger problems down the road.

While a complete description of Palantír is beyond the
scope of this paper (see [25]), we make two observations
with respect to continuous coordination. First, we note
that CM systems are inherently formal in nature, but that
it was possible to extend them to also have an informal
component. This aligns with our argument that continu-
ous coordination does not require some radical approach,
but rather relies in subtle but critical adjustments in work
habits. In the case of Palantír, these adjustments are based
on information that it shares with a developer regarding
relevant ongoing parallel changes.

The second observation pertains to the fact that shar-
ing information is only half the story of continuous coor-
dination. CM tools can now be retooled to better support
users in the kinds of actions they may want to take based

Figure 3. Two example visualizations used by Palantír. One is a scrolling marquee, the other
uses annotations in a file viewer to indicate local changes (green) and remote changes (red).

on the information. For instance, in Section 2 we identi-
fied the need for partial check-ins that exhibit only lim-
ited visibility. As another example, it should be possible
to move some modified files to another developer’s work-
space so that it is possible for that developer to continue
the work as part of their existing task (in case that task is
deemed closely related to the one for which the initial
changes were made). These examples require new kinds
of functionality in CM systems, functionality aimed at a
more fluid and flexible way of coordinating and collabo-
rating in making changes.

7. Conclusions

Continuous coordination is a new collaboration para-
digm that we believe will play an increasingly important
role as we continue to develop new collaborative software
engineering tools. It has the potential to overcome serious
drawbacks associated with just taking a formal or infor-
mal approach, and provides users with both the tools and
the information to self-coordinate their activities – all the
while still guided by the overall process and supported by
the facilities of the tools.

Our initial forays into building support for continuous
coordination are promising. We have constructed a proto-
type versatile event service, YANCEES, that supports the
different kinds of awareness needs that different software
engineering tools have. We have an example of one such
tool, Palantír, that combines a formal configuration man-
agement process with an informal mechanism for sharing

information about ongoing workspace activities. Actual
experience with the tools is limited at this point, but full-
scale experiments are in the planning stages.

While the focus of our current work continues to focus
on further enhancing YANCEES and Palantír with addi-
tional features, we also want to broaden our domain and
start experimenting with continuous coordination in sup-
port of software design. Design is an inherently collabora-
tive activity for which most tools support just a formal
process; continuous coordination has the potential to sig-
nificantly improve how designers coordinate their respec-
tive activities and interact with each other as they each
contribute to the overall design.

Overall, a larger research agenda by the community is
necessary to truly address and evaluate continuous coor-
dination. We believe three canonical research questions
must be answered:

1. When and how is it possible and desirable to com-
bine a formal, process-based approach with an in-
formal, awareness-based approach in support of con-
tinuous coordination? In effect, we need to under-
stand the domains in which continuous coordination
is an attractive solution.

2. What kind of generic infrastructure can be provided
that new software engineering tools and environ-
ments can leverage? We need to examine not just ge-
neric event notification infrastructures, but also ab-
stract from individual solutions to see if it is possible
to reuse mechanisms via which information can be
collected, organized, and presented.

3. What are the theoretical limitations of continuous co-
ordination? Through extensive field studies, we need
to determine what barriers to coordination and col-
laboration can be overcome with continuous coordi-
nation, and what barriers remain.

Acknowledgments

Effort funded by the National Science Foundation under
grant numbers 0093489, 0205724, 0083099, and 0326105.
Funding also provided by the Intel Corporation and through the
Brazilian government under CAPES (grant BEX 1312/99-5).

References

[1] de Souza, C.R.B., Redmiles, D., Mark, G., Penix, J., Sier-

huis, M. Management of Interdepend-encies in Collabora-
tive Software Development, ACM-IEEE International
Symposium on Em-pirical Software Engineering (ISESE
2003), September 2003a (to appear).

[2] de Souza, C.R.B., Redmiles, D., Dourish, P., Analyzing
Transitions between Private and Public Work in Collabora-
tive Software Development, International Conference on
Supporting Group Work (Group 2003—Sanibel Island,
FL), November 2003b (to appear).

[3] Button, G. and W. Sharrock, Project Work: The Organisa-
tion of Collaborative Design and Development in Software
Engineering. Computer Supported Cooperative Work
(CSCW), 1996. 5(4): p. 369-386.

[4] Grinter, R.E., Workflow Systems: Occasions for Success
and Failure. Computer Supported Cooperative Work, 2002.
9(2): p. 189-214.

[5] Herbsleb, J.D., et al. An Empirical Study of Global Soft-
ware Development: Distance and Speed. Proceedings of
the International Conference on Software Engineering,
2001: p. 81-90.

[6] Barthelmess, P. and K.M. Anderson, A View of Software
Development Environments Based on Activity Theory,
Computer-supported Cooperative Work, Special Issue on
Activity Theory and the Practice of Design, Vol. 11, No. 1-
2, 2002, pp. 13-37.

[7] Nutt, G. The Evolution Towards Flexible Workflow Sys-
tems. Distributed Systems Engineering 3(4):276-294, De-
cember 1996.

[8] Perry, D.E., H.P. Siy, and L.G. Votta, Parallel Changes in
Large-Scale Software Development: An Observational
Case Study. ACM Transactions on Software Engineering
and Methodology, 2001. 10(3): p. 308-337.

[9] Suchman, L., & Wynn, E. (1984). Procedures and prob-
lems in the office. Office: Technology and People, 2, 2,
133-154.

[10] Suchman, L. Plans and Situated Actions. CUP, Cambridge,
1987.

[11] C. Heath and P. Luff, Collaboration and Control: Crisis
Management and Multimedia Technology in London Un-
derground Control Rooms. Computer Supported Coopera-
tive Work, 1992. 1(1-2): p. 69-94.

[12] Dourish P. and V. Bellotti. Awareness and Coordination in
Shared Workspaces. Proceedings of the Conference on

Computer-Supported Cooperative Work (CSCW '92),
1992: p. 107-114.

[13] W.C. Hill, et al. Edit wear and read wear. Proceedings of
the Conference on Human Factors and Computing Sys-
tems, 1992: p. 3-9.

[14] Rosenblum, D. S., and Wolf, A. L. A Design Framework
for Internet-Scale Event Observation and Notification. Pro-
ceedings of the Sixth European Software Engineering
Conf./ACM SIGSOFT Fifth Symposium on the Founda-
tions of Software Engineering, pp. 344-360, Sept. 1997.

[15] OMG, "Notification Service Specification v1.0.1," Object
Management Group, 2002.

[16] R. E. Gruber, B. Krishnamurthy, and E. Panagos, "The
Architecture of the READY Event Notification Service," in
ICDCS Workshop on Electronic Commerce and Web-
Based Applications, Austin, TX, USA, 1999.

[17] L. Lövstrand, "Being Selectively Aware with the Khronika
System," presented at European Conference on Computer
Supported Cooperative Work, Amsterdam, The Nether-
lands, 1991.

[18] M. Kantor and D. Redmiles, "Creating an Infrastructure for
Ubiquitous Awareness," presented at Eighth IFIP TC 13
Conference on Human-Computer Interaction. Tokyo, Ja-
pan, 2001.

[19] B. Krishnamurthy and D. S. Rosenblum, "Yeast: A General
Purpose Event-Action System," IEEE Transac-tions on
Software Engineering, vol. 21, pp. 845-857, 1995.

[20] M. Mansouri-Samani and M. Sloman, "GEM: A General-
ised Event Monitoring Language for Distributed Systems,"
presented at IFIP/IEEE International Conference on Dis-
tributed Platforms, Toronto, Canada, 1997.

[21] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design
and Evaluation of a Wide-Area Event Notification Ser-
vice," ACM Transactions on Computer Systems, vol. 19,
pp. 332-383, 2001.

[22] G. Fitzpatrick, T. Mansfield, D. Arnold, T. Phelps, B.
Segall, and S. Kaplan, "Instrumenting and Augmenting the
Workaday World with a Generic Notification Service
called Elvin," presented at European Conference on Com-
puter Supported Cooperative Work (ECSCW '99), Copen-
hagen, Denmark, 1999.

[23] C. R. B. de Souza, S. D. Basaveswara, and D. F. Redmiles,
"Using Event Notification Servers to Support Application
Awareness," presented at International Conference on
Software Engineering and Applications, Cambridge, MA,
2002.

[24] W3C, " XML Schema Part 0: Primer. W3C Recommenda-
tion," 2001.

[25] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantír:
Raising Awareness among Configuration Management
Workspaces”, Proceedings of the Twenty-fifth Interna-
tional Conference on Software Engineering, May 2003,
pages 444–453.

