
91

‘COMPUTATIONAL THINKING’ 
AND THE POSTCOLONIAL 
IN THE TEACHING FROM 
COUNTRY PROGRAMME

Paul Dourish

 
Introduction

For several years now, my research has attempted to look on computational artifacts not just 
as things that we build but also as ways of understanding the world, examining the processes 
by which information technologies are designed and shaped, as they themselves become tools 
for encountering the world around us. Most recently, this has developed into a project, still in 
its early stages, that investigates the putative ‘portability’ of design methods in transnational 
contexts as one part of a broader investigation that we are calling ‘postcolonial computing’ (Irani 
et al 2010). Information technology design is a global process, and information technology 
design is often framed, these days, as a site for cultural encounter, frequently in the context of 
international development (e.g. Best & Wilson 2003; Kam et al. 2007). By calling our research 
‘postcolonial computing,’ we want to place computational technologies within the analytic 
framework of cultural encounter and the historicized global flows of people, power, knowledge, 
capital, and resources that postcolonial scholars have examined. Design processes in information 
technology take such categories as users, knowledge, requirements, and representations as 
givens, but in our research we want to open these up for critical scrutiny, to investigate what 
work they are doing in transnational and cultural contexts, and to look at how they do them. 
In the area of Human-Computer Interaction, user-centered and ‘participatory’ approaches to 
technology design play a central role; the question for our work is what it means to foreground 
particular views of the ‘user’ or of ‘participation’ when design is a site of cultural encounter. 
This is the framing device I brought to my involvement with Teaching from Country.

The particular set of questions that I want to explore here pick up on what Nigel Cross (2006) has 
called ‘designerly ways of knowing’ and what Jeanette Wing (2006) has called ‘Computational 
Thinking’. Cross and Wing attend to different issues, and are focused on different kinds of 



92

problems, but as I see things there are, in these two formulations, some related ideas that help 
focus on our engagements with artifacts, and our engagements with the world simultaneously. 
They help me formulate the contention that the ways in which we create and shape artifacts 
of different sorts, are epistemological as much as practical. To encounter the world as a place 
where new kinds of objects and activities can be shaped – not least digital objects – is a way to 
know the world. 

Cross, whose concern is with design in its broadest senses and especially with design education, 
wants to draw attention to the fact that designers are not simply people who undertake a 
particular set of activities nor those who produce particular kinds of artifacts, but rather those 
who have a particular way of knowing the world, one that is conditioned by their designerly 
stance. The idea of computational thinking is a compelling one, certainly. It moves beyond well-
worn arguments about ‘computer literacy’ to thinking instead about how our interactions with 
information technology shape our encounters with the world, by focusing on how computer 
programmers, engineers, and designers might see the world through the lens of information 
technology. The question is, to what extent are the boundaries and categories of ‘computational 
thinking’ set hard? It seems that if users are to negotiate these boundaries and categories they 
must at least to some extent take on the thinking of designers. The vital questions concern ‘the 
extent of the extent’, and actually how negotiations proceed.

Wing is an advocate for the importance of computational understandings in the contemporary 
world, and his work offers a beginning in attending to those questions. She argues that, in a world 
in which computational and digital artifacts have an ever more pervasive role, computational 
thinking plays an important part of contemporary education, alongside mathematical and 
symbolic thinking, narrative thinking, and those elements that have traditionally played a 
foundational role in education. Design educator Donald Schön (1983) talks about design as a 
‘reflexive conversation with materials,’ and so clearly the nature of the conversation that one 
might have is shaped by the nature of the materials with which you might work, and Wing’s 
arguments about computational thinking bring to the fore the question of just what kind of 
material one is working with when one is working with computational ‘stuff.’ 

In this paper I diffract these ideas through my experience of engaging with Yolŋu people and 
places and with others involved in the Teaching from Country programme in the course of the 
short two weeks I spent in northern Australia in July 2009 and through reading the website. 
Of course my first engagement was making preparations for my presentation to the seminar 
– supplying a title and an abstract. Uncertain, I simply delayed at first; when I could delay no 
longer, I sent the most vague title and most general abstract I thought I could manage. I was 
reluctant to commit to a particular direction, and for good reason. I knew that I would see and 
hear a great deal during my visit, and that, inevitably, any ideas I put together in the familiar 



93

surroundings of southern California would seem naïve and irrelevant once we were gathered in 
the seminar room at CDU. What I hoped, instead, was that I would be able to come out, spend 
a week learning from Michael, John, their colleagues at CDU, the Yolŋu advisors, my fellow 
international participants, and the others whom we would meet in Darwin and in Gove and, on 
the basis of all these conversations, put together a new presentation that would synthesize and 
respond to everything that I had learned.

To a certain extent, this is what happened, but only in part. I had, I think, severely underestimated 
how much I had to learn about life in the Northern Territory in general, and in the Yolŋu lands in 
particular. I had, too, underestimated the challenge that this learning would present to my way 
of thinking about and understanding people, technology, and culture. So, while the paper does 
indeed respond to things that I learned when I came to northern Australia that July, it touches 
only on the surface of things I began to understand. Two things that I learned in the first couple 
of hours after my flight touched down in Darwin came to frame my thinking.

Flexibility is a requirement – that’s my first theme. Having been traveling for over 24 hours 
from Los Angeles to Darwin, I was very much looking forward to a shower, a beer, and a nap 
(not necessarily in that order) when I got to the guest house where we were staying. But there 
was a Yolŋu Language and Culture class planned for later that evening; the first class of the 
semester in the Yolŋu Studies program. I was still hankering for my beer and my nap yet I 
did not want to miss the class and the opportunity to get started. Here we met Dhanggal and 
Garnggulkpuy, Yolŋu teachers in the Teaching from Country programme, who for this class 
were to actually attend the classroom. 

The primary focus of this class was a lesson from Garnggulkpuy on freshwater and saltwater 
and their significance to the Yolŋu people, both in ancestral stories and in everyday life. 
Freshwater, as she explained, is our source; it is where we come from. Saltwater is where we 
come together; it signifies negotiation and interaction. Saltwater, Garnggulkpuy explained, is 
‘where everything takes place.’ Through this exploration of freshwater and saltwater, and also 
through the way that the conversation was conducted, I began to gain a deeper apprehension 
of the principle of yothu yindi and the relevance of negotiation, fluidity (in multiple ways) and 
complementarity in Yolŋu thinking. As we began an exploration of these ideas – of the ways that 
people come together create new spaces of negotiation in interaction, as we mix and combine 
our individual origins in the creation of collective action, as we understand how individuals 
and collectives are positioned through our interactions and negotiations – I was, unknowingly, 
beginning to understand a second theme that would be important for the rest of the trip and, 
most relevantly here, for some ideas that I want to explore that speak to the relationship between 
Yolŋu epistemology and ways of understanding the world and the technological contexts in 
which I conduct my research. 



94

A Story

Let me tell a story to illustrate. It comes from early fieldwork conducted by Lilly Irani, at 
D-Design, a psuedonymous design firm in Delhi, India. Lilly is one of the colleagues with 
whom I am involved in a collective struggle to understand what postcolonial computing might 
become as an analytic that helps us attend to some of the questions I’ve outlined.

D-Design were engaged by a development NGO to work on the design of prototype 
personal water filters. For this study, a team drove hundreds of kilometers searching 
for locations from which they would seek volunteers from whom they could gather 
information about needs and practices. The lead designer described the imagined 
participant as someone ‘fairly poor,’ getting ‘water from the dirty river,’ often ill from 
water-borne illness, and without a filter. What they found instead were villages where 
people seemed relatively happy or even proud of their water. Complaints of illness 
were few, though many complained about over-fluoridated water – a problem the 
clients were not interested in pursuing. Throwing his hands up during on meeting, one 
of the principals cried, ‘Where is the poverty?!’ before dramatically throwing his head 
onto the table.

The team loosened their image of the ideal participant, finding people who were 
curious enough about the filter and met loosened income requirements. Once villages 
were selected, the team planned visits to find and screen participants. They planned to 
interview people in the household, and have them complete collages around themes 
like ‘water’ and ‘future,’ among other activities. However, in much the same way that 
the notion of their ideal participants had shifted dramatically in the encounter with the 
field, so too did these methods that the team had hoped to deploy.

The team went to the village to the meet with a man who’d expressed interest in 
participating in the study. They had planned to interview each person in the household 
and have each of them complete the collaging activity. However, when they arrived at 
his house, they found it was actually in the process of being built. The volunteer was 
living with his mother and his sister under a thatched structure propped up against a 
tree. For facilities such as water storage and cooking space, he relied on his aunt’s 
house across the small road. Further, the man volunteering was not particularly 
talkative, which made it challenging to record his thoughts on video. He did, however, 
have a gregarious cousin at the house across the street. With a little deliberation, the 
team pulled the cousin into the interview. The individual interviews imagined in the 
planning had mutated. The aunt’s household had been pulled into the project through 
an ad hoc decision and the talkative cousin. As the time moved on to collaging efforts 



95

and other design exercises, they soon found themselves a site of much collective 
village activity and interest, and their pristine ideas about the relevance of their design 
methods soon had to be radically revised. 

Deployed in context, methods and representational practices reveal aspects of their 
situations of origin, and frequently carry their cultural assumptions with them in 
ways that can be problematic. The language of the design brief to which D-Design 
was responding was the traditional language of the discipline of Human-Computer 
Interaction – stakeholders, usability, and requirements. This language reflects a 
conceptual framework or infrastructure within which the encounter between design 
practice and everyday life is framed. Designerly ways of knowing are framed here 
as the ways that one can know about the world through the deployment of particular 
kinds of design practices – practices that may or may not, as we see in this example, 
successfully escape the contexts of their own production.

The particular set of design practices that motivate me, and which are fundamental to Teaching 
from Country, are the design practices associated with information technology and digital 
media. Arguably, nothing is more fundamental to the production of information systems than 
the computer programs that comprise them, and by extension, the programming languages in 
which those computer programs are written. These programming languages are the formal 
expressions of a computer system’s behavior through which programmers and engineers create 
new software systems. Often, when we think about information systems and their impacts, 
the actual practice of programming disappears; we think about the contexts (organizational, 
institutional, economic, political, and historical) within which software systems are developed, 
we think about their ramifications and implications for infrastructure, training, and literacy, and 
the co-evolution of software systems and daily practice, but the actual lines of software core, 
written by some set of people sitting at a keyboard somewhere, withdraw into the background. 

However, every bit as much as the software systems that they describe, the programming 
languages and programming systems themselves comprise an important resource for 
understanding, encountering, exploring, and representing the world, and they deserve some 
serious examination (something which the ‘software studies’ movement of recent years has 
finally begun to do; see, e.g., Fuller 2008). I want to turn now to some discussion of the computer 
programs and programming languages that make up software systems as a way to examine 
some opportunities that Teaching from Country opens up in this domain. To do so, I need to 
begin by setting out a brief introduction to the material of computer programs, for those who 
are unfamiliar with the practices of programming.



96

The Material of Computer Programs

Computer programs generally comprise large bodies of text. The text is what is often known 
as ‘source code’ – expressions and statements constructed according to the rules of particular 
programming ‘languages.’ A small program might consist of a few tens or hundreds of such 
lines of text; a large program might comprise millions. Some lines of text define data objects 
that the computer program uses to represent the world such as the records that might describe 
people in a social networking system, video streams in a videoconferencing application, or web 
pages in a tool to help you create a website. Other lines of text define the operations that might 
be performed on those data objects such as looking up a person’s friends, initiating a video 
stream from one computer to another, or printing out a web page.

One of the fundamental questions that programming systems need to solve is, how should these 
lines of text – these computer instructions – be organized? Over the decades that people have 
been building computer programs, a few different styles have emerged. For instance, we could 
completely separate the two – we could keep the ‘data’ and the ‘operations’ separate. Early 
programming languages often worked this way. A popular arrangement in more recent years has 
been to combine them in particular ways. In one style, called ‘object-oriented programming’ 
(or OOP), we combine the data element with the specific code that operates on it (rather than 
on other elements), and the combination is called an ‘object.’ In object-oriented programming, 
these two are so tightly combined that we don’t think of processing a data element using some 
procedure; instead, we think of ‘asking the object to perform an operation on itself’ (because 
the object has the procedural code built into it.) The blocks of source code that define how an 
object should perform some operation are called ‘methods’; the requests that objects might send 
and receive, which ask them to perform particular operations, are called ‘messages.’ So, in a 
particular software system, I might send a message ‘print yourself’ to an object that represents 
a web page; it would find the method that it knows for responding to this message, and perform 
the operations. One advantage of this arrangement is that when I send a message ‘print yourself’ 
to a different kind of object – one that represents a person, or a data file, or a video stream, or 
a person, then they might all behave differently, in much the same way that, as human beings, 
if we are asked to do something, we might do it in different ways depending on who we are or 
what kind of role we have.

These ‘kinds’ of objects are called ‘classes.’ When I build a system using object oriented 
programming, then my lines of text describe the classes of objects that my system will need to 
use (‘Friend’, ‘VideoConnection’, ‘WebPage’) and then the methods that objects of each class 
will need so that they can operate effectively when they receive messages.1 Once I have done 

1	 There are many different object-oriented programming languages, which embody different ideas and employ different terminologies. 
Here, I am using the terminology employed in the early and highly influential Smalltalk language (Goldberg and Robson, 1983), 
although the same ideas occur in one form or another in most object-oriented languages.



97

that, as a programmer, the system goes into operation, and the fundamental rule that applies 
is: how an object responds to a request for action (a message) depends on what sort (class) of 
object it is.

The outline above is necessarily very sketchy, but it should provide non-programming readers 
with an orientation to the basic ideas and conceptual structures that software developers are 
manipulating in the creation of (at least some) software systems. It also provides a starting-
point for exploring a couple of alternatives. While the idea of object-oriented programming is 
in wide circulation, these two alternatives are much less widespread; they constitute interesting 
ideas that have been proposed in research papers but have not by any means made their way 
into mainstream software development. However, they are useful tools for reflecting upon the 
ideas embodied in object-oriented programming and some potential revisions to ‘computational 
thinking.’ 

Two Alternative Accounts

The first of the alternative ideas is called ‘subject-oriented programming’ (Harrison and Ossher 
1993). The central idea behind subject-oriented programming is a very simple extension of 
the basic principle of method discrimination in object-oriented programming, as I described it 
above. The idea is this: when a message is sent to an object, the method that will be executed 
depends on the class of the object receiving the message (as in traditional OOP) and also on 
the class of the object that sent the message. The basic idea here is that the kind of response 
that an object might make to a message depends on the kind of object that sent the message in 
the first place. Again, this is a very familiar idea in everyday life; how you answer a question, 
for instance, depends not just on your circumstances but also on the person who asks you (a 
friend or family member, a stranger, a policeman, a child, and so on). It is not appropriate to 
draw too much on these analogies between program behaviour and human or social behavior, of 
course, but to the extent that programming systems are used to build models of the world, and 
to the extent that what they capture is something that Wing and others label as ‘computational 
thinking,’ then it is important to recognize that subject-oriented programming is fundamentally 
a relational way of modeling action and an interactional way of accounting for emergent 
behavior in a system. It captures a dimension of expression that is not present in object-oriented 
programming or in traditional algorithmic thinking, and as such, when we think of computer 
programs as representational schemas through which programmers and engineers encounter the 
world, it provides conceptual resources for understanding relational phenomena.

The second alternative idea that I want to discuss is called ‘predicate classes’ (Chambers 1993). 
In traditional OOP, when an object is created, it is always created with a particular class. (In 
most OOP languages, the way to create a new object is essentially an expression that says 



98

‘make a new object of class Thing’; in other words, there is no way to create an object without 
specifying its class.) The class of an object, in almost every OOP language, is fixed; once a 
Thing, always a Thing. Similarly, the relationship between classes is fixed; one class might be 
a subclass of another (a more specialized kind of object, the way that Table might be a more 
specialized subclass of the general class Furniture), and that relationship will hold for as long 
as the system operates. Predicate classes, though, are slightly different. A predicate class is 
defined by two things; a class to which it is related, and a rule that specifies when an object is 
a member. For instance, I might create a class ‘Square’ by specifying that a Square is a kind of 
(a subclass of) Rectangle, and that a Rectangle is a Square whenever two adjacent sides have 
the same length. (These are called ‘predicate’ classes because a predicate is a computational 
expression whose value is either ‘true’ or ‘false.’ The number ‘4’ is not a predicate, nor is the 
string ‘Paul,’ but the expression ‘do adjacent sides have the same length?’ is either true or false 
for any particular Rectangle.)

Predicate classes create an interesting new opportunity for OOP systems. Now, the class of 
an object is not fixed; it depends on circumstances. New methods and new behaviours might 
be associated with an object when it becomes a member of the predicate class; but when the 
circumstances change once more, they no longer apply. Similarly, in conceptual terms – that is, 
within the frame of computational thinking – it provides us with a means of seeing the world in 
dynamic, contingent, and circumstantial terms.

In subject-oriented programming then, the basic execution model of object-oriented programming 
has been shifted so that it takes a relational stance. The behaviour of an object is not simply a 
question of its identity, whatever that should be; rather it is a product of the interaction of objects, 
or a product of the particular configuration of message sender and message receiver. While the 
computational changes are small, the interactional consequences are significant, and perhaps 
more to the point, the representational practices at work in creating a system that operates 
this way open themselves up to an alternative epistemological foundation. A similar small-but-
significant shift is at work in the example of predicate classes, then, which replace a notion of 
fixed identity with one of contingent identity; the roles that objects play, the behaviours available 
to them, and so on, are subject to continual reassessment and reconsideration depending on 
circumstances.

Using these Insights to Think about ‘Computational Thinking’

Let me take a step back and think about these ideas in terms of arguments about ‘computational 
thinking.’ The argument around computational thinking is, essentially, that there is some particular 
way of approaching the world that is particular to computer science, and, conversely, that there 
are some particularly useful ways of thinking about the world that computer science might 



99

offer. Computational thinking suggests that particular modes of theorizing, such as algorithmic 
specification and procedural abstraction, offer important intellectual tools for understanding 
the world, with a particular emphasis upon the opportunities for digital representation, but not 
solely with that end in mind. What I think these two examples, subject-oriented programming 
and predicate classes, start to illustrate is that there is perhaps no one unique model of 
‘computational thinking’ but rather that computational tools embody, and provide a platform for 
thinking about, different epistemological approaches. The fundamentally relational perspective 
at work in subject-oriented programming, and the fundamentally contingent perspective at 
work in predicate classes were things that I was strongly reminded of as I heard people talk, 
tell stories, describe spaces, interact with each other and with others in Arnhem Land; and what 
it made me think was not, ‘Oh, computational thinking has already encompassed these,’ but 
rather, ‘what a marvelous vehicle these kinds of computational tools might be for discovering 
(rediscovering?) and exploring this sort of world-view.’ Computer programs and programming 
languages are not just tools for getting work done; they also shape how we think about the world 
(where ‘we’ means computer programmers, engineers, scientists, and in turn, to an extent, the 
users of computer systems). This is computational thinking, too. The two ideas I have been 
outlining – reminiscent as they are of some of the themes that arose in my first few hours in 
Darwin and then later in Arnhem Land – show that aspects of Yolŋu epistemology highlight what 
computational thinking might be, what it might do for us, and what opportunities it might embody. 

It would certainly be absurd to claim that building software systems with these tools will result 
in systems that are inherently culturally appropriate and responsive. Anyone can build bad 
systems with good tools. However it might be more useful to think here in terms of computational 
thinking. If the tools that we provide for modeling, encountering, and framing the world are 
ones that are based on the importance of relations between people, of the contingencies of those 
relations, of the importance of responsiveness to local circumstance and immediate need, of the 
relevance of relations between interactional participants in the moment, in the future, and in 
the past, then we are perhaps opening up a fascinating area of potential impact from a project 
like Teaching from Country. Participants in Teaching from Country have been concerned with 
crafting tools and technological environments that can be effective for Yolŋu teaching, but it 
the project opens up, I believe, broader questions about the potential relationships between 
technology and cultural practice in ways that can enrich and enliven our ideas of ‘computational 
thinking’.

The View from Arnhem Land

While we were on country, Dhanggal took us to Galuru; we ate lunch there on the first day 
of our visit to the Gove peninsula. After lunch, I walked around for a while on the beach for 
a while, just getting a feel for the place. Galuru, where the billabong runs to the ocean is, of 



100

course, a place where the freshwater and the saltwater meet. It is also a place that, I realized 
as I walked, must change drastically as the rains come in the wet season, as the creek floods, 
as the tides shift. The long sand flats were wet and soft in some places, dry and firm in others, 
with pools of water from where the shifting currents had left it. At the same time as it embodied 
all this change, though, Dhanggal was telling us stories of her visits to the place as a child, and 
its importance to her ancestors, and across all of this, of course, it remained the same place. 
As I walked, it seemed to me to embody a fascinating encounter between stability and change. 
By the same token, it’s very easy to talk of technology as something that changes rapidly; and 
yet some of the ideas that it embodies are very old ones. It is useful to examine what kinds of 
opportunities for change might yet be embedded within the worldview from which information 
technology springs. Arnhem Land is a fascinating place to start to do just that.

Acknowledgements

I owe enormous debts of gratitude to Michael Christie, John Greatorex, and their colleagues at 
Charles Darwin University for the opportunity to participate in the program; to Garnggulpuy, 
Dhanggal Gurruwiwi, Gotha, Yingiya Guyula, and the other Yolŋu participants in the Teaching 
from Country programme, for patient education; to other participants in the seminar, for 
inspiration and critique; and to Helen Verran for making initial contacts and for thoughtful 
editorial intervention. This work is supported in part by the US National Science Foundation 
under awards 0712890, 0838601, 0838499 and 0917401. 

References

Best, ML & Wilson III, J 2003, ‘A growing community of interest’, Information Technologies 
& International Development, vol. 1, no. 1. 

Chambers, C 1993, ‘Predicate classes’, Object-oriented programming, European conference 
proceedings ECOOP’93, Kaiserlauten, Germany, pp. 268-296.

Cross, N 2006, Designerly Ways of Knowing, Springer.

Fuller, M 2008, Software Studies: A Lexicon, Cambridge, MIT Press, Massachusetts.

Goldberg, A & Robson, D 1983, Smalltalk-80: The Language and its Implementation, 
Reading, Addison-Wesley, Massachusetts.

Harrison, W & Ossher, H 1993, ‘Subject-oriented programming: a critique of pure objects’, 
Object-oriented programming systems, languages and applications ACM conference 
proceedings OOPSLA’93, pp. 411-428.

Irani, L, Vertesi, J, Dourish, P, Philip, K, & Grinter, R 2010, ‘Postcolonial computing: a 



101

lens on design and development, Human factors in computing systems, ACM conference 
proceedings CHI 2010, Atlanta, Georgia.

Kam, M, Ramachandran, D, Devanathan, V, Tewari, A, & Canny, J 2007, Localized iterative 
design for language learning in underdeveloped regions: the PACE framework’, Human 
Factors in Computing Systems, ACM conference proceedings CHI’07, San Jose, California, 
pp. 1097-1106.

Schön, D 1983, The Reflective Practitioner: How Professionals Think In Action, Maurice 
Temple Smith.

Wing, J 2006. ‘Computational thinking’, Communications of the ACM, vol. 49, no. 3, pp. 33-35.


	EDITORIAL
	Michael Christie and Helen Verran

	TEACHING FROM COUNTRY, LEARNING FROM COUNTRY
	Michael Christie
	with the assistance of Yiŋiya Guyula, Dhäŋgal Gurruwiwi, John Greatorex, Joanne Garŋgulkpuy, Kathy Guthadjaka

	THE STORY COMES ALONG, AND THE CHILDREN ARE TAUGHT
	Yiŋiya Guyula

	TEACHING STUDENTS TO KNOW THEMSELVES
	Dhäŋgal Gurruwiwi

	TEACHING WHEN NOTHING IS LYING AROUND
	Kathy Guthadjaka
	talking with Michael Christie in Darwin, 25 Oct 2008

	THE YOLŊU CHILD’S PATHWAY 
	Joanne Garŋgulkpuy, 

	GARMAK GULARRIWUY
	Timothy Buthimaŋ 

	BUNDURRPUY
	What Does Bundurr Mean?
	Wapiriny Gurruwiwi

	INTELLECTUAL PROPERTIES
	Yiŋiya Guyula and Dhäŋgal Gurruwiwi

	MONEY MATTERS: PAYMENT FOR THE PARTICIPATION OF ABORIGINAL KNOWLEDGE AUTHORITIES IN ACADEMIC TEACHING AND RESEARCH WORK
	Michael Christie

	THE TASK OF THE TRANSLATOR
	Michael Christie

	TEACHING FROM COUNTRY STUDENT FORUM
	Christian Clark

	ON BEING A ‘LANGUAGE AND CULTURE’ LEARNER IN A YOLŊU WORLD
	Helen Verran

	‘COMPUTATIONAL THINKING’ AND THE POSTCOLONIAL IN THE TEACHING FROM COUNTRY PROGRAMME
	Paul Dourish

	TEACHING ENVIRONMENTAL SCIENTISTS FROM COUNTRY: INTEGRAL WISDOM FOR A NEW AUSTRALIA
	Keith Douglass Warner

	WHAT IS AN INNOVATION LEARNING COMMUNITY? 
	Margaret Ayre

	CREATING THE NGAN’GI SEASONS CALENDAR: REFLECTIONS ON ENGAGING INDIGENOUS KNOWLEDGE AUTHORITIES IN RESEARCH 
	Emma L Woodward

	ALL KNOWLEDGE IS LOCAL
	Geoffrey C. Bowker

	WHEN SHADOWS BECOME COMPLEX: WEAVING THE ŊANMARRA
	Susan Leigh Star

	ABOUT THE CONTRIBUTORS

